Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- mteb
|
9 |
+
- llama-cpp
|
10 |
+
- gguf-my-repo
|
11 |
+
base_model: manu/bge-m3-custom-fr
|
12 |
+
model-index:
|
13 |
+
- name: bge-m3-custom-fr
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: Clustering
|
17 |
+
dataset:
|
18 |
+
name: MTEB AlloProfClusteringP2P
|
19 |
+
type: lyon-nlp/alloprof
|
20 |
+
config: default
|
21 |
+
split: test
|
22 |
+
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
|
23 |
+
metrics:
|
24 |
+
- type: v_measure
|
25 |
+
value: 56.727459716713
|
26 |
+
- type: v_measure
|
27 |
+
value: 38.19920006179227
|
28 |
+
- task:
|
29 |
+
type: Reranking
|
30 |
+
dataset:
|
31 |
+
name: MTEB AlloprofReranking
|
32 |
+
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
|
36 |
+
metrics:
|
37 |
+
- type: map
|
38 |
+
value: 65.17465797499942
|
39 |
+
- type: mrr
|
40 |
+
value: 66.51400197384653
|
41 |
+
- task:
|
42 |
+
type: Retrieval
|
43 |
+
dataset:
|
44 |
+
name: MTEB AlloprofRetrieval
|
45 |
+
type: lyon-nlp/alloprof
|
46 |
+
config: default
|
47 |
+
split: test
|
48 |
+
revision: 2df7bee4080bedf2e97de3da6bd5c7bc9fc9c4d2
|
49 |
+
metrics:
|
50 |
+
- type: map_at_1
|
51 |
+
value: 29.836000000000002
|
52 |
+
- type: map_at_10
|
53 |
+
value: 39.916000000000004
|
54 |
+
- type: map_at_100
|
55 |
+
value: 40.816
|
56 |
+
- type: map_at_1000
|
57 |
+
value: 40.877
|
58 |
+
- type: map_at_3
|
59 |
+
value: 37.294
|
60 |
+
- type: map_at_5
|
61 |
+
value: 38.838
|
62 |
+
- type: mrr_at_1
|
63 |
+
value: 29.836000000000002
|
64 |
+
- type: mrr_at_10
|
65 |
+
value: 39.916000000000004
|
66 |
+
- type: mrr_at_100
|
67 |
+
value: 40.816
|
68 |
+
- type: mrr_at_1000
|
69 |
+
value: 40.877
|
70 |
+
- type: mrr_at_3
|
71 |
+
value: 37.294
|
72 |
+
- type: mrr_at_5
|
73 |
+
value: 38.838
|
74 |
+
- type: ndcg_at_1
|
75 |
+
value: 29.836000000000002
|
76 |
+
- type: ndcg_at_10
|
77 |
+
value: 45.097
|
78 |
+
- type: ndcg_at_100
|
79 |
+
value: 49.683
|
80 |
+
- type: ndcg_at_1000
|
81 |
+
value: 51.429
|
82 |
+
- type: ndcg_at_3
|
83 |
+
value: 39.717
|
84 |
+
- type: ndcg_at_5
|
85 |
+
value: 42.501
|
86 |
+
- type: precision_at_1
|
87 |
+
value: 29.836000000000002
|
88 |
+
- type: precision_at_10
|
89 |
+
value: 6.149
|
90 |
+
- type: precision_at_100
|
91 |
+
value: 0.8340000000000001
|
92 |
+
- type: precision_at_1000
|
93 |
+
value: 0.097
|
94 |
+
- type: precision_at_3
|
95 |
+
value: 15.576
|
96 |
+
- type: precision_at_5
|
97 |
+
value: 10.698
|
98 |
+
- type: recall_at_1
|
99 |
+
value: 29.836000000000002
|
100 |
+
- type: recall_at_10
|
101 |
+
value: 61.485
|
102 |
+
- type: recall_at_100
|
103 |
+
value: 83.428
|
104 |
+
- type: recall_at_1000
|
105 |
+
value: 97.461
|
106 |
+
- type: recall_at_3
|
107 |
+
value: 46.727000000000004
|
108 |
+
- type: recall_at_5
|
109 |
+
value: 53.489
|
110 |
+
- task:
|
111 |
+
type: Classification
|
112 |
+
dataset:
|
113 |
+
name: MTEB AmazonReviewsClassification (fr)
|
114 |
+
type: mteb/amazon_reviews_multi
|
115 |
+
config: fr
|
116 |
+
split: test
|
117 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
118 |
+
metrics:
|
119 |
+
- type: accuracy
|
120 |
+
value: 42.332
|
