gandolfi commited on
Commit
e1d0c12
·
verified ·
1 Parent(s): ea2e530

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +748 -0
README.md ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - mteb
9
+ - llama-cpp
10
+ - gguf-my-repo
11
+ base_model: manu/bge-m3-custom-fr
12
+ model-index:
13
+ - name: bge-m3-custom-fr
14
+ results:
15
+ - task:
16
+ type: Clustering
17
+ dataset:
18
+ name: MTEB AlloProfClusteringP2P
19
+ type: lyon-nlp/alloprof
20
+ config: default
21
+ split: test
22
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
23
+ metrics:
24
+ - type: v_measure
25
+ value: 56.727459716713
26
+ - type: v_measure
27
+ value: 38.19920006179227
28
+ - task:
29
+ type: Reranking
30
+ dataset:
31
+ name: MTEB AlloprofReranking
32
+ type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
33
+ config: default
34
+ split: test
35
+ revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
36
+ metrics:
37
+ - type: map
38
+ value: 65.17465797499942
39
+ - type: mrr
40
+ value: 66.51400197384653
41
+ - task:
42
+ type: Retrieval
43
+ dataset:
44
+ name: MTEB AlloprofRetrieval
45
+ type: lyon-nlp/alloprof
46
+ config: default
47
+ split: test
48
+ revision: 2df7bee4080bedf2e97de3da6bd5c7bc9fc9c4d2
49
+ metrics:
50
+ - type: map_at_1
51
+ value: 29.836000000000002
52
+ - type: map_at_10
53
+ value: 39.916000000000004
54
+ - type: map_at_100
55
+ value: 40.816
56
+ - type: map_at_1000
57
+ value: 40.877
58
+ - type: map_at_3
59
+ value: 37.294
60
+ - type: map_at_5
61
+ value: 38.838
62
+ - type: mrr_at_1
63
+ value: 29.836000000000002
64
+ - type: mrr_at_10
65
+ value: 39.916000000000004
66
+ - type: mrr_at_100
67
+ value: 40.816
68
+ - type: mrr_at_1000
69
+ value: 40.877
70
+ - type: mrr_at_3
71
+ value: 37.294
72
+ - type: mrr_at_5
73
+ value: 38.838
74
+ - type: ndcg_at_1
75
+ value: 29.836000000000002
76
+ - type: ndcg_at_10
77
+ value: 45.097
78
+ - type: ndcg_at_100
79
+ value: 49.683
80
+ - type: ndcg_at_1000
81
+ value: 51.429
82
+ - type: ndcg_at_3
83
+ value: 39.717
84
+ - type: ndcg_at_5
85
+ value: 42.501
86
+ - type: precision_at_1
87
+ value: 29.836000000000002
88
+ - type: precision_at_10
89
+ value: 6.149
90
+ - type: precision_at_100
91
+ value: 0.8340000000000001
92
+ - type: precision_at_1000
93
+ value: 0.097
94
+ - type: precision_at_3
95
+ value: 15.576
96
+ - type: precision_at_5
97
+ value: 10.698
98
+ - type: recall_at_1
99
+ value: 29.836000000000002
100
+ - type: recall_at_10
101
+ value: 61.485
102
+ - type: recall_at_100
103
+ value: 83.428
104
+ - type: recall_at_1000
105
+ value: 97.461
106
+ - type: recall_at_3
107
+ value: 46.727000000000004
108
+ - type: recall_at_5
109
+ value: 53.489
110
+ - task:
111
+ type: Classification
112
+ dataset:
113
+ name: MTEB AmazonReviewsClassification (fr)
114
+ type: mteb/amazon_reviews_multi
115
+ config: fr
116
+ split: test
117
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
118
+ metrics:
119
+ - type: accuracy
120
+ value: 42.332
121
+ - type: f1
122
+ value: 40.801800929404344
123
+ - task:
124
+ type: Retrieval
125
+ dataset:
126
+ name: MTEB BSARDRetrieval
127
+ type: maastrichtlawtech/bsard
128
+ config: default
129
+ split: test
130
+ revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
131
+ metrics:
132
