Merged from upstream.
Browse files- README.md +11 -3
- kokoro.py +2 -2
- models.py +2 -220
- restoring-sky.md +0 -44
README.md
CHANGED
@@ -8,11 +8,13 @@ pipeline_tag: text-to-speech
|
|
8 |
---
|
9 |
❤️ Kokoro Discord Server: https://discord.gg/QuGxSWBfQy
|
10 |
|
|
|
|
|
11 |
<audio controls><source src="https://huggingface.co/hexgrad/Kokoro-82M/resolve/main/demo/HEARME.wav" type="audio/wav"></audio>
|
12 |
|
13 |
**Kokoro** is a frontier TTS model for its size of **82 million parameters** (text in/audio out).
|
14 |
|
15 |
-
On 25 Dec 2024, Kokoro v0.19 weights were permissively released in full fp32 precision under an Apache 2.0 license. As of
|
16 |
|
17 |
In the weeks leading up to its release, Kokoro v0.19 was the #1🥇 ranked model in [TTS Spaces Arena](https://huggingface.co/hexgrad/Kokoro-82M#evaluation). Kokoro had achieved higher Elo in this single-voice Arena setting over other models, using fewer parameters and less data:
|
18 |
1. **Kokoro v0.19: 82M params, Apache, trained on <100 hours of audio**
|
@@ -31,6 +33,7 @@ You can find a hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingf
|
|
31 |
The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
|
32 |
```py
|
33 |
# 1️⃣ Install dependencies silently
|
|
|
34 |
!git clone https://huggingface.co/hexgrad/Kokoro-82M
|
35 |
%cd Kokoro-82M
|
36 |
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
|
@@ -63,7 +66,9 @@ from IPython.display import display, Audio
|
|
63 |
display(Audio(data=audio, rate=24000, autoplay=True))
|
64 |
print(out_ps)
|
65 |
```
|
66 |
-
|
|
|
|
|
67 |
|
68 |
### Model Facts
|
69 |
|
@@ -88,6 +93,7 @@ No affiliation can be assumed between parties on different lines.
|
|
88 |
- 28 Dec 2024: `bf_emma`, `bf_isabella`, `bm_george`, `bm_lewis`
|
89 |
- 30 Dec 2024: `af_nicole`
|
90 |
- 31 Dec 2024: `af_sky`
|
|
|
91 |
|
92 |
### Licenses
|
93 |
- Apache 2.0 weights in this repository
|
@@ -150,4 +156,6 @@ Refer to the [Philosophy discussion](https://huggingface.co/hexgrad/Kokoro-82M/d
|
|
150 |
|
151 |
`@rzvzn` on Discord. Server invite: https://discord.gg/QuGxSWBfQy
|
152 |
|
153 |
-
<img src="https://static0.gamerantimages.com/wordpress/wp-content/uploads/2024/08/terminator-zero-41-1.jpg" width="400" alt="kokoro" />
|
|
|
|
|
|
8 |
---
|
9 |
❤️ Kokoro Discord Server: https://discord.gg/QuGxSWBfQy
|
10 |
|
11 |
+
📣 Got Synthetic Data? Want Trained Voicepacks? See https://hf.co/posts/hexgrad/418806998707773
|
12 |
+
|
13 |
<audio controls><source src="https://huggingface.co/hexgrad/Kokoro-82M/resolve/main/demo/HEARME.wav" type="audio/wav"></audio>
|
14 |
|
15 |
**Kokoro** is a frontier TTS model for its size of **82 million parameters** (text in/audio out).
|
16 |
|
17 |
+
On 25 Dec 2024, Kokoro v0.19 weights were permissively released in full fp32 precision under an Apache 2.0 license. As of 2 Jan 2025, 10 unique Voicepacks have been released, and a `.onnx` version of v0.19 is available.
|
18 |
|
19 |
In the weeks leading up to its release, Kokoro v0.19 was the #1🥇 ranked model in [TTS Spaces Arena](https://huggingface.co/hexgrad/Kokoro-82M#evaluation). Kokoro had achieved higher Elo in this single-voice Arena setting over other models, using fewer parameters and less data:
|
20 |
1. **Kokoro v0.19: 82M params, Apache, trained on <100 hours of audio**
|
|
|
33 |
The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
|
34 |
```py
|
35 |
# 1️⃣ Install dependencies silently
|
36 |
+
!git lfs install
|
37 |
!git clone https://huggingface.co/hexgrad/Kokoro-82M
|
38 |
%cd Kokoro-82M
|
39 |
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
|
|
|
66 |
display(Audio(data=audio, rate=24000, autoplay=True))
|
67 |
print(out_ps)
|
68 |
```
|
69 |
+
If you have trouble with `espeak-ng`, see this [github issue](https://github.com/bootphon/phonemizer/issues/44#issuecomment-1540885186). [Mac users also see this](https://huggingface.co/hexgrad/Kokoro-82M/discussions/12#677435d3d8ace1de46071489), and [Windows users see this](https://huggingface.co/hexgrad/Kokoro-82M/discussions/12#67742594fdeebf74f001ecfc).
