goldfish-models
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ library_name: transformers
|
|
9 |
pipeline_tag: text-generation
|
10 |
tags:
|
11 |
- goldfish
|
12 |
-
|
13 |
---
|
14 |
|
15 |
# aze_cyrl_full
|
@@ -18,11 +18,11 @@ Goldfish is a suite of monolingual language models trained for 350 languages.
|
|
18 |
This model is the <b>Azerbaijani</b> (Cyrillic script) model trained on 17MB of data (all our data in the language), after accounting for an estimated byte premium of 1.82; content-matched text in Azerbaijani takes on average 1.82x as many UTF-8 bytes to encode as English.
|
19 |
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
|
20 |
|
21 |
-
Note: This language is available in Goldfish with other scripts (writing systems). See:
|
22 |
|
23 |
Note: aze_cyrl is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. None of its contained individual languages are included in Goldfish (for script cyrl).
|
24 |
|
25 |
-
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://
|
26 |
|
27 |
Training code and sample usage: https://github.com/tylerachang/goldfish
|
28 |
|
@@ -32,6 +32,7 @@ Sample usage also in this Google Colab: [link](https://colab.research.google.com
|
|
32 |
|
33 |
To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json.
|
34 |
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
|
|
|
35 |
Details for this model specifically:
|
36 |
|
37 |
* Architecture: gpt2
|
@@ -57,5 +58,6 @@ If you use this model, please cite:
|
|
57 |
author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
|
58 |
journal={Preprint},
|
59 |
year={2024},
|
|
|
60 |
}
|
61 |
```
|
|
|
9 |
pipeline_tag: text-generation
|
10 |
tags:
|
11 |
- goldfish
|
12 |
+
- arxiv:2408.10441
|
13 |
---
|
14 |
|
15 |
# aze_cyrl_full
|
|
|
18 |
This model is the <b>Azerbaijani</b> (Cyrillic script) model trained on 17MB of data (all our data in the language), after accounting for an estimated byte premium of 1.82; content-matched text in Azerbaijani takes on average 1.82x as many UTF-8 bytes to encode as English.
|
19 |
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
|
20 |
|
21 |
+
Note: This language is available in Goldfish with other scripts (writing systems). See: aze_latn, aze_arab.
|
22 |
|
23 |
Note: aze_cyrl is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. None of its contained individual languages are included in Goldfish (for script cyrl).
|
24 |
|
25 |
+
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://www.arxiv.org/abs/2408.10441).
|
26 |
|
27 |
Training code and sample usage: https://github.com/tylerachang/goldfish
|
28 |
|
|
|
32 |
|
33 |
To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json.
|
34 |
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
|
35 |
+
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
|
36 |
Details for this model specifically:
|
37 |
|
38 |
* Architecture: gpt2
|
|
|
58 |
author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
|
59 |
journal={Preprint},
|
60 |
year={2024},
|
61 |
+
url={https://www.arxiv.org/abs/2408.10441},
|
62 |
}
|
63 |
```
|