tomascufaro commited on
Commit
10f1ef1
·
1 Parent(s): acea416

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - common_voice
6
+ model-index:
7
+ - name: wav2vec2-large-xls-r-300m-spanish-small
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # wav2vec2-large-xls-r-300m-spanish-small
15
+
16
+ This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.3596
19
+ - Wer: 0.2105
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 500
47
+ - num_epochs: 30
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
54
+ | 0.1971 | 0.79 | 400 | 0.2169 | 0.2077 |
55
+ | 0.2293 | 1.58 | 800 | 0.2507 | 0.2418 |
56
+ | 0.2065 | 2.37 | 1200 | 0.2703 | 0.2459 |
57
+ | 0.1842 | 3.16 | 1600 | 0.2716 | 0.2495 |
58
+ | 0.1634 | 3.95 | 2000 | 0.2695 | 0.2510 |
59
+ | 0.1443 | 4.74 | 2400 | 0.2754 | 0.2435 |
60
+ | 0.1345 | 5.53 | 2800 | 0.3119 | 0.2654 |
61
+ | 0.1267 | 6.32 | 3200 | 0.3154 | 0.2573 |
62
+ | 0.1237 | 7.11 | 3600 | 0.3251 | 0.2666 |
63
+ | 0.1118 | 7.91 | 4000 | 0.3139 | 0.2503 |
64
+ | 0.1051 | 8.7 | 4400 | 0.3286 | 0.2573 |
65
+ | 0.0964 | 9.49 | 4800 | 0.3348 | 0.2587 |
66
+ | 0.0946 | 10.28 | 5200 | 0.3357 | 0.2587 |
67
+ | 0.0897 | 11.07 | 5600 | 0.3408 | 0.2590 |
68
+ | 0.0812 | 11.86 | 6000 | 0.3380 | 0.2560 |
69
+ | 0.079 | 12.65 | 6400 | 0.3304 | 0.2415 |
70
+ | 0.0753 | 13.44 | 6800 | 0.3557 | 0.2540 |
71
+ | 0.0717 | 14.23 | 7200 | 0.3507 | 0.2519 |
72
+ | 0.0691 | 15.02 | 7600 | 0.3554 | 0.2587 |
73
+ | 0.0626 | 15.81 | 8000 | 0.3619 | 0.2520 |
74
+ | 0.0661 | 16.6 | 8400 | 0.3609 | 0.2564 |
75
+ | 0.0582 | 17.39 | 8800 | 0.3818 | 0.2520 |
76
+ | 0.0556 | 18.18 | 9200 | 0.3685 | 0.2410 |
77
+ | 0.0515 | 18.97 | 9600 | 0.3658 | 0.2367 |
78
+ | 0.0478 | 19.76 | 10000 | 0.3701 | 0.2413 |
79
+ | 0.0486 | 20.55 | 10400 | 0.3681 | 0.2371 |
80
+ | 0.0468 | 21.34 | 10800 | 0.3607 | 0.2370 |
81
+ | 0.0452 | 22.13 | 11200 | 0.3499 | 0.2286 |
82
+ | 0.0399 | 22.92 | 11600 | 0.3647 | 0.2282 |
83
+ | 0.0393 | 23.72 | 12000 | 0.3638 | 0.2255 |
84
+ | 0.0381 | 24.51 | 12400 | 0.3359 | 0.2202 |
85
+ | 0.0332 | 25.3 | 12800 | 0.3488 | 0.2177 |
86
+ | 0.033 | 26.09 | 13200 | 0.3628 | 0.2175 |
87
+ | 0.0311 | 26.88 | 13600 | 0.3695 | 0.2195 |
88
+ | 0.0294 | 27.67 | 14000 | 0.3624 | 0.2164 |
89
+ | 0.0281 | 28.46 | 14400 | 0.3688 | 0.2113 |
90
+ | 0.0274 | 29.25 | 14800 | 0.3596 | 0.2105 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.16.0.dev0
96
+ - Pytorch 1.10.1+cu102
97
+ - Datasets 1.17.1.dev0
98
+ - Tokenizers 0.11.0