--- language: km datasets: - OpenSLR - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-xlsr-Khmer by Gagan Bhatia results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR km type: OpenSLR args: km metrics: - name: Test WER type: wer value: 24.96 --- # Wav2Vec2-Large-XLSR-53-khmer Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Khmer using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR Kh](http://www.openslr.org/42/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd from datasets import load_dataset !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch cer = load_metric("cer") result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 24.96 % WER: 24.962519 CER: 6.950925 ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1yo_OTMH8FHQrAKCkKdQGMqpkj-kFhS_2?usp=sharing)