+ - type: map_at_1
133
+ value: 0.0
134
+ - type: map_at_10
135
+ value: 0.0
136
+ - type: map_at_100
137
+ value: 0.011000000000000001
138
+ - type: map_at_1000
139
+ value: 0.018000000000000002
140
+ - type: map_at_3
141
+ value: 0.0
142
+ - type: map_at_5
143
+ value: 0.0
144
+ - type: mrr_at_1
145
+ value: 0.0
146
+ - type: mrr_at_10
147
+ value: 0.0
148
+ - type: mrr_at_100
149
+ value: 0.011000000000000001
150
+ - type: mrr_at_1000
151
+ value: 0.018000000000000002
152
+ - type: mrr_at_3
153
+ value: 0.0
154
+ - type: mrr_at_5
155
+ value: 0.0
156
+ - type: ndcg_at_1
157
+ value: 0.0
158
+ - type: ndcg_at_10
159
+ value: 0.0
160
+ - type: ndcg_at_100
161
+ value: 0.13999999999999999
162
+ - type: ndcg_at_1000
163
+ value: 0.457
164
+ - type: ndcg_at_3
165
+ value: 0.0
166
+ - type: ndcg_at_5
167
+ value: 0.0
168
+ - type: precision_at_1
169
+ value: 0.0
170
+ - type: precision_at_10
171
+ value: 0.0
172
+ - type: precision_at_100
173
+ value: 0.009000000000000001
174
+ - type: precision_at_1000
175
+ value: 0.004
176
+ - type: precision_at_3
177
+ value: 0.0
178
+ - type: precision_at_5
179
+ value: 0.0
180
+ - type: recall_at_1
181
+ value: 0.0
182
+ - type: recall_at_10
183
+ value: 0.0
184
+ - type: recall_at_100
185
+ value: 0.901
186
+ - type: recall_at_1000
187
+ value: 3.604
188
+ - type: recall_at_3
189
+ value: 0.0
190
+ - type: recall_at_5
191
+ value: 0.0
192
+ - task:
193
+ type: Clustering
194
+ dataset:
195
+ name: MTEB HALClusteringS2S
196
+ type: lyon-nlp/clustering-hal-s2s
197
+ config: default
198
+ split: test
199
+ revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
200
+ metrics:
201
+ - type: v_measure
202
+ value: 24.1294565929144
203
+ - task:
204
+ type: Clustering
205
+ dataset:
206
+ name: MTEB MLSUMClusteringP2P
207
+ type: mlsum
208
+ config: default
209
+ split: test
210
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
211
+ metrics:
212
+ - type: v_measure
213
+ value: 42.12040762356958
214
+ - type: v_measure
215
+ value: 36.69102548662494
216
+ - task:
217
+ type: Classification
218
+ dataset:
219
+ name: MTEB MTOPDomainClassification (fr)
220
+ type: mteb/mtop_domain
221
+ config: fr
222
+ split: test
223
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
224
+ metrics:
225
+ - type: accuracy
226
+ value: 90.3946132164109
227
+ - type: f1
228
+ value: 90.15608090764273
229
+ - task:
230
+ type: Classification
231
+ dataset:
232
+ name: MTEB MTOPIntentClassification (fr)
233
+ type: mteb/mtop_intent
234
+ config: fr
235
+ split: test
236
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
237
+ metrics:
238
+ - type: accuracy
239
+ value: 60.87691825869088
240
+ - type: f1
241
+ value: 43.56160799721332
242
+ - task:
243
+ type: Classification
244
+ dataset:
245
+ name: MTEB MasakhaNEWSClassification (fra)
246
+ type: masakhane/masakhanews
247
+ config: fra
248
+ split: test
249
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
250
+ metrics:
251
+ - type: accuracy
252
+ value: 70.52132701421802
253
+ - type: f1
254
+ value: 66.7911493789742
255
+ - task:
256
+ type: Clustering
257
+ dataset:
258
+ name: MTEB MasakhaNEWSClusteringP2P (fra)
259
+ type: masakhane/masakhanews
260
+ config: fra
261
+ split: test
262
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
