diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/trainer_log.jsonl" @@ -0,0 +1,4119 @@ +{"current_steps": 1, "total_steps": 4118, "loss": 2.074, "learning_rate": 0.0001, "epoch": 0.00024283632831471587, "percentage": 0.02, "elapsed_time": "0:00:23", "remaining_time": "1 day, 2:46:48"} +{"current_steps": 2, "total_steps": 4118, "loss": 2.0514, "learning_rate": 0.0001, "epoch": 0.00048567265662943174, "percentage": 0.05, "elapsed_time": "0:00:42", "remaining_time": "1 day, 0:25:34"} +{"current_steps": 3, "total_steps": 4118, "loss": 1.9108, "learning_rate": 0.0001, "epoch": 0.0007285089849441476, "percentage": 0.07, "elapsed_time": "0:01:02", "remaining_time": "23:39:43"} +{"current_steps": 4, "total_steps": 4118, "loss": 1.9215, "learning_rate": 0.0001, "epoch": 0.0009713453132588635, "percentage": 0.1, "elapsed_time": "0:01:21", "remaining_time": "23:17:24"} +{"current_steps": 5, "total_steps": 4118, "loss": 1.7946, "learning_rate": 0.0001, "epoch": 0.0012141816415735794, "percentage": 0.12, "elapsed_time": "0:01:40", "remaining_time": "23:04:36"} +{"current_steps": 6, "total_steps": 4118, "loss": 1.8683, "learning_rate": 0.0001, "epoch": 0.0014570179698882952, "percentage": 0.15, "elapsed_time": "0:02:00", "remaining_time": "22:56:11"} +{"current_steps": 7, "total_steps": 4118, "loss": 2.0013, "learning_rate": 0.0001, "epoch": 0.001699854298203011, "percentage": 0.17, "elapsed_time": "0:02:19", "remaining_time": "22:50:12"} +{"current_steps": 8, "total_steps": 4118, "loss": 2.0731, "learning_rate": 0.0001, "epoch": 0.001942690626517727, "percentage": 0.19, "elapsed_time": "0:02:39", "remaining_time": "22:45:17"} +{"current_steps": 9, "total_steps": 4118, "loss": 1.8693, "learning_rate": 0.0001, "epoch": 0.002185526954832443, "percentage": 0.22, "elapsed_time": "0:02:58", "remaining_time": "22:41:57"} +{"current_steps": 10, "total_steps": 4118, "loss": 1.8265, "learning_rate": 0.0001, "epoch": 0.0024283632831471587, "percentage": 0.24, "elapsed_time": "0:03:18", "remaining_time": "22:39:09"} +{"current_steps": 11, "total_steps": 4118, "loss": 1.6716, "learning_rate": 0.0001, "epoch": 0.0026711996114618746, "percentage": 0.27, "elapsed_time": "0:03:38", "remaining_time": "22:37:04"} +{"current_steps": 12, "total_steps": 4118, "loss": 1.9457, "learning_rate": 0.0001, "epoch": 0.0029140359397765905, "percentage": 0.29, "elapsed_time": "0:03:57", "remaining_time": "22:35:17"} +{"current_steps": 13, "total_steps": 4118, "loss": 1.8521, "learning_rate": 0.0001, "epoch": 0.0031568722680913063, "percentage": 0.32, "elapsed_time": "0:04:17", "remaining_time": "22:33:43"} +{"current_steps": 14, "total_steps": 4118, "loss": 1.818, "learning_rate": 0.0001, "epoch": 0.003399708596406022, "percentage": 0.34, "elapsed_time": "0:04:36", "remaining_time": "22:32:23"} +{"current_steps": 15, "total_steps": 4118, "loss": 1.9109, "learning_rate": 0.0001, "epoch": 0.003642544924720738, "percentage": 0.36, "elapsed_time": "0:04:56", "remaining_time": "22:31:09"} +{"current_steps": 16, "total_steps": 4118, "loss": 