File size: 4,549 Bytes
ed9a32e
e495d14
 
 
 
 
 
 
 
ed9a32e
 
e495d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: qlora-mistral-hackatone-yandexq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qlora-mistral-hackatone-yandexq

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8327

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 60
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0167        | 1.0   | 1    | 1.9699          |
| 2.0949        | 2.0   | 2    | 1.9681          |
| 2.0703        | 3.0   | 3    | 1.9624          |
| 2.0674        | 4.0   | 4    | 1.9563          |
| 2.0057        | 5.0   | 5    | 1.9500          |
| 2.0534        | 6.0   | 6    | 1.9431          |
| 1.9912        | 7.0   | 7    | 1.9359          |
| 2.0333        | 8.0   | 8    | 1.9285          |
| 1.9934        | 9.0   | 9    | 1.9210          |
| 2.0358        | 10.0  | 10   | 1.9136          |
| 1.9727        | 11.0  | 11   | 1.9064          |
| 1.9698        | 12.0  | 12   | 1.8994          |
| 1.9983        | 13.0  | 13   | 1.8928          |
| 1.981         | 14.0  | 14   | 1.8865          |
| 1.9554        | 15.0  | 15   | 1.8807          |
| 1.935         | 16.0  | 16   | 1.8755          |
| 1.9203        | 17.0  | 17   | 1.8705          |
| 1.9371        | 18.0  | 18   | 1.8663          |
| 1.9184        | 19.0  | 19   | 1.8625          |
| 1.938         | 20.0  | 20   | 1.8592          |
| 1.94          | 21.0  | 21   | 1.8565          |
| 1.9062        | 22.0  | 22   | 1.8542          |
| 1.9293        | 23.0  | 23   | 1.8520          |
| 1.9464        | 24.0  | 24   | 1.8503          |
| 1.9271        | 25.0  | 25   | 1.8488          |
| 1.8998        | 26.0  | 26   | 1.8473          |
| 1.9393        | 27.0  | 27   | 1.8461          |
| 1.9188        | 28.0  | 28   | 1.8449          |
| 1.9117        | 29.0  | 29   | 1.8438          |
| 1.8974        | 30.0  | 30   | 1.8428          |
| 1.9181        | 31.0  | 31   | 1.8418          |
| 1.9047        | 32.0  | 32   | 1.8409          |
| 1.8977        | 33.0  | 33   | 1.8400          |
| 1.8937        | 34.0  | 34   | 1.8392          |
| 1.8801        | 35.0  | 35   | 1.8385          |
| 1.9149        | 36.0  | 36   | 1.8377          |
| 1.9027        | 37.0  | 37   | 1.8372          |
| 1.9076        | 38.0  | 38   | 1.8366          |
| 1.8718        | 39.0  | 39   | 1.8362          |
| 1.9125        | 40.0  | 40   | 1.8357          |
| 1.8903        | 41.0  | 41   | 1.8353          |
| 1.8668        | 42.0  | 42   | 1.8350          |
| 1.8653        | 43.0  | 43   | 1.8347          |
| 1.9068        | 44.0  | 44   | 1.8345          |
| 1.869         | 45.0  | 45   | 1.8342          |
| 1.8844        | 46.0  | 46   | 1.8340          |
| 1.9001        | 47.0  | 47   | 1.8338          |
| 1.886         | 48.0  | 48   | 1.8336          |
| 1.8847        | 49.0  | 49   | 1.8335          |
| 1.8566        | 50.0  | 50   | 1.8333          |
| 1.8729        | 51.0  | 51   | 1.8332          |
| 1.8736        | 52.0  | 52   | 1.8330          |
| 1.9098        | 53.0  | 53   | 1.8330          |
| 1.897         | 54.0  | 54   | 1.8329          |
| 1.8966        | 55.0  | 55   | 1.8328          |
| 1.8942        | 56.0  | 56   | 1.8328          |
| 1.871         | 57.0  | 57   | 1.8328          |
| 1.8434        | 58.0  | 58   | 1.8327          |
| 1.8743        | 59.0  | 59   | 1.8327          |
| 1.8472        | 60.0  | 60   | 1.8327          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2