adirik commited on
Commit
a7c0333
·
1 Parent(s): 7aaa56b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-classification
6
+ datasets:
7
+ - imagenet-1k
8
+ widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
10
+ example_title: Tiger
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
12
+ example_title: Teapot
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
14
+ example_title: Palace
15
+ ---
16
+
17
+ # EfficientNet (b3 model)
18
+
19
+ EfficientNet model trained on ImageNet-1k at resolution 300x300. It was introduced in the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
20
+ ](https://arxiv.org/abs/1905.11946) by Mingxing Tan and Quoc V. Le, and first released in [this repository](https://github.com/keras-team/keras).
21
+
22
+ Disclaimer: The team releasing EfficientNet did not write a model card for this model so this model card has been written by the Hugging Face team.
23
+
24
+ ## Model description
25
+
26
+ EfficientNet is a mobile friendly pure convolutional model (ConvNet) that proposes a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient.
27
+
28
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/efficientnet_architecture.png)
29
+
30
+ ## Intended uses & limitations
31
+
32
+ You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=efficientnet) to look for
33
+ fine-tuned versions on a task that interests you.
34
+
35
+ ### How to use
36
+
37
+ Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
38
+
39
+ ```python
40
+ import torch
41
+ from datasets import load_dataset
42
+ from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification
43
+
44
+ dataset = load_dataset("huggingface/cats-image")
45
+ image = dataset["test"]["image"][0]
46
+
47
+ preprocessor = EfficientNetImageProcessor.from_pretrained("google/efficientnet-b3")
48
+ model = EfficientNetForImageClassification.from_pretrained("google/efficientnet-b3")
49
+
50
+ inputs = preprocessor(image, return_tensors="pt")
51
+
52
+ with torch.no_grad():
53
+ logits = model(**inputs).logits
54
+
55
+ # model predicts one of the 1000 ImageNet classes
56
+ predicted_label = logits.argmax(-1).item()
57
+ print(model.config.id2label[predicted_label]),
58
+ ```
59
+
60
+ For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/efficientnet).
61
+
62
+ ### BibTeX entry and citation info
63
+
64
+ ```bibtex
65
+ @article{Tan2019EfficientNetRM,
66
+ title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
67
+ author={Mingxing Tan and Quoc V. Le},
68
+ journal={ArXiv},
69
+ year={2019},
70
+ volume={abs/1905.11946}
71
+ }
72
+ ```