1.9048, "learning_rate": 0.0001, "epoch": 0.003885381253035454, "percentage": 0.39, "elapsed_time": "0:05:15", "remaining_time": "22:30:03"} +{"current_steps": 17, "total_steps": 4118, "loss": 1.7607, "learning_rate": 0.0001, "epoch": 0.00412821758135017, "percentage": 0.41, "elapsed_time": "0:05:35", "remaining_time": "22:28:51"} +{"current_steps": 18, "total_steps": 4118, "loss": 1.8273, "learning_rate": 0.0001, "epoch": 0.004371053909664886, "percentage": 0.44, "elapsed_time": "0:05:55", "remaining_time": "22:27:57"} +{"current_steps": 19, "total_steps": 4118, "loss": 1.8666, "learning_rate": 0.0001, "epoch": 0.004613890237979602, "percentage": 0.46, "elapsed_time": "0:06:14", "remaining_time": "22:27:04"} +{"current_steps": 20, "total_steps": 4118, "loss": 1.8595, "learning_rate": 0.0001, "epoch": 0.0048567265662943174, "percentage": 0.49, "elapsed_time": "0:06:34", "remaining_time": "22:26:14"} +{"current_steps": 21, "total_steps": 4118, "loss": 2.0393, "learning_rate": 0.0001, "epoch": 0.005099562894609034, "percentage": 0.51, "elapsed_time": "0:06:53", "remaining_time": "22:25:22"} +{"current_steps": 22, "total_steps": 4118, "loss": 1.9345, "learning_rate": 0.0001, "epoch": 0.005342399222923749, "percentage": 0.53, "elapsed_time": "0:07:13", "remaining_time": "22:24:40"} +{"current_steps": 23, "total_steps": 4118, "loss": 1.887, "learning_rate": 0.0001, "epoch": 0.0055852355512384655, "percentage": 0.56, "elapsed_time": "0:07:32", "remaining_time": "22:23:57"} +{"current_steps": 24, "total_steps": 4118, "loss": 1.6733, "learning_rate": 0.0001, "epoch": 0.005828071879553181, "percentage": 0.58, "elapsed_time": "0:07:52", "remaining_time": "22:23:15"} +{"current_steps": 25, "total_steps": 4118, "loss": 1.7134, "learning_rate": 0.0001, "epoch": 0.006070908207867897, "percentage": 0.61, "elapsed_time": "0:08:12", "remaining_time": "22:22:37"} +{"current_steps": 26, "total_steps": 4118, "loss": 1.875, "learning_rate": 0.0001, "epoch": 0.006313744536182613, "percentage": 0.63, "elapsed_time": "0:08:31", "remaining_time": "22:22:01"} +{"current_steps": 27, "total_steps": 4118, "loss": 1.8469, "learning_rate": 0.0001, "epoch": 0.006556580864497329, "percentage": 0.66, "elapsed_time": "0:08:51", "remaining_time": "22:21:25"} +{"current_steps": 28, "total_steps": 4118, "loss": 1.9733, "learning_rate": 0.0001, "epoch": 0.006799417192812044, "percentage": 0.68, "elapsed_time": "0:09:10", "remaining_time": "22:20:50"} +{"current_steps": 29, "total_steps": 4118, "loss": 1.8286, "learning_rate": 0.0001, "epoch": 0.007042253521126761, "percentage": 0.7, "elapsed_time": "0:09:30", "remaining_time": "22:20:14"} +{"current_steps": 30, "total_steps": 4118, "loss": 1.9415, "learning_rate": 0.0001, "epoch": 0.007285089849441476, "percentage": 0.73, "elapsed_time": "0:09:49", "remaining_time": "22:19:38"} +{"current_steps": 31, "total_steps": 4118, "loss": 1.851, "learning_rate": 0.0001, "epoch": 0.0075279261777561925, "percentage": 0.75, "elapsed_time": "0:10:09", "remaining_time": "22:19:05"} +{"current_steps": 32, "total_steps": 