--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-ic-slurp results: [] --- # hubert-base-ls960-finetuned-ic-slurp This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9150 - Accuracy: 0.7349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0503 | 1.0 | 527 | 3.9739 | 0.0814 | | 3.8351 | 2.0 | 1055 | 3.7950 | 0.0837 | | 3.7053 | 3.0 | 1582 | 3.6592 | 0.1081 | | 3.4539 | 4.0 | 2110 | 3.3374 | 0.1772 | | 2.657 | 5.0 | 2637 | 2.5832 | 0.3443 | | 2.1356 | 6.0 | 3165 | 2.0006 | 0.4873 | | 1.7409 | 7.0 | 3692 | 1.7459 | 0.5627 | | 1.4391 | 8.0 | 4220 | 1.6168 | 0.6104 | | 1.1336 | 9.0 | 4747 | 1.5041 | 0.6489 | | 1.0151 | 10.0 | 5275 | 1.4378 | 0.6786 | | 0.8624 | 11.0 | 5802 | 1.4653 | 0.6880 | | 0.6583 | 12.0 | 6330 | 1.4319 | 0.6998 | | 0.7089 | 13.0 | 6857 | 1.4993 | 0.7095 | | 0.6454 | 14.0 | 7385 | 1.5267 | 0.7036 | | 0.5424 | 15.0 | 7912 | 1.5672 | 0.7152 | | 0.425 | 16.0 | 8440 | 1.6051 | 0.7159 | | 0.4016 | 17.0 | 8967 | 1.6342 | 0.7173 | | 0.3563 | 18.0 | 9495 | 1.7061 | 0.7110 | | 0.367 | 19.0 | 10022 | 1.6884 | 0.7177 | | 0.3511 | 20.0 | 10550 | 1.7300 | 0.7154 | | 0.3573 | 21.0 | 11077 | 1.7361 | 0.7230 | | 0.2533 | 22.0 | 11605 | 1.7119 | 0.7279 | | 0.2029 | 23.0 | 12132 | 1.7801 | 0.7279 | | 0.3279 | 24.0 | 12660 | 1.8096 | 0.7324 | | 0.2164 | 25.0 | 13187 | 1.8916 | 0.7237 | | 0.2092 | 26.0 | 13715 | 1.8348 | 0.7274 | | 0.1757 | 27.0 | 14242 | 1.8824 | 0.7286 | | 0.2584 | 28.0 | 14770 | 1.9150 | 0.7349 | | 0.1605 | 29.0 | 15297 | 1.9417 | 0.7305 | | 0.1815 | 30.0 | 15825 | 1.8939 | 0.7309 | | 0.1749 | 31.0 | 16352 | 1.9729 | 0.7327 | | 0.1628 | 32.0 | 16880 | 1.9796 | 0.7275 | | 0.1369 | 33.0 | 17407 | 2.0156 | 0.7322 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2