File size: 3,724 Bytes
b0e0bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac99ee
b0e0bef
 
6ac99ee
b0e0bef
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language: multilingual
datasets:
- mc4

license: apache-2.0
---

# ByT5 - Small

ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small).

ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task.

ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292).

Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf)

Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* 

## Example Inference

ByT5 works on raw UTF-8 bytes and can be used without a tokenizer:

```python
from transformers import T5ForConditionalGeneration
import torch

model = T5ForConditionalGeneration.from_pretrained('google/byt5-small')

input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3  # add 3 for special tokens
labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3  # add 3 for special tokens

loss = model(input_ids, labels=labels).loss # forward pass
```

For batched inference & training it is however recommended using a tokenizer class for padding:

```python
from transformers import T5ForConditionalGeneration, AutoTokenizer

model = T5ForConditionalGeneration.from_pretrained('google/byt5-small')
tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')

model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt")
labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids

loss = model(**model_inputs, labels=labels).loss # forward pass
```

## Abstract

Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.

![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)