--- base_model: google/gemma-2-9b-it datasets: - nroggendorff/eap language: - en license: mit tags: - trl - sft - art - code - adam - mistral model-index: - name: eap results: [] pipeline_tag: text-generation --- # Edgar Allen Poe LLM EAP is a language model fine-tuned on the [EAP dataset](https://huggingface.co/datasets/nroggendorff/eap) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. ## Features - Utilizes SFT and TRL techniques for improved performance - Supports English language ## Usage To use the LLM, you can load the model using the Hugging Face Transformers library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model_id = "nroggendorff/gemma-eap" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) prompt = "[INST] Write a poem about tomatoes in the style of Poe.[/INST]" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.batch_decode(outputs)[0] print(generated_text) ``` ## License This project is licensed under the MIT License.