eshangujar commited on
Commit
cbd131a
1 Parent(s): f1b7334

Updated README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -174
README.md CHANGED
@@ -1,199 +1,92 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** Genloop Labs, Inc.
21
- - **Funded by [optional]:** Genloop Labs, Inc.
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ metrics:
4
+ - meteor
5
+ base_model:
6
+ - meta-llama/Llama-3.2-11B-Vision-Instruct
7
  ---
8
 
9
+ # Model Card
10
 
 
11
 
12
+ - **Developed by:** [Genloop.ai](https://huggingface.co/genloop)
13
+ - **Funded by:** [Genloop Labs, Inc.](https://genloop.ai/)
14
+ - **Model type:** Vision Language Model (VLM)
15
+ - **Finetuned from model:** [Meta Llama 3.2 11B Vision Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct)
16
+ - **Usage:** This model is intended for product cataloging, i.e. generating product descriptions from images
17
 
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## How to Get Started with the Model
21
 
22
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
23
+
24
+ ```python
25
+ import requests
26
+ import torch
27
+ from PIL import Image
28
+ from transformers import MllamaForConditionalGeneration, AutoProcessor
29
+ model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
30
+ model = MllamaForConditionalGeneration.from_pretrained(
31
+ model_id,
32
+ torch_dtype=torch.bfloat16,
33
+ device_map="auto",
34
+ )
35
+ processor = AutoProcessor.from_pretrained(model_id)
36
+ url = "insert_your_image_link_here"
37
+ image = Image.open(requests.get(url, stream=True).raw)
38
+ user_prompt= """Create a SHORT Product description based on the provided a given ##PRODUCT NAME## and a ##CATEGORY## and an image of the product.
39
+ Only return description. The description should be SEO optimized and for a better mobile search experience.
40
+
41
+ ##PRODUCT NAME##: {product_name}
42
+ ##CATEGORY##: {prod_category}"""
43
+
44
+ product_name = "insert_your_product_name_here"
45
+ product_category = "insert_your_product_category_here"
46
+ messages = [
47
+ {"role": "user", "content": [
48
+ {"type": "image"},
49
+ {"type": "text", "text": user_prompt.format(product_name = product_name, product_category = product_category)}
50
+ ]}
51
+ ]
52
+ input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
53
+ inputs = processor(
54
+ image,
55
+ input_text,
56
+ add_special_tokens=False,
57
+ return_tensors="pt"
58
+ ).to(model.device)
59
+ output = model.generate(**inputs, max_new_tokens=30)
60
+ print(processor.decode(output[0]))
61
+
62
+ ```
63
 
 
64
 
65
  ## Training Details
66
 
67
+ This model has been finetuned on the [Amazon-Product-Descriptions](https://huggingface.co/datasets/philschmid/amazon-product-descriptions-vlm) dataset. The reference descriptions were generated using Gemini Flash.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ ### Training hyperparameters
70
 
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 0.0002
73
+ - train_batch_size: 2
74
+ - seed: 3407
75
+ - gradient_accumulation_steps: 4
76
+ - gradient_checkpointing: True
77
+ - total_train_batch_size: 8
78
+ - lr_scheduler_type: linear
79
+ - num_epochs: 3
80
 
 
81
 
 
82
 
83
+ #### Results
84
 
85
+ | MODEL | FINETUNED OR NOT | INFERENCE LATENCY | METEOR Score |
86
+ |-----------------------------------|------------------------|-------------------|--------------|
87
+ | Llama-3.2-11B-Vision-Instruct | Not Finetuned | 1.68 | 0.38 |
88
+ | Llama-3.2-11B-Vision-Instruct | Finetuned | 1.68 | 0.53 |
89
 
 
90
 
 
91
 
 
92