|
70 |
+
|
71 |
+
For ONNX usage, see [#14](https://huggingface.co/hexgrad/Kokoro-82M/discussions/14).
|
72 |
|
73 |
### Model Facts
|
74 |
|
|
|
93 |
- 28 Dec 2024: `bf_emma`, `bf_isabella`, `bm_george`, `bm_lewis`
|
94 |
- 30 Dec 2024: `af_nicole`
|
95 |
- 31 Dec 2024: `af_sky`
|
96 |
+
- 2 Jan 2025: ONNX v0.19 `ebef4245`
|
97 |
|
98 |
### Licenses
|
99 |
- Apache 2.0 weights in this repository
|
|
|
156 |
|
157 |
`@rzvzn` on Discord. Server invite: https://discord.gg/QuGxSWBfQy
|
158 |
|
159 |
+
<img src="https://static0.gamerantimages.com/wordpress/wp-content/uploads/2024/08/terminator-zero-41-1.jpg" width="400" alt="kokoro" />
|
160 |
+
|
161 |
+
https://terminator.fandom.com/wiki/Kokoro
|
kokoro.py
CHANGED
@@ -135,8 +135,8 @@ def forward(model, tokens, ref_s, speed):
|
|
135 |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
136 |
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
137 |
|
138 |
-
def generate(model, text, voicepack, lang='a', speed=1):
|
139 |
-
ps = phonemize(text, lang)
|
140 |
tokens = tokenize(ps)
|
141 |
if not tokens:
|
142 |
return None
|
|
|
135 |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
136 |
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
137 |
|
138 |
+
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
139 |
+
ps = ps or phonemize(text, lang)
|
140 |
tokens = tokenize(ps)
|
141 |
if not tokens:
|
142 |
return None
|
models.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
-
from
|
3 |
-
from istftnet import Decoder
|
4 |
from munch import Munch
|
5 |
from pathlib import Path
|
6 |
from plbert import load_plbert
|
@@ -13,118 +12,6 @@ import torch
|
|
13 |
import torch.nn as nn
|
14 |
import torch.nn.functional as F
|
15 |
|
16 |
-
class LearnedDownSample(nn.Module):
|
17 |
-
def __init__(self, layer_type, dim_in):
|
18 |
-
super().__init__()
|
19 |
-
self.layer_type = layer_type
|
20 |
-
|
21 |
-
if self.layer_type == 'none':
|
22 |
-
self.conv = nn.Identity()
|
23 |
-
elif self.layer_type == 'timepreserve':
|
24 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
25 |
-
elif self.layer_type == 'half':
|
26 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
27 |
-
else:
|
28 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
29 |
-
|
30 |
-
def forward(self, x):
|
31 |
-
return self.conv(x)
|
32 |
-
|
33 |
-
class LearnedUpSample(nn.Module):
|
34 |
-
def __init__(self, layer_type, dim_in):
|
35 |
-
super().__init__()
|
36 |
-
self.layer_type = layer_type
|
37 |
-
|
38 |
-
if self.layer_type == 'none':
|
39 |
-
self.conv = nn.Identity()
|
40 |
-
elif self.layer_type == 'timepreserve':
|
41 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
42 |
-
elif self.layer_type == 'half':
|
43 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
44 |
-
else:
|
45 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
46 |
-
|
47 |
-
|
48 |
-
def forward(self, x):
|
49 |
-
return self.conv(x)
|
50 |
-
|
51 |
-
class DownSample(nn.Module):
|
52 |
-
def __init__(self, layer_type):
|
53 |
-
super().__init__()
|
54 |
-
self.layer_type = layer_type
|
55 |
-
|
56 |
-
def forward(self, x):
|
57 |
-
if self.layer_type == 'none':
|
58 |
-
return x
|
59 |
-
elif self.layer_type == 'timepreserve':
|
60 |
-
return F.avg_pool2d(x, (2, 1))
|
61 |
-
elif self.layer_type == 'half':
|
62 |
-
if x.shape[-1] % 2 != 0:
|
63 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
64 |
-
return F.avg_pool2d(x, 2)
|
65 |
-
else:
|
66 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
67 |
-
|
68 |
-
|
69 |
-
class UpSample(nn.Module):
|
70 |
-
def __init__(self, layer_type):
|
71 |
-
super().__init__()
|
72 |
-
self.layer_type = layer_type
|
73 |
-
|
74 |
-
def forward(self, x):
|
75 |
-
if self.layer_type == 'none':
|
76 |
-
return x
|
77 |
-
elif self.layer_type == 'timepreserve':
|
78 |
-
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
79 |
-
elif self.layer_type == 'half':
|