121 |
+
- type: f1
|
122 |
+
value: 40.801800929404344
|
123 |
+
- task:
|
124 |
+
type: Retrieval
|
125 |
+
dataset:
|
126 |
+
name: MTEB BSARDRetrieval
|
127 |
+
type: maastrichtlawtech/bsard
|
128 |
+
config: default
|
129 |
+
split: test
|
130 |
+
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
|
131 |
+
metrics:
|
132 |
+
- type: map_at_1
|
133 |
+
value: 0.0
|
134 |
+
- type: map_at_10
|
135 |
+
value: 0.0
|
136 |
+
- type: map_at_100
|
137 |
+
value: 0.011000000000000001
|
138 |
+
- type: map_at_1000
|
139 |
+
value: 0.018000000000000002
|
140 |
+
- type: map_at_3
|
141 |
+
value: 0.0
|
142 |
+
- type: map_at_5
|
143 |
+
value: 0.0
|
144 |
+
- type: mrr_at_1
|
145 |
+
value: 0.0
|
146 |
+
- type: mrr_at_10
|
147 |
+
value: 0.0
|
148 |
+
- type: mrr_at_100
|
149 |
+
value: 0.011000000000000001
|
150 |
+
- type: mrr_at_1000
|
151 |
+
value: 0.018000000000000002
|
152 |
+
- type: mrr_at_3
|
153 |
+
value: 0.0
|
154 |
+
- type: mrr_at_5
|
155 |
+
value: 0.0
|
156 |
+
- type: ndcg_at_1
|
157 |
+
value: 0.0
|
158 |
+
- type: ndcg_at_10
|
159 |
+
value: 0.0
|
160 |
+
- type: ndcg_at_100
|
161 |
+
value: 0.13999999999999999
|
162 |
+
- type: ndcg_at_1000
|
163 |
+
value: 0.457
|
164 |
+
- type: ndcg_at_3
|
165 |
+
value: 0.0
|
166 |
+
- type: ndcg_at_5
|
167 |
+
value: 0.0
|
168 |
+
- type: precision_at_1
|
169 |
+
value: 0.0
|
170 |
+
- type: precision_at_10
|
171 |
+
value: 0.0
|
172 |
+
- type: precision_at_100
|
173 |
+
value: 0.009000000000000001
|
174 |
+
- type: precision_at_1000
|
175 |
+
value: 0.004
|
176 |
+
- type: precision_at_3
|
177 |
+
value: 0.0
|
178 |
+
- type: precision_at_5
|
179 |
+
value: 0.0
|
180 |
+
- type: recall_at_1
|
181 |
+
value: 0.0
|
182 |
+
- type: recall_at_10
|
183 |
+
value: 0.0
|
184 |
+
- type: recall_at_100
|
185 |
+
value: 0.901
|
186 |
+
- type: recall_at_1000
|
187 |
+
value: 3.604
|
188 |
+
- type: recall_at_3
|
189 |
+
value: 0.0
|
190 |
+
- type: recall_at_5
|
191 |
+
value: 0.0
|
192 |
+
- task:
|
193 |
+
type: Clustering
|
194 |
+
dataset:
|
195 |
+
name: MTEB HALClusteringS2S
|
196 |
+
type: lyon-nlp/clustering-hal-s2s
|
197 |
+
config: default
|
198 |
+
split: test
|
199 |
+
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
|
200 |
+
metrics:
|
201 |
+
- type: v_measure
|
202 |
+
value: 24.1294565929144
|
203 |
+
- task:
|
204 |
+
type: Clustering
|
205 |
+
dataset:
|
206 |
+
name: MTEB MLSUMClusteringP2P
|
207 |
+
type: mlsum
|
208 |
+
config: default
|
209 |
+
split: test
|
210 |
+
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
|
211 |
+
metrics:
|
212 |
+
- type: v_measure
|
213 |
+
value: 42.12040762356958
|
214 |
+
- type: v_measure
|
215 |
+
value: 36.69102548662494
|
216 |
+
- task:
|
217 |
+
type: Classification
|
218 |
+
dataset:
|
219 |
+
name: MTEB MTOPDomainClassification (fr)
|
220 |
+
type: mteb/mtop_domain
|
221 |
+
config: fr
|
222 |
+
split: test
|
223 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
224 |
+
metrics:
|
225 |
+
- type: accuracy
|
226 |
+
value: 90.3946132164109
|
227 |
+
- type: f1
|
228 |
+
value: 90.15608090764273
|
229 |
+
- task:
|
230 |
+
type: Classification
|
231 |
+
dataset:
|
232 |
+