263
+ metrics:
264
+ - type: v_measure
265
+ value: 34.60975901092521
266
+ - type: v_measure
267
+ value: 32.8092912406207
268
+ - task:
269
+ type: Classification
270
+ dataset:
271
+ name: MTEB MassiveIntentClassification (fr)
272
+ type: mteb/amazon_massive_intent
273
+ config: fr
274
+ split: test
275
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
276
+ metrics:
277
+ - type: accuracy
278
+ value: 66.70477471418964
279
+ - type: f1
280
+ value: 64.4848306188641
281
+ - task:
282
+ type: Classification
283
+ dataset:
284
+ name: MTEB MassiveScenarioClassification (fr)
285
+ type: mteb/amazon_massive_scenario
286
+ config: fr
287
+ split: test
288
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
289
+ metrics:
290
+ - type: accuracy
291
+ value: 74.57969065232011
292
+ - type: f1
293
+ value: 73.58251655418402
294
+ - task:
295
+ type: Retrieval
296
+ dataset:
297
+ name: MTEB MintakaRetrieval (fr)
298
+ type: jinaai/mintakaqa
299
+ config: fr
300
+ split: test
301
+ revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
302
+ metrics:
303
+ - type: map_at_1
304
+ value: 14.005
305
+ - type: map_at_10
306
+ value: 21.279999999999998
307
+ - type: map_at_100
308
+ value: 22.288
309
+ - type: map_at_1000
310
+ value: 22.404
311
+ - type: map_at_3
312
+ value: 19.151
313
+ - type: map_at_5
314
+ value: 20.322000000000003
315
+ - type: mrr_at_1
316
+ value: 14.005
317
+ - type: mrr_at_10
318
+ value: 21.279999999999998
319
+ - type: mrr_at_100
320
+ value: 22.288
321
+ - type: mrr_at_1000
322
+ value: 22.404
323
+ - type: mrr_at_3
324
+ value: 19.151
325
+ - type: mrr_at_5
326
+ value: 20.322000000000003
327
+ - type: ndcg_at_1
328
+ value: 14.005
329
+ - type: ndcg_at_10
330
+ value: 25.173000000000002
331
+ - type: ndcg_at_100
332
+ value: 30.452
333
+ - type: ndcg_at_1000
334
+ value: 34.241
335
+ - type: ndcg_at_3
336
+ value: 20.768
337
+ - type: ndcg_at_5
338
+ value: 22.869
339
+ - type: precision_at_1
340
+ value: 14.005
341
+ - type: precision_at_10
342
+ value: 3.759
343
+ - type: precision_at_100
344
+ value: 0.631
345
+ - type: precision_at_1000
346
+ value: 0.095
347
+ - type: precision_at_3
348
+ value: 8.477
349
+ - type: precision_at_5
350
+ value: 6.101999999999999
351
+ - type: recall_at_1
352
+ value: 14.005
353
+ - type: recall_at_10
354
+ value: 37.592
355
+ - type: recall_at_100
356
+ value: 63.144999999999996
357
+ - type: recall_at_1000
358
+ value: 94.513
359
+ - type: recall_at_3
360
+ value: 25.430000000000003
361
+ - type: recall_at_5
362
+ value: 30.508000000000003
363
+ - task:
364
+ type: PairClassification
365
+ dataset:
366
+ name: MTEB OpusparcusPC (fr)
367
+ type: GEM/opusparcus
368
+ config: fr
369
+ split: test
370
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
371
+ metrics:
372
+ - type: cos_sim_accuracy
373
+ value: 81.60762942779292
374
+ - type: cos_sim_ap
375
+ value: 93.33850264444463
376
+ - type: cos_sim_f1
377
+ value: 87.24705882352941
378
+ - type: cos_sim_precision
379
+ value: 82.91592128801432
380
+ - type: cos_sim_recall
381
+ value: 92.05561072492551
382
+ - type: dot_accuracy
383
+ value: 81.60762942779292
384
+ - type: dot_ap
385
+ value: 93.33850264444463
386
+ - type: dot_f1
387
+ value: 87.24705882352941
388