80 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
81 |
-
else:
|
82 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
83 |
-
|
84 |
-
|
85 |
-
class ResBlk(nn.Module):
|
86 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
87 |
-
normalize=False, downsample='none'):
|
88 |
-
super().__init__()
|
89 |
-
self.actv = actv
|
90 |
-
self.normalize = normalize
|
91 |
-
self.downsample = DownSample(downsample)
|
92 |
-
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
93 |
-
self.learned_sc = dim_in != dim_out
|
94 |
-
self._build_weights(dim_in, dim_out)
|
95 |
-
|
96 |
-
def _build_weights(self, dim_in, dim_out):
|
97 |
-
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
98 |
-
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
99 |
-
if self.normalize:
|
100 |
-
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
101 |
-
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
102 |
-
if self.learned_sc:
|
103 |
-
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
104 |
-
|
105 |
-
def _shortcut(self, x):
|
106 |
-
if self.learned_sc:
|
107 |
-
x = self.conv1x1(x)
|
108 |
-
if self.downsample:
|
109 |
-
x = self.downsample(x)
|
110 |
-
return x
|
111 |
-
|
112 |
-
def _residual(self, x):
|
113 |
-
if self.normalize:
|
114 |
-
x = self.norm1(x)
|
115 |
-
x = self.actv(x)
|
116 |
-
x = self.conv1(x)
|
117 |
-
x = self.downsample_res(x)
|
118 |
-
if self.normalize:
|
119 |
-
x = self.norm2(x)
|
120 |
-
x = self.actv(x)
|
121 |
-
x = self.conv2(x)
|
122 |
-
return x
|
123 |
-
|
124 |
-
def forward(self, x):
|
125 |
-
x = self._shortcut(x) + self._residual(x)
|
126 |
-
return x / np.sqrt(2) # unit variance
|
127 |
-
|
128 |
class LinearNorm(torch.nn.Module):
|
129 |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
130 |
super(LinearNorm, self).__init__()
|
@@ -137,98 +24,6 @@ class LinearNorm(torch.nn.Module):
|
|
137 |
def forward(self, x):
|
138 |
return self.linear_layer(x)
|
139 |
|
140 |
-
class Discriminator2d(nn.Module):
|
141 |
-
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
|
142 |
-
super().__init__()
|
143 |
-
blocks = []
|
144 |
-
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
145 |
-
|
146 |
-
for lid in range(repeat_num):
|
147 |
-
dim_out = min(dim_in*2, max_conv_dim)
|
148 |
-
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
149 |
-
dim_in = dim_out
|
150 |
-
|
151 |
-
blocks += [nn.LeakyReLU(0.2)]
|
152 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
153 |
-
blocks += [nn.LeakyReLU(0.2)]
|
154 |
-
blocks += [nn.AdaptiveAvgPool2d(1)]
|
155 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
|
156 |
-
self.main = nn.Sequential(*blocks)
|
157 |
-
|
158 |
-
def get_feature(self, x):
|
159 |
-
features = []
|
160 |
-
for l in self.main:
|
161 |
-
x = l(x)
|
162 |
-
features.append(x)
|
163 |
-
out = features[-1]
|
164 |
-
out = out.view(out.size(0), -1) # (batch, num_domains)
|
165 |
-
return out, features
|
166 |
-
|
167 |
-
def forward(self, x):
|
168 |
-
out, features = self.get_feature(x)
|
169 |
-
out = out.squeeze() # (batch)
|
170 |
-
return out, features
|
171 |
-
|
172 |
-
class ResBlk1d(nn.Module):
|
173 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
174 |
-
normalize=False, downsample='none', dropout_p=0.2):
|
175 |
-
super().__init__()
|
176 |
-
self.actv = actv
|
177 |
-
self.normalize = normalize
|
178 |
-
self.downsample_type = downsample
|
179 |
-
self.learned_sc = dim_in != dim_out
|
180 |
-
self._build_weights(dim_in, dim_out)
|
181 |
-
self.dropout_p = dropout_p
|
182 |
-
|
183 |
-
if self.downsample_type == 'none':
|
184 |
-
self.pool = nn.Identity()
|
185 |
-
else:
|
186 |
-
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
187 |
-
|
188 |
-
def _build_weights(self, dim_in, dim_out):
|
189 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
190 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
191 |
-
if self.normalize:
|
192 |
-
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