name: MTEB MTOPIntentClassification (fr)
|
233 |
+
type: mteb/mtop_intent
|
234 |
+
config: fr
|
235 |
+
split: test
|
236 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
237 |
+
metrics:
|
238 |
+
- type: accuracy
|
239 |
+
value: 60.87691825869088
|
240 |
+
- type: f1
|
241 |
+
value: 43.56160799721332
|
242 |
+
- task:
|
243 |
+
type: Classification
|
244 |
+
dataset:
|
245 |
+
name: MTEB MasakhaNEWSClassification (fra)
|
246 |
+
type: masakhane/masakhanews
|
247 |
+
config: fra
|
248 |
+
split: test
|
249 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
250 |
+
metrics:
|
251 |
+
- type: accuracy
|
252 |
+
value: 70.52132701421802
|
253 |
+
- type: f1
|
254 |
+
value: 66.7911493789742
|
255 |
+
- task:
|
256 |
+
type: Clustering
|
257 |
+
dataset:
|
258 |
+
name: MTEB MasakhaNEWSClusteringP2P (fra)
|
259 |
+
type: masakhane/masakhanews
|
260 |
+
config: fra
|
261 |
+
split: test
|
262 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
263 |
+
metrics:
|
264 |
+
- type: v_measure
|
265 |
+
value: 34.60975901092521
|
266 |
+
- type: v_measure
|
267 |
+
value: 32.8092912406207
|
268 |
+
- task:
|
269 |
+
type: Classification
|
270 |
+
dataset:
|
271 |
+
name: MTEB MassiveIntentClassification (fr)
|
272 |
+
type: mteb/amazon_massive_intent
|
273 |
+
config: fr
|
274 |
+
split: test
|
275 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
276 |
+
metrics:
|
277 |
+
- type: accuracy
|
278 |
+
value: 66.70477471418964
|
279 |
+
- type: f1
|
280 |
+
value: 64.4848306188641
|
281 |
+
- task:
|
282 |
+
type: Classification
|
283 |
+
dataset:
|
284 |
+
name: MTEB MassiveScenarioClassification (fr)
|
285 |
+
type: mteb/amazon_massive_scenario
|
286 |
+
config: fr
|
287 |
+
split: test
|
288 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
289 |
+
metrics:
|
290 |
+
- type: accuracy
|
291 |
+
value: 74.57969065232011
|
292 |
+
- type: f1
|
293 |
+
value: 73.58251655418402
|
294 |
+
- task:
|
295 |
+
type: Retrieval
|
296 |
+
dataset:
|
297 |
+
name: MTEB MintakaRetrieval (fr)
|
298 |
+
type: jinaai/mintakaqa
|
299 |
+
config: fr
|
300 |
+
split: test
|
301 |
+
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
|
302 |
+
metrics:
|
303 |
+
- type: map_at_1
|
304 |
+
value: 14.005
|
305 |
+
- type: map_at_10
|
306 |
+
value: 21.279999999999998
|
307 |
+
- type: map_at_100
|
308 |
+
value: 22.288
|
309 |
+
- type: map_at_1000
|
310 |
+
value: 22.404
|
311 |
+
- type: map_at_3
|
312 |
+
value: 19.151
|
313 |
+
- type: map_at_5
|
314 |
+
value: 20.322000000000003
|
315 |
+
- type: mrr_at_1
|
316 |
+
value: 14.005
|
317 |
+
- type: mrr_at_10
|
318 |
+
value: 21.279999999999998
|
319 |
+
- type: mrr_at_100
|
320 |
+
value: 22.288
|
321 |
+
- type: mrr_at_1000
|
322 |
+
value: 22.404
|
323 |
+
- type: mrr_at_3
|
324 |
+
value: 19.151
|
325 |
+
- type: mrr_at_5
|
326 |
+
value: 20.322000000000003
|
327 |
+
- type: ndcg_at_1
|
328 |
+
value: 14.005
|
329 |
+
- type: ndcg_at_10
|
330 |
+
value: 25.173000000000002
|
331 |
+
- type: ndcg_at_100
|
332 |
+
value: 30.452
|
333 |
+
- type: ndcg_at_1000
|
334 |
+
value: 34.241
|
335 |
+
- type: ndcg_at_3
|
336 |
+
value: 20.768
|
337 |
+
- type: ndcg_at_5
|
338 |
+
value: 22.869
|