+ - type: dot_precision
389
+ value: 82.91592128801432
390
+ - type: dot_recall
391
+ value: 92.05561072492551
392
+ - type: euclidean_accuracy
393
+ value: 81.60762942779292
394
+ - type: euclidean_ap
395
+ value: 93.3384939260791
396
+ - type: euclidean_f1
397
+ value: 87.24705882352941
398
+ - type: euclidean_precision
399
+ value: 82.91592128801432
400
+ - type: euclidean_recall
401
+ value: 92.05561072492551
402
+ - type: manhattan_accuracy
403
+ value: 81.60762942779292
404
+ - type: manhattan_ap
405
+ value: 93.27064794794664
406
+ - type: manhattan_f1
407
+ value: 87.27440999537251
408
+ - type: manhattan_precision
409
+ value: 81.7157712305026
410
+ - type: manhattan_recall
411
+ value: 93.64448857994041
412
+ - type: max_accuracy
413
+ value: 81.60762942779292
414
+ - type: max_ap
415
+ value: 93.33850264444463
416
+ - type: max_f1
417
+ value: 87.27440999537251
418
+ - task:
419
+ type: PairClassification
420
+ dataset:
421
+ name: MTEB PawsX (fr)
422
+ type: paws-x
423
+ config: fr
424
+ split: test
425
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
426
+ metrics:
427
+ - type: cos_sim_accuracy
428
+ value: 61.95
429
+ - type: cos_sim_ap
430
+ value: 60.8497942066519
431
+ - type: cos_sim_f1
432
+ value: 62.53032928942807
433
+ - type: cos_sim_precision
434
+ value: 45.50958627648839
435
+ - type: cos_sim_recall
436
+ value: 99.88925802879291
437
+ - type: dot_accuracy
438
+ value: 61.95
439
+ - type: dot_ap
440
+ value: 60.83772617132806
441
+ - type: dot_f1
442
+ value: 62.53032928942807
443
+ - type: dot_precision
444
+ value: 45.50958627648839
445
+ - type: dot_recall
446
+ value: 99.88925802879291
447
+ - type: euclidean_accuracy
448
+ value: 61.95
449
+ - type: euclidean_ap
450
+ value: 60.8497942066519
451
+ - type: euclidean_f1
452
+ value: 62.53032928942807
453
+ - type: euclidean_precision
454
+ value: 45.50958627648839
455
+ - type: euclidean_recall
456
+ value: 99.88925802879291
457
+ - type: manhattan_accuracy
458
+ value: 61.9
459
+ - type: manhattan_ap
460
+ value: 60.87914286416435
461
+ - type: manhattan_f1
462
+ value: 62.491349480968864
463
+ - type: manhattan_precision
464
+ value: 45.44539506794162
465
+ - type: manhattan_recall
466
+ value: 100.0
467
+ - type: max_accuracy
468
+ value: 61.95
469
+ - type: max_ap
470
+ value: 60.87914286416435
471
+ - type: max_f1
472
+ value: 62.53032928942807
473
+ - task:
474
+ type: STS
475
+ dataset:
476
+ name: MTEB SICKFr
477
+ type: Lajavaness/SICK-fr
478
+ config: default
479
+ split: test
480
+ revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
481
+ metrics:
482
+ - type: cos_sim_pearson
483
+ value: 81.24400370393097
484
+ - type: cos_sim_spearman
485
+ value: 75.50548831172674
486
+ - type: euclidean_pearson
487
+ value: 77.81039134726188
488
+ - type: euclidean_spearman
489
+ value: 75.50504199480463
490
+ - type: manhattan_pearson
491
+ value: 77.79383923445839
492
+ - type: manhattan_spearman
493
+ value: 75.472882776806
494
+ - task:
495
+ type: STS
496
+ dataset:
497
+ name: MTEB STS22 (fr)
498
+ type: mteb/sts22-crosslingual-sts
499
+ config: fr
500
+ split: test
501
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
502
+ metrics:
503
+ - type: cos_sim_pearson
504
+ value: 80.48474973785514
505
+ - type: cos_sim_spearman
