File size: 2,668 Bytes
73332ef
bd8f970
 
 
 
 
 
 
 
73332ef
 
bd8f970
 
73332ef
bd8f970
73332ef
bd8f970
 
87fdace
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
73332ef
bd8f970
627b18b
bd8f970
 
 
 
 
 
 
 
627b18b
73332ef
bd8f970
73332ef
bd8f970
 
87fdace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627b18b
 
 
 
 
 
 
73332ef
 
bd8f970
73332ef
bd8f970
87fdace
 
bd8f970
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: LLM
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LLM

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1056

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.02
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 27

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2807        | 0.92  | 6    | 2.1056          |
| 1.9558        | 2.0   | 13   | 2.1056          |
| 2.2821        | 2.92  | 19   | 2.1056          |
| 1.956         | 4.0   | 26   | 2.1056          |
| 2.2816        | 4.92  | 32   | 2.1056          |
| 1.9561        | 6.0   | 39   | 2.1056          |
| 2.2812        | 6.92  | 45   | 2.1056          |
| 1.9556        | 8.0   | 52   | 2.1056          |
| 2.2815        | 8.92  | 58   | 2.1056          |
| 1.9555        | 10.0  | 65   | 2.1056          |
| 2.2824        | 10.92 | 71   | 2.1056          |
| 1.9554        | 12.0  | 78   | 2.1056          |
| 2.2823        | 12.92 | 84   | 2.1056          |
| 1.9566        | 14.0  | 91   | 2.1056          |
| 2.2814        | 14.92 | 97   | 2.1056          |
| 1.956         | 16.0  | 104  | 2.1056          |
| 2.2829        | 16.92 | 110  | 2.1056          |
| 1.9559        | 18.0  | 117  | 2.1056          |
| 2.2821        | 18.92 | 123  | 2.1056          |
| 1.9556        | 20.0  | 130  | 2.1056          |
| 2.2817        | 20.92 | 136  | 2.1056          |
| 1.9559        | 22.0  | 143  | 2.1056          |
| 2.2816        | 22.92 | 149  | 2.1056          |
| 1.9561        | 24.0  | 156  | 2.1056          |
| 2.1055        | 24.92 | 162  | 2.1056          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2