339 |
+
- type: precision_at_1
|
340 |
+
value: 14.005
|
341 |
+
- type: precision_at_10
|
342 |
+
value: 3.759
|
343 |
+
- type: precision_at_100
|
344 |
+
value: 0.631
|
345 |
+
- type: precision_at_1000
|
346 |
+
value: 0.095
|
347 |
+
- type: precision_at_3
|
348 |
+
value: 8.477
|
349 |
+
- type: precision_at_5
|
350 |
+
value: 6.101999999999999
|
351 |
+
- type: recall_at_1
|
352 |
+
value: 14.005
|
353 |
+
- type: recall_at_10
|
354 |
+
value: 37.592
|
355 |
+
- type: recall_at_100
|
356 |
+
value: 63.144999999999996
|
357 |
+
- type: recall_at_1000
|
358 |
+
value: 94.513
|
359 |
+
- type: recall_at_3
|
360 |
+
value: 25.430000000000003
|
361 |
+
- type: recall_at_5
|
362 |
+
value: 30.508000000000003
|
363 |
+
- task:
|
364 |
+
type: PairClassification
|
365 |
+
dataset:
|
366 |
+
name: MTEB OpusparcusPC (fr)
|
367 |
+
type: GEM/opusparcus
|
368 |
+
config: fr
|
369 |
+
split: test
|
370 |
+
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
|
371 |
+
metrics:
|
372 |
+
- type: cos_sim_accuracy
|
373 |
+
value: 81.60762942779292
|
374 |
+
- type: cos_sim_ap
|
375 |
+
value: 93.33850264444463
|
376 |
+
- type: cos_sim_f1
|
377 |
+
value: 87.24705882352941
|
378 |
+
- type: cos_sim_precision
|
379 |
+
value: 82.91592128801432
|
380 |
+
- type: cos_sim_recall
|
381 |
+
value: 92.05561072492551
|
382 |
+
- type: dot_accuracy
|
383 |
+
value: 81.60762942779292
|
384 |
+
- type: dot_ap
|
385 |
+
value: 93.33850264444463
|
386 |
+
- type: dot_f1
|
387 |
+
value: 87.24705882352941
|
388 |
+
- type: dot_precision
|
389 |
+
value: 82.91592128801432
|
390 |
+
- type: dot_recall
|
391 |
+
value: 92.05561072492551
|
392 |
+
- type: euclidean_accuracy
|
393 |
+
value: 81.60762942779292
|
394 |
+
- type: euclidean_ap
|
395 |
+
value: 93.3384939260791
|
396 |
+
- type: euclidean_f1
|
397 |
+
value: 87.24705882352941
|
398 |
+
- type: euclidean_precision
|
399 |
+
value: 82.91592128801432
|
400 |
+
- type: euclidean_recall
|
401 |
+
value: 92.05561072492551
|
402 |
+
- type: manhattan_accuracy
|
403 |
+
value: 81.60762942779292
|
404 |
+
- type: manhattan_ap
|
405 |
+
value: 93.27064794794664
|
406 |
+
- type: manhattan_f1
|
407 |
+
value: 87.27440999537251
|
408 |
+
- type: manhattan_precision
|
409 |
+
value: 81.7157712305026
|
410 |
+
- type: manhattan_recall
|
411 |
+
value: 93.64448857994041
|
412 |
+
- type: max_accuracy
|
413 |
+
value: 81.60762942779292
|
414 |
+
- type: max_ap
|
415 |
+
value: 93.33850264444463
|
416 |
+
- type: max_f1
|
417 |
+
value: 87.27440999537251
|
418 |
+
- task:
|
419 |
+
type: PairClassification
|
420 |
+
dataset:
|
421 |
+
name: MTEB PawsX (fr)
|
422 |
+
type: paws-x
|
423 |
+
config: fr
|
424 |
+
split: test
|
425 |
+
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
426 |
+
metrics:
|
427 |
+
- type: cos_sim_accuracy
|
428 |
+
value: 61.95
|
429 |
+
- type: cos_sim_ap
|
430 |
+
value: 60.8497942066519
|
431 |
+
- type: cos_sim_f1
|
432 |
+
value: 62.53032928942807
|
433 |
+
- type: cos_sim_precision
|
434 |
+
value: 45.50958627648839
|
435 |
+
- type: cos_sim_recall
|
436 |
+
value: 99.88925802879291
|
437 |
+
- type: dot_accuracy
|
438 |
+
value: 61.95
|
439 |
+
- type: dot_ap
