Commit
·
10f1ef1
1
Parent(s):
acea416
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- common_voice
|
6 |
+
model-index:
|
7 |
+
- name: wav2vec2-large-xls-r-300m-spanish-small
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# wav2vec2-large-xls-r-300m-spanish-small
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.3596
|
19 |
+
- Wer: 0.2105
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 30
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
54 |
+
| 0.1971 | 0.79 | 400 | 0.2169 | 0.2077 |
|
55 |
+
| 0.2293 | 1.58 | 800 | 0.2507 | 0.2418 |
|
56 |
+
| 0.2065 | 2.37 | 1200 | 0.2703 | 0.2459 |
|
57 |
+
| 0.1842 | 3.16 | 1600 | 0.2716 | 0.2495 |
|
58 |
+
| 0.1634 | 3.95 | 2000 | 0.2695 | 0.2510 |
|
59 |
+
| 0.1443 | 4.74 | 2400 | 0.2754 | 0.2435 |
|
60 |
+
| 0.1345 | 5.53 | 2800 | 0.3119 | 0.2654 |
|
61 |
+
| 0.1267 | 6.32 | 3200 | 0.3154 | 0.2573 |
|
62 |
+
| 0.1237 | 7.11 | 3600 | 0.3251 | 0.2666 |
|
63 |
+
| 0.1118 | 7.91 | 4000 | 0.3139 | 0.2503 |
|
64 |
+
| 0.1051 | 8.7 | 4400 | 0.3286 | 0.2573 |
|
65 |
+
| 0.0964 | 9.49 | 4800 | 0.3348 | 0.2587 |
|
66 |
+
| 0.0946 | 10.28 | 5200 | 0.3357 | 0.2587 |
|
67 |
+
| 0.0897 | 11.07 | 5600 | 0.3408 | 0.2590 |
|
68 |
+
| 0.0812 | 11.86 | 6000 | 0.3380 | 0.2560 |
|
69 |
+
| 0.079 | 12.65 | 6400 | 0.3304 | 0.2415 |
|
70 |
+
| 0.0753 | 13.44 | 6800 | 0.3557 | 0.2540 |
|
71 |
+
| 0.0717 | 14.23 | 7200 | 0.3507 | 0.2519 |
|
72 |
+
| 0.0691 | 15.02 | 7600 | 0.3554 | 0.2587 |
|
73 |
+
| 0.0626 | 15.81 | 8000 | 0.3619 | 0.2520 |
|
74 |
+
| 0.0661 | 16.6 | 8400 | 0.3609 | 0.2564 |
|
75 |
+
| 0.0582 | 17.39 | 8800 | 0.3818 | 0.2520 |
|
76 |
+
| 0.0556 | 18.18 | 9200 | 0.3685 | 0.2410 |
|
77 |
+
| 0.0515 | 18.97 | 9600 | 0.3658 | 0.2367 |
|
78 |
+
| 0.0478 | 19.76 | 10000 | 0.3701 | 0.2413 |
|
79 |
+
| 0.0486 | 20.55 | 10400 | 0.3681 | 0.2371 |
|
80 |
+
| 0.0468 | 21.34 | 10800 | 0.3607 | 0.2370 |
|
81 |
+
| 0.0452 | 22.13 | 11200 | 0.3499 | 0.2286 |
|
82 |
+
| 0.0399 | 22.92 | 11600 | 0.3647 | 0.2282 |
|
83 |
+
| 0.0393 | 23.72 | 12000 | 0.3638 | 0.2255 |
|
84 |
+
| 0.0381 | 24.51 | 12400 | 0.3359 | 0.2202 |
|
85 |
+
| 0.0332 | 25.3 | 12800 | 0.3488 | 0.2177 |
|
86 |
+
| 0.033 | 26.09 | 13200 | 0.3628 | 0.2175 |
|
87 |
+
| 0.0311 | 26.88 | 13600 | 0.3695 | 0.2195 |
|
88 |
+
| 0.0294 | 27.67 | 14000 | 0.3624 | 0.2164 |
|
89 |
+
| 0.0281 | 28.46 | 14400 | 0.3688 | 0.2113 |
|
90 |
+
| 0.0274 | 29.25 | 14800 | 0.3596 | 0.2105 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.16.0.dev0
|
96 |
+
- Pytorch 1.10.1+cu102
|
97 |
+
- Datasets 1.17.1.dev0
|
98 |
+
- Tokenizers 0.11.0
|