193 |
-
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
194 |
-
if self.learned_sc:
|
195 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
196 |
-
|
197 |
-
def downsample(self, x):
|
198 |
-
if self.downsample_type == 'none':
|
199 |
-
return x
|
200 |
-
else:
|
201 |
-
if x.shape[-1] % 2 != 0:
|
202 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
203 |
-
return F.avg_pool1d(x, 2)
|
204 |
-
|
205 |
-
def _shortcut(self, x):
|
206 |
-
if self.learned_sc:
|
207 |
-
x = self.conv1x1(x)
|
208 |
-
x = self.downsample(x)
|
209 |
-
return x
|
210 |
-
|
211 |
-
def _residual(self, x):
|
212 |
-
if self.normalize:
|
213 |
-
x = self.norm1(x)
|
214 |
-
x = self.actv(x)
|
215 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
216 |
-
|
217 |
-
x = self.conv1(x)
|
218 |
-
x = self.pool(x)
|
219 |
-
if self.normalize:
|
220 |
-
x = self.norm2(x)
|
221 |
-
|
222 |
-
x = self.actv(x)
|
223 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
224 |
-
|
225 |
-
x = self.conv2(x)
|
226 |
-
return x
|
227 |
-
|
228 |
-
def forward(self, x):
|
229 |
-
x = self._shortcut(x) + self._residual(x)
|
230 |
-
return x / np.sqrt(2) # unit variance
|
231 |
-
|
232 |
class LayerNorm(nn.Module):
|
233 |
def __init__(self, channels, eps=1e-5):
|
234 |
super().__init__()
|
@@ -313,19 +108,6 @@ class TextEncoder(nn.Module):
|
|
313 |
return mask
|
314 |
|
315 |
|
316 |
-
|
317 |
-
class AdaIN1d(nn.Module):
|
318 |
-
def __init__(self, style_dim, num_features):
|
319 |
-
super().__init__()
|
320 |
-
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
321 |
-
self.fc = nn.Linear(style_dim, num_features*2)
|
322 |
-
|
323 |
-
def forward(self, x, s):
|
324 |
-
h = self.fc(s)
|
325 |
-
h = h.view(h.size(0), h.size(1), 1)
|
326 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
327 |
-
return (1 + gamma) * self.norm(x) + beta
|
328 |
-
|
329 |
class UpSample1d(nn.Module):
|
330 |
def __init__(self, layer_type):
|
331 |
super().__init__()
|
@@ -484,7 +266,7 @@ class ProsodyPredictor(nn.Module):
|
|
484 |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
485 |
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
486 |
return mask
|
487 |
-
|
488 |
class DurationEncoder(nn.Module):
|
489 |
|
490 |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
|
|
1 |
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
+
from istftnet import AdaIN1d, Decoder
|
|
|
3 |
from munch import Munch
|
4 |
from pathlib import Path
|
5 |
from plbert import load_plbert
|
|
|
12 |
import torch.nn as nn
|
13 |
import torch.nn.functional as F
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
class LinearNorm(torch.nn.Module):
|
16 |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
17 |
super(LinearNorm, self).__init__()
|
|
|
24 |
def forward(self, x):
|
25 |
return self.linear_layer(x)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class LayerNorm(nn.Module):
|
28 |
def __init__(self, channels, eps=1e-5):
|
29 |
super().__init__()
|
|
|
108 |
return mask
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
class UpSample1d(nn.Module):
|
112 |
def __init__(self, layer_type):
|
113 |
super().__init__()
|
|
|
266 |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
267 |
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
268 |
return mask
|
269 |
+
|
270 |
class DurationEncoder(nn.Module):
|
271 |
|
272 |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
restoring-sky.md
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# Restoring Sky & reflecting on Kokoro
|
2 |
-
|
3 |
-
<img src="https://static0.gamerantimages.com/wordpress/wp-content/uploads/2024/08/terminator-zero-41-1.jpg" width="400" alt="kokoro" />
|
4 |
-
|
5 |
-
For those who don't know, [Kokoro](https://huggingface.co/hexgrad/Kokoro-82M) is an Apache TTS model that uses a skinny version of the open [StyleTTS 2](https://github.com/yl4579/StyleTTS2/tree/main) architecture.
