gaurav16 commited on
Commit
29e0766
·
verified ·
1 Parent(s): 6935870

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import find_dotenv, load_dotenv
2
+ load_dotenv(find_dotenv())
3
+ import os
4
+ import pandas as pd
5
+ import streamlit as st
6
+ from langchain_core.prompts import PromptTemplate
7
+ from pandasql import sqldf
8
+ from groq import Groq
9
+
10
+
11
+ template = """You are a powerful text-to-SQL model. Your job is to answer questions about a database. You are given a question and context regarding one or more tables. Dont add \n characters.
12
+ Do not include "SELECT short\_name, long\_name" this type of queries which have backslash in them.
13
+ You must output the SQL query that answers the question in a single line.
14
+
15
+ ### Input:
16
+ `{question}`
17
+
18
+ ### Context:
19
+ `{context}`
20
+
21
+ ### Response:
22
+ """
23
+
24
+
25
+
26
+ prompt = PromptTemplate.from_template(template=template)
27
+
28
+ client = Groq(
29
+ api_key=os.getenv("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"),
30
+ )
31
+
32
+ def groq_infer(prompt):
33
+ chat_completion = client.chat.completions.create(
34
+ messages=[
35
+ {
36
+ "role": "user",
37
+ "content": prompt,
38
+ }
39
+ ],
40
+ model="mixtral-8x7b-32768",
41
+ )
42
+ print(chat_completion.choices[0].message.content)
43
+ return chat_completion.choices[0].message.content
44
+
45
+ # 1. Create cache_resource - To load the model
46
+ # infer - pipeline -> pipe()
47
+ def main():
48
+ st.set_page_config(page_title="Ask anything about database", page_icon="📊", layout="wide")
49
+ st.title("SQL Engineer")
50
+
51
+ col1, col2 = st.columns([2, 3])
52
+
53
+ with col1:
54
+ uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
55
+ if uploaded_file is not None:
56
+ df = pd.read_csv(uploaded_file, encoding="latin1")
57
+ df.columns = df.columns.str.replace(r"[^a-zA-Z0-9_]", "", regex=True)
58
+ st.write("Here's a preview of your uploaded file:")
59
+ st.dataframe(df)
60
+
61
+ context = pd.io.sql.get_schema(df.reset_index(), "df").replace('"', "")
62
+ st.write("SQL Schema:")
63
+ st.code(context)
64
+
65
+ with col2:
66
+ if uploaded_file is not None:
67
+ question = st.text_input("Write a question about the data", key="question")
68
+
69
+ if st.button("Get Answer", key="get_answer"):
70
+ if question:
71
+ attempt = 0
72
+ max_attempts = 5
73
+ while attempt < max_attempts:
74
+ try:
75
+ input = {"context": context, "question": question}
76
+ formatted_prompt = prompt.invoke(input=input).text
77
+ response = groq_infer(formatted_prompt)
78
+ final = response.replace("`", "").replace("sql", "").strip()
79
+ st.text("Query performed")
80
+ st.code(final)
81
+ result = sqldf(final, locals())
82
+ st.write("Answer:")
83
+ st.dataframe(result)
84
+ break
85
+ except Exception as e:
86
+ attempt += 1
87
+ st.error(
88
+ f"Attempt {attempt}/{max_attempts} failed. Retrying..."
89
+ )
90
+ if attempt == max_attempts:
91
+ st.error(
92
+ "Unable to get the correct query, refresh app or try again later."
93
+ )
94
+ continue
95
+
96
+ else:
97
+ st.warning("Please enter a question before clicking 'Get Answer'.")
98
+
99
+
100
+ if __name__ == "__main__":
101
+ main()