--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-hi results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.hi split: validation args: PAN-X.hi metrics: - name: F1 type: f1 value: 0.875 --- # xlm-roberta-base-finetuned-panx-hi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2334 - F1: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6369 | 1.0 | 188 | 0.2775 | 0.8157 | | 0.2751 | 2.0 | 376 | 0.2537 | 0.8402 | | 0.1737 | 3.0 | 564 | 0.2359 | 0.8606 | | 0.1188 | 4.0 | 752 | 0.2334 | 0.875 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3