--- language: - en - id - jv - su license: gemma tags: - merge - mergekit base_model: - GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct - aisingapore/gemma2-9b-cpt-sea-lionv3-instruct model-index: - name: gemma2-9b-sahabatai-v1-instruct-BaseTIES results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 73.78 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 43.4 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 19.34 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.4 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 19.13 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.19 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES name: Open LLM Leaderboard --- # SahabatAI-Lion-9B-TIES-v1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/rJ0ogty-DbLUEH48Ms5lE.png) Based on some research, when a finetuned model is merged with its base model with TIES method, there is possibility the merged model will achieve better output. UPDATE!!! as 20 November 2024, this model is third best model on HF's Open LLM Leaderboard (with Merge/MoErges checked) for LLM model below 10B parameters. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/8Hv3YtWtzzFlJ0_kUpsT7.png) gmonsoon/SahabatAI-Lion-9B-TIES-v1 is a merge of the following models: * [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct) * [aisingapore/gemma2-9b-cpt-sea-lionv3-instruct](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct) DEMO Spaces: [HERE](https://huggingface.co/spaces/gmonsoon/SahabatAI-Lion-9B-TIES-v1) ## 🧩 Configuration ```yaml models: - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct parameters: weight: 1 density: 1 - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct parameters: weight: 1 density: 1 merge_method: ties base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct parameters: density: 1 normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/SahabatAI-Lion-9B-TIES-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gmonsoon__gemma2-9b-sahabatai-v1-instruct-BaseTIES) | Metric |Value| |-------------------|----:| |Avg. |33.70| |IFEval (0-Shot) |73.78| |BBH (3-Shot) |43.40| |MATH Lvl 5 (4-Shot)|19.34| |GPQA (0-shot) | 9.40| |MuSR (0-shot) |19.13| |MMLU-PRO (5-shot) |37.19|