File size: 3,794 Bytes
7741630 3a49ee4 7741630 3a49ee4 7741630 3a49ee4 7741630 3a49ee4 7741630 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language:
- fa
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: common7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# common7
This model is a fine-tuned version of [common7/checkpoint-4000](https://huggingface.co/common7/checkpoint-4000) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3428
- Wer: 0.3493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 123.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 2.957 | 3.29 | 500 | 2.9503 | 1.0 |
| 1.7225 | 6.58 | 1000 | 0.8860 | 0.7703 |
| 1.4907 | 9.86 | 1500 | 0.6555 | 0.6673 |
| 1.4177 | 13.16 | 2000 | 0.5784 | 0.6076 |
| 1.3425 | 16.45 | 2500 | 0.5379 | 0.5718 |
| 1.33 | 19.73 | 3000 | 0.4962 | 0.5245 |
| 1.4378 | 23.03 | 3500 | 0.4699 | 0.5098 |
| 1.1894 | 26.31 | 4000 | 0.4527 | 0.4848 |
| 1.1844 | 29.6 | 4500 | 0.4309 | 0.4651 |
| 1.1795 | 32.89 | 5000 | 0.4131 | 0.4524 |
| 1.1471 | 36.18 | 5500 | 0.4052 | 0.4435 |
| 1.1337 | 39.47 | 6000 | 0.3927 | 0.4363 |
| 1.1896 | 42.76 | 6500 | 0.3811 | 0.4254 |
| 1.1847 | 46.05 | 7000 | 0.3855 | 0.4129 |
| 0.9954 | 49.34 | 7500 | 0.3729 | 0.3981 |
| 1.0293 | 52.63 | 8000 | 0.3637 | 0.4014 |
| 1.0224 | 55.92 | 8500 | 0.3578 | 0.3885 |
| 1.012 | 59.21 | 9000 | 0.3629 | 0.3930 |
| 1.0772 | 62.5 | 9500 | 0.3635 | 0.3906 |
| 1.0344 | 65.79 | 10000 | 0.3469 | 0.3771 |
| 0.9457 | 69.08 | 10500 | 0.3435 | 0.3735 |
| 0.9307 | 72.37 | 11000 | 0.3519 | 0.3762 |
| 0.9523 | 75.65 | 11500 | 0.3443 | 0.3666 |
| 0.9523 | 78.94 | 12000 | 0.3502 | 0.3757 |
| 0.9475 | 82.24 | 12500 | 0.3509 | 0.3643 |
| 0.9971 | 85.52 | 13000 | 0.3502 | 0.3626 |
| 0.9058 | 88.81 | 13500 | 0.3472 | 0.3605 |
| 0.8922 | 92.1 | 14000 | 0.3530 | 0.3618 |
| 0.9 | 95.39 | 14500 | 0.3500 | 0.3574 |
| 0.9051 | 98.68 | 15000 | 0.3456 | 0.3535 |
| 0.9304 | 101.97 | 15500 | 0.3438 | 0.3578 |
| 0.9433 | 105.26 | 16000 | 0.3396 | 0.3530 |
| 0.8988 | 108.55 | 16500 | 0.3436 | 0.3539 |
| 0.8789 | 111.84 | 17000 | 0.3426 | 0.3516 |
| 0.8667 | 115.13 | 17500 | 0.3438 | 0.3506 |
| 0.8895 | 118.42 | 18000 | 0.3434 | 0.3503 |
| 0.8888 | 121.71 | 18500 | 0.3425 | 0.3494 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.3.dev0
- Tokenizers 0.10.3
|