506
+ value: 81.69566405041475
507
+ - type: euclidean_pearson
508
+ value: 78.32784472269549
509
+ - type: euclidean_spearman
510
+ value: 81.69566405041475
511
+ - type: manhattan_pearson
512
+ value: 78.2856100079857
513
+ - type: manhattan_spearman
514
+ value: 81.84463256785325
515
+ - task:
516
+ type: STS
517
+ dataset:
518
+ name: MTEB STSBenchmarkMultilingualSTS (fr)
519
+ type: PhilipMay/stsb_multi_mt
520
+ config: fr
521
+ split: test
522
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
523
+ metrics:
524
+ - type: cos_sim_pearson
525
+ value: 80.68785966129913
526
+ - type: cos_sim_spearman
527
+ value: 81.29936344904975
528
+ - type: euclidean_pearson
529
+ value: 80.25462090186443
530
+ - type: euclidean_spearman
531
+ value: 81.29928746010391
532
+ - type: manhattan_pearson
533
+ value: 80.17083094559602
534
+ - type: manhattan_spearman
535
+ value: 81.18921827402406
536
+ - task:
537
+ type: Summarization
538
+ dataset:
539
+ name: MTEB SummEvalFr
540
+ type: lyon-nlp/summarization-summeval-fr-p2p
541
+ config: default
542
+ split: test
543
+ revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
544
+ metrics:
545
+ - type: cos_sim_pearson
546
+ value: 31.66113105701837
547
+ - type: cos_sim_spearman
548
+ value: 30.13316633681715
549
+ - type: dot_pearson
550
+ value: 31.66113064418324
551
+ - type: dot_spearman
552
+ value: 30.13316633681715
553
+ - task:
554
+ type: Reranking
555
+ dataset:
556
+ name: MTEB SyntecReranking
557
+ type: lyon-nlp/mteb-fr-reranking-syntec-s2p
558
+ config: default
559
+ split: test
560
+ revision: b205c5084a0934ce8af14338bf03feb19499c84d
561
+ metrics:
562
+ - type: map
563
+ value: 85.43333333333334
564
+ - type: mrr
565
+ value: 85.43333333333334
566
+ - task:
567
+ type: Retrieval
568
+ dataset:
569
+ name: MTEB SyntecRetrieval
570
+ type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
571
+ config: default
572
+ split: test
573
+ revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
574
+ metrics:
575
+ - type: map_at_1
576
+ value: 65.0
577
+ - type: map_at_10
578
+ value: 75.19200000000001
579
+ - type: map_at_100
580
+ value: 75.77000000000001
581
+ - type: map_at_1000
582
+ value: 75.77000000000001
583
+ - type: map_at_3
584
+ value: 73.667
585
+ - type: map_at_5
586
+ value: 75.067
587
+ - type: mrr_at_1
588
+ value: 65.0
589
+ - type: mrr_at_10
590
+ value: 75.19200000000001
591
+ - type: mrr_at_100
592
+ value: 75.77000000000001
593
+ - type: mrr_at_1000
594
+ value: 75.77000000000001
595
+ - type: mrr_at_3
596
+ value: 73.667
597
+ - type: mrr_at_5
598
+ value: 75.067
599
+ - type: ndcg_at_1
600
+ value: 65.0
601
+ - type: ndcg_at_10
602
+ value: 79.145
603
+ - type: ndcg_at_100
604
+ value: 81.34400000000001
605
+ - type: ndcg_at_1000
606
+ value: 81.34400000000001
607
+ - type: ndcg_at_3
608
+ value: 76.333
609
+ - type: ndcg_at_5
610
+ value: 78.82900000000001
611
+ - type: precision_at_1
612
+ value: 65.0
613
+ - type: precision_at_10
614
+ value: 9.1
615
+ - type: precision_at_100
616
+ value: 1.0
617
+ - type: precision_at_1000
618
+ value: 0.1
619
+ - type: precision_at_3
620
+ value: 28.000000000000004
621
+ - type: precision_at_5
622
+ value: 18.0
623
+ - type: recall_at_1
624
+ value: 65.0
625
+ - type: recall_at_10
