--- library_name: transformers metrics: - meteor base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct --- # Model Card - **Developed by:** [Genloop.ai](https://huggingface.co/genloop) - **Funded by:** [Genloop Labs, Inc.](https://genloop.ai/) - **Model type:** Vision Language Model (VLM) - **Finetuned from model:** [Meta Llama 3.2 11B Vision Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) - **Usage:** This model is intended for product cataloging, i.e. generating product descriptions from images ## How to Get Started with the Model Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) processor = AutoProcessor.from_pretrained(model_id) url = "insert_your_image_link_here" image = Image.open(requests.get(url, stream=True).raw) user_prompt= """Create a SHORT Product description based on the provided a given ##PRODUCT NAME## and a ##CATEGORY## and an image of the product. Only return description. The description should be SEO optimized and for a better mobile search experience. ##PRODUCT NAME##: {product_name} ##CATEGORY##: {prod_category}""" product_name = "insert_your_product_name_here" product_category = "insert_your_product_category_here" messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": user_prompt.format(product_name = product_name, product_category = product_category)} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( image, input_text, add_special_tokens=False, return_tensors="pt" ).to(model.device) output = model.generate(**inputs, max_new_tokens=30) print(processor.decode(output[0])) ``` ## Training Details This model has been finetuned on the [Amazon-Product-Descriptions](https://huggingface.co/datasets/philschmid/amazon-product-descriptions-vlm) dataset. The reference descriptions were generated using Gemini Flash. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - seed: 3407 - gradient_accumulation_steps: 4 - gradient_checkpointing: True - total_train_batch_size: 8 - lr_scheduler_type: linear - num_epochs: 3 #### Results | MODEL | FINETUNED OR NOT | INFERENCE LATENCY | METEOR Score | |-----------------------------------|------------------------|-------------------|--------------| | Llama-3.2-11B-Vision-Instruct | Not Finetuned | 1.68 | 0.38 | | Llama-3.2-11B-Vision-Instruct | Finetuned | 1.68 | 0.53 |