|
6 |
-
|
7 |
-
Based on leaderboard [Elo rating](https://huggingface.co/hexgrad/Kokoro-82M#evaluation) (prior to getting [review bombed](https://huggingface.co/datasets/Pendrokar/TTS_Arena/discussions/2)), Kokoro appears to do more with less, a theme that is surely [top-of-mind](https://huggingface.co/deepseek-ai/DeepSeek-V3) for many. It's peak performance on specific voices is comparable or better than much larger models, but it has not yet been trained on enough data to effectively zero-shot out of distribution (aka voice cloning).
|
8 |
-
|
9 |
-
Tonight on NYE, `af_sky` joins Kokoro's roster of downloadable voices. This follows last night's quiet release of `af_nicole`, and an additional 8 voices are currently available: 2F 2M voices each for American & British English.
|
10 |
-
|
11 |
-
Nicole in particular was trained on ~10 hours of synthetic data, and demonstrates that you _can_ include unique speaking styles in a general-purpose TTS model without affecting the stock voices (even in a low data small model): a good sign for scalability.
|
12 |
-
|
13 |
-
Sky is interesting because it is the voice that ScarJo [got OpenAI to take down](https://x.com/OpenAI/status/1792443575839678909), so new training data cannot be generated. However, OpenAI did not remove 2023 samples of Sky from their [blog post](https://openai.com/index/chatgpt-can-now-see-hear-and-speak/), and along with a few seconds lying around various other parts of the internet, we can cobble together about 3 minutes of 2023 Sky.
|
14 |
-
|
15 |
-
```sh
|
16 |
-
wget https://cdn.openai.com/new-voice-and-image-capabilities-in-chatgpt/hd/story-sky.mp3
|
17 |
-
wget https://cdn.openai.com/new-voice-and-image-capabilities-in-chatgpt/hd/recipe-sky.mp3
|
18 |
-
wget https://cdn.openai.com/new-voice-and-image-capabilities-in-chatgpt/hd/speech-sky.mp3
|
19 |
-
wget https://cdn.openai.com/new-voice-and-image-capabilities-in-chatgpt/hd/poem-sky.mp3
|
20 |
-
wget https://cdn.openai.com/new-voice-and-image-capabilities-in-chatgpt/hd/info-sky.mp3
|
21 |
-
```
|
22 |
-
|
23 |
-
To be clear, this is not the first attempt to reconstruct Sky. On X, Benjamin De Kraker posted:
|
24 |
-
> Here's the official statement released by Scarlett Johansson, detailing OpenAI's alleged illegal usage of her voice...
|
25 |
-
>
|
26 |
-
> ...read by the Sky AI voice, because irony.
|
27 |
-
>
|
28 |
-
> https://x.com/BenjaminDEKR/status/1792693868497871086
|
29 |
-
|
30 |
-
and in the replies, he [stated](https://x.com/BenjaminDEKR/status/1792714347275501595):
|
31 |
-
> It's an ElevenLabs clone I made based on Sky audio before they removed it. Not perfect.
|
32 |
-
|
33 |
-
Here is `Kokoro/af_sky`'s rendition of the same:
|
34 |
-
<audio controls><source src="https://huggingface.co/hexgrad/Kokoro-82M/resolve/main/demo/af_sky.wav" type="audio/wav"></audio>
|
35 |
-
|
36 |
-
A crude reconstruction, but the model that produced that voice is Apache FOSS that can be downloaded from HF and run locally. You can reproduce the above by dragging the [text script](https://huggingface.co/hexgrad/Kokoro-82M/blob/main/demo/af_sky.txt) (note a handful of modified chars for better delivery) into the "Long Form" tab of this [hosted demo](https://huggingface.co/spaces/hexgrad/Kokoro-TTS), or you can download the [model weights](https://huggingface.co/hexgrad/Kokoro-82M), install dependencies and DIY.
|
37 |
-
|
38 |
-
Sky shows that it is possible to reconstruct a voice—maybe a shadow of its former self, but a reconstruction nonetheless—from fairly little training data.
|
39 |
-
|
40 |
-
### What's next
|
41 |
-
|
42 |
-
Kokoro is a good start, but I can think of some tricks that might make it better, beginning with better data. More on this in another article.
|
43 |
-
|
44 |
-
Feel free to check out [Kokoro's weights](https://huggingface.co/hexgrad/Kokoro-82M), try out a no-install [hosted demo](https://huggingface.co/spaces/hexgrad/Kokoro-TTS), and/or [join the Discord](https://discord.gg/QuGxSWBfQy).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|