--- language: - ro license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny RO - Georgescu Dumitru results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_11_0 config: ro split: None args: 'config: ro, split: test' metrics: - name: Wer type: wer value: 37.72910622036657 --- # Whisper Tiny RO - Georgescu Dumitru This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4606 - Wer: 37.7291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 11.2437 | 1.7986 | 1000 | 0.4601 | 37.6053 | | 10.9474 | 3.5971 | 2000 | 0.4602 | 37.0002 | | 10.736 | 5.3957 | 3000 | 0.4604 | 37.5310 | | 10.6145 | 7.1942 | 4000 | 0.4605 | 37.7114 | | 10.5325 | 8.9928 | 5000 | 0.4606 | 37.7291 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1