--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: BERT-tiny-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 --- # BERT-tiny-emotion-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | | 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | | 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | | 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | | 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | | 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | | 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | | 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | | 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | | 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | | 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | | 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | | 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | | 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | | 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1