File size: 2,668 Bytes
73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 87fdace 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 73332ef bd8f970 627b18b bd8f970 627b18b 73332ef bd8f970 73332ef bd8f970 87fdace 627b18b 73332ef bd8f970 73332ef bd8f970 87fdace bd8f970 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: LLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LLM
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1056
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.02
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 27
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2807 | 0.92 | 6 | 2.1056 |
| 1.9558 | 2.0 | 13 | 2.1056 |
| 2.2821 | 2.92 | 19 | 2.1056 |
| 1.956 | 4.0 | 26 | 2.1056 |
| 2.2816 | 4.92 | 32 | 2.1056 |
| 1.9561 | 6.0 | 39 | 2.1056 |
| 2.2812 | 6.92 | 45 | 2.1056 |
| 1.9556 | 8.0 | 52 | 2.1056 |
| 2.2815 | 8.92 | 58 | 2.1056 |
| 1.9555 | 10.0 | 65 | 2.1056 |
| 2.2824 | 10.92 | 71 | 2.1056 |
| 1.9554 | 12.0 | 78 | 2.1056 |
| 2.2823 | 12.92 | 84 | 2.1056 |
| 1.9566 | 14.0 | 91 | 2.1056 |
| 2.2814 | 14.92 | 97 | 2.1056 |
| 1.956 | 16.0 | 104 | 2.1056 |
| 2.2829 | 16.92 | 110 | 2.1056 |
| 1.9559 | 18.0 | 117 | 2.1056 |
| 2.2821 | 18.92 | 123 | 2.1056 |
| 1.9556 | 20.0 | 130 | 2.1056 |
| 2.2817 | 20.92 | 136 | 2.1056 |
| 1.9559 | 22.0 | 143 | 2.1056 |
| 2.2816 | 22.92 | 149 | 2.1056 |
| 1.9561 | 24.0 | 156 | 2.1056 |
| 2.1055 | 24.92 | 162 | 2.1056 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |