genaforvena commited on
Commit
9c797a7
·
verified ·
1 Parent(s): 52dadeb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -199
README.md CHANGED
@@ -1,202 +1,127 @@
1
  ---
2
- base_model: nltpt/Llama-3.2-1B-Instruct
 
3
  library_name: peft
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.1
 
1
  ---
2
+ base_model:
3
+ - unsloth/Llama-3.2-1B-Instruct
4
  library_name: peft
5
+ language:
6
+ - en
7
+ license: cc0-1.0
8
  ---
9
+ # A !!!!!disclaimer uh. for now, the experimentation does not lead me anywhere due to limit resources that I have and do not recommend to download this model. Working on working on it.
10
+
11
+ PEFT Finnegan-tuned LLaMA 3.2-1B-instruct on part of Finnegans Wake dataset for text generation in the style of James Joyce.
12
+
13
+ ## Iteration 1:
14
+
15
+ Dataset I prepared like that:
16
+ ```
17
+ # Load the tokenizer
18
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
19
+
20
+ # Load the text
21
+ with open(INPUT_FILE, "r", encoding="utf-8") as file:
22
+ text = file.read()
23
+
24
+ # Tokenize the text
25
+ tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
26
+
27
+ # Split tokens into chunks
28
+ chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
29
+
30
+ # Prepare dataset
31
+ dataset = []
32
+ for chunk in chunks:
33
+ chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
34
+
35
+ # Split the chunk into three parts randomly
36
+ split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
37
+ context = chunk_text[:split_points[0]]
38
+ instruction = chunk_text[split_points[0]:split_points[1]]
39
+ response = chunk_text[split_points[1]:]
40
+
41
+ # Add to dataset
42
+ dataset.append({
43
+ "context": context,
44
+ "instruction": instruction,
45
+ "response": response,
46
+ })
47
+
48
+ # Save dataset locally as a .jsonl file
49
+ with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
50
+ for item in dataset:
51
+ json.dump(item, file)
52
+ file.write("\n")
53
+
54
+ print(f"Dataset saved locally to {OUTPUT_FILE}")
55
+ ```
56
+
57
+ Example of dataset entry:
58
+ ```
59
+ {"context": "riverrun, past Eve and Adam's, from swerve of shore to bend of bay...", "instruction": "Sir Tristram, violer d'amores, fr'over the short sea...", "response": "O here here how hoth sprowled met the duskt the father of fornicationists..."}
60
+ ```
61
+
62
+ fine-tuned on 1/10th of text on fireworks.ai with params:
63
+ ```
64
+ dataset: finnegans_wake_dataset
65
+
66
+ text_completion:
67
+ # How the fields of the JSON dataset should be formatted into the input text
68
+ input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
69
+
70
+ # How the fields of the JSON dataset should be formatted into the output text
71
+ output_template: "ANSWER: {response}"
72
+
73
+ # The Fireworks model name of the base model
74
+ base_model: accounts/fireworks/models/llama-v3p2-1b
75
+
76
+ # Hyperparameters for fine-tuning (should be passed as args and removed from here)
77
+ hyperparameters:
78
+ learning_rate: 1e-5 # Learning rate for the optimizer
79
+ epochs: 1 # Number of epochs to train
80
+ batch_size: 4 # Batch size for training
81
+ ```
82
+
83
+ Spent 5 mins on tuning and $0.01 from my free credits.
84
+
85
+ Result: Seemingly not enough data to affect model output.
86
+
87
+ ## Iteration 2:
88
+
89
+ All same (forgot to save config with new dataset).
90
+
91
+ finnetune.yaml:
92
+ ```
93
+ # The ID of the dataset you created
94
+ dataset: huivam-finnegans-2
95
+
96
+ # Configuration for text completion fine-tuning
97
+ text_completion:
98
+ # How the fields of the JSON dataset should be formatted into the input text
99
+ input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
100
+
101
+ # How the fields of the JSON dataset should be formatted into the output text
102
+ output_template: "ANSWER: {response}"
103
+
104
+ # The Fireworks model name of the base model
105
+ base_model: accounts/fireworks/models/llama-v3p2-1b-instruct
106
+ ```
107
+
108
+ Finne-tuning commands used:
109
+ ```
110
+ ./firectl create dataset huivam-finnegans-2 .\finnegans_wake_dataset_2.jsonl
111
+ ./firectl create fine-tuning-job --settings-file finnetune.yaml --epochs=3 --learning-rate=2e-5 --batch-size=8
112
+ ```
113
+
114
+ New params used to finne-tune:
115
+ ```
116
+ Text Completion:
117
+ Input Template: ### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS:
118
+ Output Template: ANSWER: {response}
119
+ Base Model: accounts/fireworks/models/llama-v3p2-1b-instruct
120
+ Epochs: 3
121
+ Learning Rate: 2e-05
122
+ Lora Rank: 8
123
+ Batch Size: 8
124
+ Evaluation Split: 0
125
+ ```
126
+
127
+ Spent: $0.08