--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_qqp_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7784071234232006 - name: F1 type: f1 value: 0.6885884111369878 --- # mobilebert_sa_GLUE_Experiment_qqp_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4700 - Accuracy: 0.7784 - F1: 0.6886 - Combined Score: 0.7335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5294 | 1.0 | 2843 | 0.5076 | 0.7512 | 0.6636 | 0.7074 | | 0.4791 | 2.0 | 5686 | 0.4889 | 0.7613 | 0.6369 | 0.6991 | | 0.4622 | 3.0 | 8529 | 0.4821 | 0.7657 | 0.6475 | 0.7066 | | 0.4463 | 4.0 | 11372 | 0.4831 | 0.7694 | 0.6730 | 0.7212 | | 0.4288 | 5.0 | 14215 | 0.4724 | 0.7752 | 0.6784 | 0.7268 | | 0.4129 | 6.0 | 17058 | 0.4806 | 0.7749 | 0.6893 | 0.7321 | | 0.3969 | 7.0 | 19901 | 0.4700 | 0.7784 | 0.6886 | 0.7335 | | 0.3813 | 8.0 | 22744 | 0.4802 | 0.7790 | 0.6962 | 0.7376 | | 0.3664 | 9.0 | 25587 | 0.4765 | 0.7805 | 0.6952 | 0.7378 | | 0.352 | 10.0 | 28430 | 0.4965 | 0.7768 | 0.7086 | 0.7427 | | 0.3381 | 11.0 | 31273 | 0.4895 | 0.7845 | 0.6960 | 0.7403 | | 0.3258 | 12.0 | 34116 | 0.5092 | 0.7844 | 0.7043 | 0.7444 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2