Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,178 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: BiRefNet
|
3 |
+
tags:
|
4 |
+
- background-removal
|
5 |
+
- mask-generation
|
6 |
+
- Dichotomous Image Segmentation
|
7 |
+
- Camouflaged Object Detection
|
8 |
+
- Salient Object Detection
|
9 |
+
- pytorch_model_hub_mixin
|
10 |
+
- model_hub_mixin
|
11 |
+
repo_url: https://github.com/ZhengPeng7/BiRefNet
|
12 |
+
pipeline_tag: image-segmentation
|
13 |
+
---
|
14 |
+
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
15 |
+
|
16 |
+
<div align='center'>
|
17 |
+
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
18 |
+
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
19 |
+
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
|
20 |
+
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
|
21 |
+
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
|
22 |
+
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
|
23 |
+
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
|
24 |
+
</div>
|
25 |
+
|
26 |
+
<div align='center'>
|
27 |
+
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento 
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
|
31 |
+
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a> 
|
32 |
+
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a> 
|
33 |
+
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a> 
|
34 |
+
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a> 
|
35 |
+
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a> 
|
36 |
+
<a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a> 
|
37 |
+
<a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a> 
|
38 |
+
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
39 |
+
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
40 |
+
</div>
|
41 |
+
|
42 |
+
|
43 |
+
| *DIS-Sample_1* | *DIS-Sample_2* |
|
44 |
+
| :------------------------------: | :-------------------------------: |
|
45 |
+
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
|
46 |
+
|
47 |
+
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
|
48 |
+
|
49 |
+
Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
|
50 |
+
|
51 |
+
## How to use (this tiny version)
|
52 |
+
|
53 |
+
### 0. Install Packages:
|
54 |
+
```
|
55 |
+
pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
|
56 |
+
```
|
57 |
+
|
58 |
+
### 1. Load BiRefNet:
|
59 |
+
|
60 |
+
#### Use codes + weights from HuggingFace
|
61 |
+
> Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
|
62 |
+
|
63 |
+
```python
|
64 |
+
# Load BiRefNet with weights
|
65 |
+
from transformers import AutoModelForImageSegmentation
|
66 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
|
67 |
+
```
|
68 |
+
|
69 |
+
#### Use codes from GitHub + weights from HuggingFace
|
70 |
+
> Only use the weights on HuggingFace -- Pro: codes are always the latest; Con: Need to clone the BiRefNet repo from my GitHub.
|
71 |
+
|
72 |
+
```shell
|
73 |
+
# Download codes
|
74 |
+
git clone https://github.com/ZhengPeng7/BiRefNet.git
|
75 |
+
cd BiRefNet
|
76 |
+
```
|
77 |
+
|
78 |
+
```python
|
79 |
+
# Use codes locally
|
80 |
+
from models.birefnet import BiRefNet
|
81 |
+
|
82 |
+
# Load weights from Hugging Face Models
|
83 |
+
### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
|
84 |
+
birefnet = BiRefNet.from_pretrained('zhengpeng7/BiRefNet_lite')
|
85 |
+
```
|
86 |
+
|
87 |
+
#### Use codes from GitHub + weights from local space
|
88 |
+
> Only use the weights and codes both locally.
|
89 |
+
|
90 |
+
```python
|
91 |
+
# Use codes and weights locally
|
92 |
+
### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
|
93 |
+
import torch
|
94 |
+
from utils import check_state_dict
|
95 |
+
|
96 |
+
birefnet = BiRefNet(bb_pretrained=False)
|
97 |
+
state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
|
98 |
+
state_dict = check_state_dict(state_dict)
|
99 |
+
birefnet.load_state_dict(state_dict)
|
100 |
+
```
|
101 |
+
|
102 |
+
#### Use the loaded BiRefNet for inference
|
103 |
+
```python
|
104 |
+
# Imports
|
105 |
+
from PIL import Image
|
106 |
+
import matplotlib.pyplot as plt
|
107 |
+
import torch
|
108 |
+
from torchvision import transforms
|
109 |
+
from models.birefnet import BiRefNet
|
110 |
+
|
111 |
+
birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
|
112 |
+
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
113 |
+
birefnet.to('cuda')
|
114 |
+
birefnet.eval()
|
115 |
+
|
116 |
+
def extract_object(birefnet, imagepath):
|
117 |
+
# Data settings
|
118 |
+
image_size = (1024, 1024)
|
119 |
+
transform_image = transforms.Compose([
|
120 |
+
transforms.Resize(image_size),
|
121 |
+
transforms.ToTensor(),
|
122 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
123 |
+
])
|
124 |
+
|
125 |
+
image = Image.open(imagepath)
|
126 |
+
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
127 |
+
|
128 |
+
# Prediction
|
129 |
+
with torch.no_grad():
|
130 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
131 |
+
pred = preds[0].squeeze()
|
132 |
+
pred_pil = transforms.ToPILImage()(pred)
|
133 |
+
mask = pred_pil.resize(image.size)
|
134 |
+
image.putalpha(mask)
|
135 |
+
return image, mask
|
136 |
+
|
137 |
+
# Visualization
|
138 |
+
plt.axis("off")
|
139 |
+
plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
|
140 |
+
plt.show()
|
141 |
+
|
142 |
+
```
|
143 |
+
|
144 |
+
|
145 |
+
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
|
146 |
+
|
147 |
+
## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
|
148 |
+
|
149 |
+
This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
|
150 |
+
|
151 |
+
Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
|
152 |
+
|
153 |
+
|
154 |
+
#### Try our online demos for inference:
|
155 |
+
|
156 |
+
+ Online **Single Image Inference** on Colab: [](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
|
157 |
+
+ **Online Inference with GUI on Hugging Face** with adjustable resolutions: [](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
|
158 |
+
+ **Inference and evaluation** of your given weights: [](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
|
159 |
+
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
|
160 |
+
|
161 |
+
## Acknowledgement:
|
162 |
+
|
163 |
+
+ Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
|
164 |
+
+ Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
|
165 |
+
|
166 |
+
|
167 |
+
## Citation
|
168 |
+
|
169 |
+
```
|
170 |
+
@article{zheng2024birefnet,
|
171 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
172 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
173 |
+
journal={CAAI Artificial Intelligence Research},
|
174 |
+
volume = {3},
|
175 |
+
pages = {9150038},
|
176 |
+
year={2024}
|
177 |
+
}
|
178 |
+
```
|