gongting commited on
Commit
0474ea9
·
verified ·
1 Parent(s): 01ca718

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +178 -3
README.md CHANGED
@@ -1,3 +1,178 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: BiRefNet
3
+ tags:
4
+ - background-removal
5
+ - mask-generation
6
+ - Dichotomous Image Segmentation
7
+ - Camouflaged Object Detection
8
+ - Salient Object Detection
9
+ - pytorch_model_hub_mixin
10
+ - model_hub_mixin
11
+ repo_url: https://github.com/ZhengPeng7/BiRefNet
12
+ pipeline_tag: image-segmentation
13
+ ---
14
+ <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
15
+
16
+ <div align='center'>
17
+ <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
18
+ <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
19
+ <a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,&thinsp;
20
+ <a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,&thinsp;
21
+ <a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,&thinsp;
22
+ <a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,&thinsp;
23
+ <a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
24
+ </div>
25
+
26
+ <div align='center'>
27
+ <sup>1 </sup>Nankai University&ensp; <sup>2 </sup>Northwestern Polytechnical University&ensp; <sup>3 </sup>National University of Defense Technology&ensp; <sup>4 </sup>Aalto University&ensp; <sup>5 </sup>Shanghai AI Laboratory&ensp; <sup>6 </sup>University of Trento&ensp;
28
+ </div>
29
+
30
+ <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
31
+ <a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>&ensp;
32
+ <a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>&ensp;
33
+ <a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>&ensp;
34
+ <a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>&ensp;
35
+ <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
36
+ <a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>&ensp;
37
+ <a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>&ensp;
38
+ <a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
39
+ <a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
40
+ </div>
41
+
42
+
43
+ | *DIS-Sample_1* | *DIS-Sample_2* |
44
+ | :------------------------------: | :-------------------------------: |
45
+ | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
46
+
47
+ This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
48
+
49
+ Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
50
+
51
+ ## How to use (this tiny version)
52
+
53
+ ### 0. Install Packages:
54
+ ```
55
+ pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
56
+ ```
57
+
58
+ ### 1. Load BiRefNet:
59
+
60
+ #### Use codes + weights from HuggingFace
61
+ > Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
62
+
63
+ ```python
64
+ # Load BiRefNet with weights
65
+ from transformers import AutoModelForImageSegmentation
66
+ birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
67
+ ```
68
+
69
+ #### Use codes from GitHub + weights from HuggingFace
70
+ > Only use the weights on HuggingFace -- Pro: codes are always the latest; Con: Need to clone the BiRefNet repo from my GitHub.
71
+
72
+ ```shell
73
+ # Download codes
74
+ git clone https://github.com/ZhengPeng7/BiRefNet.git
75
+ cd BiRefNet
76
+ ```
77
+
78
+ ```python
79
+ # Use codes locally
80
+ from models.birefnet import BiRefNet
81
+
82
+ # Load weights from Hugging Face Models
83
+ ### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
84
+ birefnet = BiRefNet.from_pretrained('zhengpeng7/BiRefNet_lite')
85
+ ```
86
+
87
+ #### Use codes from GitHub + weights from local space
88
+ > Only use the weights and codes both locally.
89
+
90
+ ```python
91
+ # Use codes and weights locally
92
+ ### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
93
+ import torch
94
+ from utils import check_state_dict
95
+
96
+ birefnet = BiRefNet(bb_pretrained=False)
97
+ state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
98
+ state_dict = check_state_dict(state_dict)
99
+ birefnet.load_state_dict(state_dict)
100
+ ```
101
+
102
+ #### Use the loaded BiRefNet for inference
103
+ ```python
104
+ # Imports
105
+ from PIL import Image
106
+ import matplotlib.pyplot as plt
107
+ import torch
108
+ from torchvision import transforms
109
+ from models.birefnet import BiRefNet
110
+
111
+ birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
112
+ torch.set_float32_matmul_precision(['high', 'highest'][0])
113
+ birefnet.to('cuda')
114
+ birefnet.eval()
115
+
116
+ def extract_object(birefnet, imagepath):
117
+ # Data settings
118
+ image_size = (1024, 1024)
119
+ transform_image = transforms.Compose([
120
+ transforms.Resize(image_size),
121
+ transforms.ToTensor(),
122
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
123
+ ])
124
+
125
+ image = Image.open(imagepath)
126
+ input_images = transform_image(image).unsqueeze(0).to('cuda')
127
+
128
+ # Prediction
129
+ with torch.no_grad():
130
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
131
+ pred = preds[0].squeeze()
132
+ pred_pil = transforms.ToPILImage()(pred)
133
+ mask = pred_pil.resize(image.size)
134
+ image.putalpha(mask)
135
+ return image, mask
136
+
137
+ # Visualization
138
+ plt.axis("off")
139
+ plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
140
+ plt.show()
141
+
142
+ ```
143
+
144
+
145
+ > This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
146
+
147
+ ## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
148
+
149
+ This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
150
+
151
+ Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
152
+
153
+
154
+ #### Try our online demos for inference:
155
+
156
+ + Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
157
+ + **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
158
+ + **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
159
+ <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
160
+
161
+ ## Acknowledgement:
162
+
163
+ + Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
164
+ + Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
165
+
166
+
167
+ ## Citation
168
+
169
+ ```
170
+ @article{zheng2024birefnet,
171
+ title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
172
+ author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
173
+ journal={CAAI Artificial Intelligence Research},
174
+ volume = {3},
175
+ pages = {9150038},
176
+ year={2024}
177
+ }
178
+ ```