File size: 2,540 Bytes
a9b9e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-paraphrasing-mlm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-paraphrasing-mlm

This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7030
- Rouge2 Precision: 0.6576
- Rouge2 Recall: 0.4712
- Rouge2 Fmeasure: 0.532

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.9215        | 1.0   | 13833  | 0.8050          | 0.6352           | 0.454         | 0.5131          |
| 0.855         | 2.0   | 27666  | 0.7679          | 0.6411           | 0.4589        | 0.5184          |
| 0.8387        | 3.0   | 41499  | 0.7464          | 0.6464           | 0.4626        | 0.5226          |
| 0.8267        | 4.0   | 55332  | 0.7315          | 0.6513           | 0.4671        | 0.5273          |
| 0.7879        | 5.0   | 69165  | 0.7217          | 0.6534           | 0.4687        | 0.529           |
| 0.7738        | 6.0   | 82998  | 0.7142          | 0.6548           | 0.4688        | 0.5295          |
| 0.7793        | 7.0   | 96831  | 0.7094          | 0.6553           | 0.4694        | 0.53            |
| 0.7654        | 8.0   | 110664 | 0.7056          | 0.6573           | 0.4704        | 0.5313          |
| 0.7675        | 9.0   | 124497 | 0.7036          | 0.6577           | 0.4712        | 0.532           |
| 0.7662        | 10.0  | 138330 | 0.7030          | 0.6576           | 0.4712        | 0.532           |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6