626
+ value: 91.0
627
+ - type: recall_at_100
628
+ value: 100.0
629
+ - type: recall_at_1000
630
+ value: 100.0
631
+ - type: recall_at_3
632
+ value: 84.0
633
+ - type: recall_at_5
634
+ value: 90.0
635
+ - task:
636
+ type: Retrieval
637
+ dataset:
638
+ name: MTEB XPQARetrieval (fr)
639
+ type: jinaai/xpqa
640
+ config: fr
641
+ split: test
642
+ revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
643
+ metrics:
644
+ - type: map_at_1
645
+ value: 40.225
646
+ - type: map_at_10
647
+ value: 61.833000000000006
648
+ - type: map_at_100
649
+ value: 63.20400000000001
650
+ - type: map_at_1000
651
+ value: 63.27
652
+ - type: map_at_3
653
+ value: 55.593
654
+ - type: map_at_5
655
+ value: 59.65200000000001
656
+ - type: mrr_at_1
657
+ value: 63.284
658
+ - type: mrr_at_10
659
+ value: 71.351
660
+ - type: mrr_at_100
661
+ value: 71.772
662
+ - type: mrr_at_1000
663
+ value: 71.786
664
+ - type: mrr_at_3
665
+ value: 69.381
666
+ - type: mrr_at_5
667
+ value: 70.703
668
+ - type: ndcg_at_1
669
+ value: 63.284
670
+ - type: ndcg_at_10
671
+ value: 68.49199999999999
672
+ - type: ndcg_at_100
673
+ value: 72.79299999999999
674
+ - type: ndcg_at_1000
675
+ value: 73.735
676
+ - type: ndcg_at_3
677
+ value: 63.278
678
+ - type: ndcg_at_5
679
+ value: 65.19200000000001
680
+ - type: precision_at_1
681
+ value: 63.284
682
+ - type: precision_at_10
683
+ value: 15.661
684
+ - type: precision_at_100
685
+ value: 1.9349999999999998
686
+ - type: precision_at_1000
687
+ value: 0.207
688
+ - type: precision_at_3
689
+ value: 38.273
690
+ - type: precision_at_5
691
+ value: 27.397
692
+ - type: recall_at_1
693
+ value: 40.225
694
+ - type: recall_at_10
695
+ value: 77.66999999999999
696
+ - type: recall_at_100
697
+ value: 93.887
698
+ - type: recall_at_1000
699
+ value: 99.70599999999999
700
+ - type: recall_at_3
701
+ value: 61.133
702
+ - type: recall_at_5
703
+ value: 69.789
704
+ ---
705
+
706
+ # gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF
707
+ This model was converted to GGUF format from [`manu/bge-m3-custom-fr`](https://huggingface.co/manu/bge-m3-custom-fr) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
708
+ Refer to the [original model card](https://huggingface.co/manu/bge-m3-custom-fr) for more details on the model.
709
+
710
+ ## Use with llama.cpp
711
+ Install llama.cpp through brew (works on Mac and Linux)
712
+
713
+ ```bash
714
+ brew install llama.cpp
715
+
716
+ ```
717
+ Invoke the llama.cpp server or the CLI.
718
+
719
+ ### CLI:
720
+ ```bash
721
+ llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"
722
+ ```
723
+
724
+ ### Server:
725
+ ```bash
726
+ llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048
727
+ ```
728
+
729
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
730
+
731
+ Step 1: Clone llama.cpp from GitHub.
732
+ ```
733
+ git clone https://github.com/ggerganov/llama.cpp
734
+ ```
735
+
736
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
737
+ ```
738
+ cd llama.cpp && LLAMA_CURL=1 make
739
+ ```
740
+
741
+ Step 3: Run inference through the main binary.
742
+ ```
743
+ ./llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"
744
+ ```
745
+ or
746
+ ```
747
+ ./llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048
748
+ ```