--- library_name: transformers base_model: /scratch/gpfs/jg9904/saved_models/Mistral-7B-Instruct-v0.3 tags: - alignment-handbook - generated_from_trainer datasets: - /scratch/gpfs/jg9904/unintentional-unalignment/data_files/data-mistral-7b-instruct-sppo-iter1/50_new model-index: - name: mistral-dpo-lr-5.0e-7-beta-0.01 results: [] --- # mistral-dpo-lr-5.0e-7-beta-0.01 This model is a fine-tuned version of [/scratch/gpfs/jg9904/saved_models/Mistral-7B-Instruct-v0.3](https://huggingface.co//scratch/gpfs/jg9904/saved_models/Mistral-7B-Instruct-v0.3) on the /scratch/gpfs/jg9904/unintentional-unalignment/data_files/data-mistral-7b-instruct-sppo-iter1/50_new dataset. It achieves the following results on the evaluation set: - Loss: 0.4740 - Rewards/chosen: -0.4546 - Rewards/rejected: -1.1932 - Rewards/accuracies: 0.8036 - Rewards/margins: 0.7386 - Logps/rejected: -459.2464 - Logps/chosen: -346.3625 - Logits/rejected All: -2.7774 - Logits/chosen All: -2.7702 - Logits/rejected Sum: 8023.3535 - Logits/chosen Sum: 8554.5498 - Logits/rejected Avg: 21.6078 - Logits/chosen Avg: 21.0986 - Gradient/inner Product: 463470592.0 - Gradient/nabla Chosen Logps: 28288.0 - Gradient/nabla Rejected Logps: 37632.0 - Gradient/correlation: 0.4004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected All | Logits/chosen All | Logits/rejected Sum | Logits/chosen Sum | Logits/rejected Avg | Logits/chosen Avg | Gradient/inner Product | Gradient/nabla Chosen Logps | Gradient/nabla Rejected Logps | Gradient/correlation | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:-------------------:|:-----------------:|:-------------------:|:-----------------:|:-------------------:|:-----------------:|:----------------------:|:---------------------------:|:-----------------------------:|:--------------------:| | No log | 0 | 0 | 0.6931 | 0.0 | 0.0 | 0.0 | 0.0 | -339.9275 | -300.9012 | -2.8672 | -2.8605 | 7351.9551 | 7878.5537 | 19.8359 | 19.5574 | 86507520.0 | 16384.0 | 17152.0 | 0.2451 | | 0.667 | 0.6803 | 100 | 0.4740 | -0.4546 | -1.1932 | 0.8036 | 0.7386 | -459.2464 | -346.3625 | -2.7774 | -2.7702 | 8023.3535 | 8554.5498 | 21.6078 | 21.0986 | 463470592.0 | 28288.0 | 37632.0 | 0.4004 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 2.14.6 - Tokenizers 0.20.4