|
440 |
+
value: 60.83772617132806
|
441 |
+
- type: dot_f1
|
442 |
+
value: 62.53032928942807
|
443 |
+
- type: dot_precision
|
444 |
+
value: 45.50958627648839
|
445 |
+
- type: dot_recall
|
446 |
+
value: 99.88925802879291
|
447 |
+
- type: euclidean_accuracy
|
448 |
+
value: 61.95
|
449 |
+
- type: euclidean_ap
|
450 |
+
value: 60.8497942066519
|
451 |
+
- type: euclidean_f1
|
452 |
+
value: 62.53032928942807
|
453 |
+
- type: euclidean_precision
|
454 |
+
value: 45.50958627648839
|
455 |
+
- type: euclidean_recall
|
456 |
+
value: 99.88925802879291
|
457 |
+
- type: manhattan_accuracy
|
458 |
+
value: 61.9
|
459 |
+
- type: manhattan_ap
|
460 |
+
value: 60.87914286416435
|
461 |
+
- type: manhattan_f1
|
462 |
+
value: 62.491349480968864
|
463 |
+
- type: manhattan_precision
|
464 |
+
value: 45.44539506794162
|
465 |
+
- type: manhattan_recall
|
466 |
+
value: 100.0
|
467 |
+
- type: max_accuracy
|
468 |
+
value: 61.95
|
469 |
+
- type: max_ap
|
470 |
+
value: 60.87914286416435
|
471 |
+
- type: max_f1
|
472 |
+
value: 62.53032928942807
|
473 |
+
- task:
|
474 |
+
type: STS
|
475 |
+
dataset:
|
476 |
+
name: MTEB SICKFr
|
477 |
+
type: Lajavaness/SICK-fr
|
478 |
+
config: default
|
479 |
+
split: test
|
480 |
+
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
|
481 |
+
metrics:
|
482 |
+
- type: cos_sim_pearson
|
483 |
+
value: 81.24400370393097
|
484 |
+
- type: cos_sim_spearman
|
485 |
+
value: 75.50548831172674
|
486 |
+
- type: euclidean_pearson
|
487 |
+
value: 77.81039134726188
|
488 |
+
- type: euclidean_spearman
|
489 |
+
value: 75.50504199480463
|
490 |
+
- type: manhattan_pearson
|
491 |
+
value: 77.79383923445839
|
492 |
+
- type: manhattan_spearman
|
493 |
+
value: 75.472882776806
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
name: MTEB STS22 (fr)
|
498 |
+
type: mteb/sts22-crosslingual-sts
|
499 |
+
config: fr
|
500 |
+
split: test
|
501 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 80.48474973785514
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 81.69566405041475
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 78.32784472269549
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 81.69566405041475
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 78.2856100079857
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 81.84463256785325
|
515 |
+
- task:
|
516 |
+
type: STS
|
517 |
+
dataset:
|
518 |
+
name: MTEB STSBenchmarkMultilingualSTS (fr)
|
519 |
+
type: PhilipMay/stsb_multi_mt
|
520 |
+
config: fr
|
521 |
+
split: test
|
522 |
+
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
|
523 |
+
metrics:
|
524 |
+
- type: cos_sim_pearson
|
525 |
+
value: 80.68785966129913
|
526 |
+
- type: cos_sim_spearman
|
527 |
+
value: 81.29936344904975
|
528 |
+
- type: euclidean_pearson
|
529 |
+
value: 80.25462090186443
|
530 |
+
- type: euclidean_spearman
|
531 |
+
value: 81.29928746010391
|
532 |
+
- type: manhattan_pearson
|
533 |
+
value: 80.17083094559602
|
534 |
+
- type: manhattan_spearman
|
535 |
+
value: 81.18921827402406
|
536 |
+
- task:
|
537 |
+
type: Summarization
|
538 |
+
dataset:
|
539 |
+
name: MTEB SummEvalFr
|
540 |
+
