DianLiI commited on
Commit
176e474
·
verified ·
1 Parent(s): af31ee7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -3,7 +3,7 @@
3
  #### Embedding
4
  ```python
5
  from genbio_finetune.tasks import Embed
6
- model = Embed.from_config({"model.backbone": "dnafm-300m"}).eval()
7
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
8
  embedding = model(collated_batch)
9
  print(embedding.shape)
@@ -13,7 +13,7 @@ print(embedding)
13
  ```python
14
  import torch
15
  from genbio_finetune.tasks import SequenceClassification
16
- model = SequenceClassification.from_config({"model.backbone": "dnafm-300m", "model.n_classes": 2}).eval()
17
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
18
  logits = model(collated_batch)
19
  print(logits)
@@ -23,7 +23,7 @@ print(torch.argmax(logits, dim=-1))
23
  ```python
24
  import torch
25
  from genbio_finetune.tasks import TokenClassification
26
- model = TokenClassification.from_config({"model.backbone": "dnafm-300m", "model.n_classes": 3}).eval()
27
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
28
  logits = model(collated_batch)
29
  print(logits)
@@ -32,14 +32,14 @@ print(torch.argmax(logits, dim=-1))
32
  #### Regression
33
  ```python
34
  from genbio_finetune.tasks import SequenceRegression
35
- model = SequenceRegression.from_config({"model.backbone": "dnafm-300m"}).eval()
36
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
37
  logits = model(collated_batch)
38
  print(logits)
39
  ```
40
  #### Or use our one-liner CLI to finetune or evaluate any of the above!
41
  ```
42
- gbft fit --model SequenceClassification --model.backbone dnafm-300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
43
- gbft test --model SequenceClassification --model.backbone dnafm-300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
44
  ```
45
  For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
 
3
  #### Embedding
4
  ```python
5
  from genbio_finetune.tasks import Embed
6
+ model = Embed.from_config({"model.backbone": "dna300m"}).eval()
7
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
8
  embedding = model(collated_batch)
9
  print(embedding.shape)
 
13
  ```python
14
  import torch
15
  from genbio_finetune.tasks import SequenceClassification
16
+ model = SequenceClassification.from_config({"model.backbone": "dna300m", "model.n_classes": 2}).eval()
17
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
18
  logits = model(collated_batch)
19
  print(logits)
 
23
  ```python
24
  import torch
25
  from genbio_finetune.tasks import TokenClassification
26
+ model = TokenClassification.from_config({"model.backbone": "dna300m", "model.n_classes": 3}).eval()
27
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
28
  logits = model(collated_batch)
29
  print(logits)
 
32
  #### Regression
33
  ```python
34
  from genbio_finetune.tasks import SequenceRegression
35
+ model = SequenceRegression.from_config({"model.backbone": "dna300m"}).eval()
36
  collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
37
  logits = model(collated_batch)
38
  print(logits)
39
  ```
40
  #### Or use our one-liner CLI to finetune or evaluate any of the above!
41
  ```
42
+ gbft fit --model SequenceClassification --model.backbone dna300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
43
+ gbft test --model SequenceClassification --model.backbone dna300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
44
  ```
45
  For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)