|
import os |
|
import re |
|
from shutil import copyfile |
|
from typing import List, Optional |
|
|
|
import tiktoken |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
from .fairseq_dictionary import Dictionary |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"dict_path": "dict.txt" |
|
} |
|
|
|
GPT4ENC = tiktoken.encoding_for_model("gpt-4") |
|
|
|
|
|
class GPT4Dictionary: |
|
def __init__(self): |
|
self.vocab = {} |
|
self.words = {} |
|
self.vocab_cnt = 4 |
|
for i in range(GPT4ENC.n_vocab): |
|
try: |
|
w = GPT4ENC.decode_single_token_bytes(i) |
|
self.vocab[w] = self.vocab_cnt |
|
self.words[self.vocab_cnt] = w |
|
self.vocab_cnt += 1 |
|
except KeyError: |
|
pass |
|
self.eos_index = 2 |
|
self.words[2] = b"</s>" |
|
self.sentinel_start = self.vocab_cnt |
|
for i in range(1000): |
|
self.words[self.sentinel_start + i] = f"<sen{i:03d}>".encode("utf-8") |
|
|
|
def index(self, w): |
|
assert w in self.vocab |
|
return self.vocab[w] |
|
|
|
def __getitem__(self, i): |
|
if i in self.words: |
|
return self.words[i] |
|
else: |
|
return b"" |
|
|
|
|
|
class ASTT5Tokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
dict_path, |
|
n_sentinel_tokens=0, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
**kwargs |
|
) -> None: |
|
|
|
self.dict_path = dict_path |
|
self.tik_dict = GPT4Dictionary() |
|
self.fs_dict = Dictionary.load(dict_path) |
|
self.fs_dict_sentinel_start = len(self.fs_dict) |
|
for i in range(n_sentinel_tokens): |
|
self.fs_dict.add_symbol(f'<sen{i:03d}>') |
|
|
|
if "sep_token" in kwargs: |
|
assert kwargs["sep_token"] == eos_token |
|
kwargs.pop("sep_token") |
|
if "cls_token" in kwargs: |
|
assert kwargs["cls_token"] == bos_token |
|
kwargs.pop("cls_token") |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
sep_token=eos_token, |
|
cls_token=bos_token, |
|
n_sentinel_tokens=n_sentinel_tokens, |
|
**kwargs, ) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.fs_dict) |
|
|
|
def get_vocab(self): |
|
return self.fs_dict.indices |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
mask_0 = [(0 if w < self.fs_dict_sentinel_start else 1) for w in token_ids_0] |
|
mask_1 = [(0 if w < self.fs_dict_sentinel_start else 1) for w in token_ids_1] |
|
if token_ids_1 is None: |
|
return mask_0 + [1] |
|
return mask_0 + [1] + mask_1 + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
sep = [self.sep_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + sep) * [0] |
|
return len(token_ids_0 + sep + token_ids_1 + sep) * [0] |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
if token_ids_1 is None: |
|
return token_ids_0 + [self.sep_token_id] |
|
sep = [self.sep_token_id] |
|
return token_ids_0 + sep + token_ids_1 + sep |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
parts = re.split(r"(<sen\d+>)", text) |
|
tokenized = [] |
|
for part in parts: |
|
if re.match(r"<sen\d+>", part): |
|
tokenized.append(part) |
|
else: |
|
tokenized.extend( |
|
[ |
|
self.fs_dict[self.tik_dict.index(w)] |
|
for w in GPT4ENC.decode_tokens_bytes(GPT4ENC.encode_ordinary(part)) |
|
] |
|
) |
|
return tokenized |
|
|
|
def _convert_token_to_id(self, token): |
|
return self.fs_dict.index(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
return self.fs_dict[index] |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
token_bytes = b"".join([self.tik_dict[self.fs_dict.index(token)] for token in tokens]) |
|
return token_bytes.decode("utf-8", errors="ignore") |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_dict_path = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["dict_path"] |
|
) |
|
|
|
if os.path.abspath(self.dict_path) != os.path.abspath(out_dict_path): |
|
copyfile(self.dict_path, out_dict_path) |
|
logger.info(f"Copy from {self.dict_path} to {out_dict_path}") |
|
|
|
return (out_dict_path,) |
|
|