type: lyon-nlp/summarization-summeval-fr-p2p
|
541 |
+
config: default
|
542 |
+
split: test
|
543 |
+
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
|
544 |
+
metrics:
|
545 |
+
- type: cos_sim_pearson
|
546 |
+
value: 31.66113105701837
|
547 |
+
- type: cos_sim_spearman
|
548 |
+
value: 30.13316633681715
|
549 |
+
- type: dot_pearson
|
550 |
+
value: 31.66113064418324
|
551 |
+
- type: dot_spearman
|
552 |
+
value: 30.13316633681715
|
553 |
+
- task:
|
554 |
+
type: Reranking
|
555 |
+
dataset:
|
556 |
+
name: MTEB SyntecReranking
|
557 |
+
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
|
558 |
+
config: default
|
559 |
+
split: test
|
560 |
+
revision: b205c5084a0934ce8af14338bf03feb19499c84d
|
561 |
+
metrics:
|
562 |
+
- type: map
|
563 |
+
value: 85.43333333333334
|
564 |
+
- type: mrr
|
565 |
+
value: 85.43333333333334
|
566 |
+
- task:
|
567 |
+
type: Retrieval
|
568 |
+
dataset:
|
569 |
+
name: MTEB SyntecRetrieval
|
570 |
+
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
|
571 |
+
config: default
|
572 |
+
split: test
|
573 |
+
revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
|
574 |
+
metrics:
|
575 |
+
- type: map_at_1
|
576 |
+
value: 65.0
|
577 |
+
- type: map_at_10
|
578 |
+
value: 75.19200000000001
|
579 |
+
- type: map_at_100
|
580 |
+
value: 75.77000000000001
|
581 |
+
- type: map_at_1000
|
582 |
+
value: 75.77000000000001
|
583 |
+
- type: map_at_3
|
584 |
+
value: 73.667
|
585 |
+
- type: map_at_5
|
586 |
+
value: 75.067
|
587 |
+
- type: mrr_at_1
|
588 |
+
value: 65.0
|
589 |
+
- type: mrr_at_10
|
590 |
+
value: 75.19200000000001
|
591 |
+
- type: mrr_at_100
|
592 |
+
value: 75.77000000000001
|
593 |
+
- type: mrr_at_1000
|
594 |
+
value: 75.77000000000001
|
595 |
+
- type: mrr_at_3
|
596 |
+
value: 73.667
|
597 |
+
- type: mrr_at_5
|
598 |
+
value: 75.067
|
599 |
+
- type: ndcg_at_1
|
600 |
+
value: 65.0
|
601 |
+
- type: ndcg_at_10
|
602 |
+
value: 79.145
|
603 |
+
- type: ndcg_at_100
|
604 |
+
value: 81.34400000000001
|
605 |
+
- type: ndcg_at_1000
|
606 |
+
value: 81.34400000000001
|
607 |
+
- type: ndcg_at_3
|
608 |
+
value: 76.333
|
609 |
+
- type: ndcg_at_5
|
610 |
+
value: 78.82900000000001
|
611 |
+
- type: precision_at_1
|
612 |
+
value: 65.0
|
613 |
+
- type: precision_at_10
|
614 |
+
value: 9.1
|
615 |
+
- type: precision_at_100
|
616 |
+
value: 1.0
|
617 |
+
- type: precision_at_1000
|
618 |
+
value: 0.1
|
619 |
+
- type: precision_at_3
|
620 |
+
value: 28.000000000000004
|
621 |
+
- type: precision_at_5
|
622 |
+
value: 18.0
|
623 |
+
- type: recall_at_1
|
624 |
+
value: 65.0
|
625 |
+
- type: recall_at_10
|
626 |
+
value: 91.0
|
627 |
+
- type: recall_at_100
|
628 |
+
value: 100.0
|
629 |
+
- type: recall_at_1000
|
630 |
+
value: 100.0
|
631 |
+
- type: recall_at_3
|
632 |
+
value: 84.0
|
633 |
+
- type: recall_at_5
|
634 |
+
value: 90.0
|
635 |
+
- task:
|
636 |
+
type: Retrieval
|
637 |
+
dataset:
|
638 |
+
name: MTEB XPQARetrieval (fr)
|
639 |
+
type: jinaai/xpqa
|
640 |
+
config: fr
|
641 |
+
split: test
|
642 |
+
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
|
643 |
+
metrics:
|
644 |
+
- type: map_at_1
|
645 |
+
value: 40.225
|
646 |
+
- type: map_at_10
|
