|
|
|
import torch |
|
from transformers import AlbertConfig, AlbertModel |
|
|
|
class CustomAlbert(AlbertModel): |
|
def forward(self, tokens: torch.Tensor): |
|
|
|
outputs = super().forward(tokens) |
|
|
|
return outputs.last_hidden_state |
|
|
|
def load_plbert(): |
|
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1} |
|
albert_base_configuration = AlbertConfig(**plbert_config) |
|
bert = CustomAlbert(albert_base_configuration) |
|
return bert |
|
|