647 |
+
value: 61.833000000000006
|
648 |
+
- type: map_at_100
|
649 |
+
value: 63.20400000000001
|
650 |
+
- type: map_at_1000
|
651 |
+
value: 63.27
|
652 |
+
- type: map_at_3
|
653 |
+
value: 55.593
|
654 |
+
- type: map_at_5
|
655 |
+
value: 59.65200000000001
|
656 |
+
- type: mrr_at_1
|
657 |
+
value: 63.284
|
658 |
+
- type: mrr_at_10
|
659 |
+
value: 71.351
|
660 |
+
- type: mrr_at_100
|
661 |
+
value: 71.772
|
662 |
+
- type: mrr_at_1000
|
663 |
+
value: 71.786
|
664 |
+
- type: mrr_at_3
|
665 |
+
value: 69.381
|
666 |
+
- type: mrr_at_5
|
667 |
+
value: 70.703
|
668 |
+
- type: ndcg_at_1
|
669 |
+
value: 63.284
|
670 |
+
- type: ndcg_at_10
|
671 |
+
value: 68.49199999999999
|
672 |
+
- type: ndcg_at_100
|
673 |
+
value: 72.79299999999999
|
674 |
+
- type: ndcg_at_1000
|
675 |
+
value: 73.735
|
676 |
+
- type: ndcg_at_3
|
677 |
+
value: 63.278
|
678 |
+
- type: ndcg_at_5
|
679 |
+
value: 65.19200000000001
|
680 |
+
- type: precision_at_1
|
681 |
+
value: 63.284
|
682 |
+
- type: precision_at_10
|
683 |
+
value: 15.661
|
684 |
+
- type: precision_at_100
|
685 |
+
value: 1.9349999999999998
|
686 |
+
- type: precision_at_1000
|
687 |
+
value: 0.207
|
688 |
+
- type: precision_at_3
|
689 |
+
value: 38.273
|
690 |
+
- type: precision_at_5
|
691 |
+
value: 27.397
|
692 |
+
- type: recall_at_1
|
693 |
+
value: 40.225
|
694 |
+
- type: recall_at_10
|
695 |
+
value: 77.66999999999999
|
696 |
+
- type: recall_at_100
|
697 |
+
value: 93.887
|
698 |
+
- type: recall_at_1000
|
699 |
+
value: 99.70599999999999
|
700 |
+
- type: recall_at_3
|
701 |
+
value: 61.133
|
702 |
+
- type: recall_at_5
|
703 |
+
value: 69.789
|
704 |
+
---
|
705 |
+
|
706 |
+
# gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF
|
707 |
+
This model was converted to GGUF format from [`manu/bge-m3-custom-fr`](https://huggingface.co/manu/bge-m3-custom-fr) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
708 |
+
Refer to the [original model card](https://huggingface.co/manu/bge-m3-custom-fr) for more details on the model.
|
709 |
+
|
710 |
+
## Use with llama.cpp
|
711 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
712 |
+
|
713 |
+
```bash
|
714 |
+
brew install llama.cpp
|
715 |
+
|
716 |
+
```
|
717 |
+
Invoke the llama.cpp server or the CLI.
|
718 |
+
|
719 |
+
### CLI:
|
720 |
+
```bash
|
721 |
+
llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"
|
722 |
+
```
|
723 |
+
|
724 |
+
### Server:
|
725 |
+
```bash
|
726 |
+
llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048
|
727 |
+
```
|
728 |
+
|
729 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
730 |
+
|
731 |
+
Step 1: Clone llama.cpp from GitHub.
|
732 |
+
```
|
733 |
+
git clone https://github.com/ggerganov/llama.cpp
|
734 |
+
```
|
735 |
+
|
736 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
737 |
+
```
|
738 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
739 |
+
```
|
740 |
+
|
741 |
+
Step 3: Run inference through the main binary.
|
742 |
+
```
|
743 |
+
./llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"
|
744 |
+
```
|
745 |
+
or
|
746 |
+
```
|
747 |
+
./llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048
|
748 |
+
```
|