4118, "loss": 1.6987, "learning_rate": 0.0001, "epoch": 0.007770762506070908, "percentage": 0.78, "elapsed_time": "0:10:28", "remaining_time": "22:18:32"} +{"current_steps": 33, "total_steps": 4118, "loss": 1.6602, "learning_rate": 0.0001, "epoch": 0.008013598834385623, "percentage": 0.8, "elapsed_time": "0:10:48", "remaining_time": "22:18:00"} +{"current_steps": 34, "total_steps": 4118, "loss": 1.957, "learning_rate": 0.0001, "epoch": 0.00825643516270034, "percentage": 0.83, "elapsed_time": "0:11:08", "remaining_time": "22:17:31"} +{"current_steps": 35, "total_steps": 4118, "loss": 1.7835, "learning_rate": 0.0001, "epoch": 0.008499271491015056, "percentage": 0.85, "elapsed_time": "0:11:27", "remaining_time": "22:17:01"} +{"current_steps": 36, "total_steps": 4118, "loss": 1.8372, "learning_rate": 0.0001, "epoch": 0.008742107819329771, "percentage": 0.87, "elapsed_time": "0:11:47", "remaining_time": "22:16:32"} +{"current_steps": 37, "total_steps": 4118, "loss": 1.8552, "learning_rate": 0.0001, "epoch": 0.008984944147644487, "percentage": 0.9, "elapsed_time": "0:12:06", "remaining_time": "22:16:03"} +{"current_steps": 38, "total_steps": 4118, "loss": 2.0532, "learning_rate": 0.0001, "epoch": 0.009227780475959204, "percentage": 0.92, "elapsed_time": "0:12:26", "remaining_time": "22:15:34"} +{"current_steps": 39, "total_steps": 4118, "loss": 1.7794, "learning_rate": 0.0001, "epoch": 0.00947061680427392, "percentage": 0.95, "elapsed_time": "0:12:45", "remaining_time": "22:15:08"} +{"current_steps": 40, "total_steps": 4118, "loss": 1.8103, "learning_rate": 0.0001, "epoch": 0.009713453132588635, "percentage": 0.97, "elapsed_time": "0:13:05", "remaining_time": "22:14:40"} +{"current_steps": 41, "total_steps": 4118, "loss": 1.8301, "learning_rate": 0.0001, "epoch": 0.00995628946090335, "percentage": 1.0, "elapsed_time": "0:13:25", "remaining_time": "22:14:13"} +{"current_steps": 42, "total_steps": 4118, "loss": 1.6259, "learning_rate": 0.0001, "epoch": 0.010199125789218067, "percentage": 1.02, "elapsed_time": "0:13:44", "remaining_time": "22:13:47"} +{"current_steps": 43, "total_steps": 4118, "loss": 1.9372, "learning_rate": 0.0001, "epoch": 0.010441962117532783, "percentage": 1.04, "elapsed_time": "0:14:04", "remaining_time": "22:13:22"} +{"current_steps": 44, "total_steps": 4118, "loss": 1.9111, "learning_rate": 0.0001, "epoch": 0.010684798445847498, "percentage": 1.07, "elapsed_time": "0:14:23", "remaining_time": "22:12:58"} +{"current_steps": 45, "total_steps": 4118, "loss": 1.6284, "learning_rate": 0.0001, "epoch": 0.010927634774162214, "percentage": 1.09, "elapsed_time": "0:14:43", "remaining_time": "22:12:32"} +{"current_steps": 46, "total_steps": 4118, "loss": 1.8267, "learning_rate": 0.0001, "epoch": 0.011170471102476931, "percentage": 1.12, "elapsed_time": "0:15:02", "remaining_time": "22:12:07"} +{"current_steps": 47, "total_steps": 4118, "loss": 2.0025, "learning_rate": 0.0001, "epoch": 0.011413307430791646, "percentage": 1.14, "elapsed_time": "0:15:22", "remaining_time": "22:11:43"} +{"current_steps": 48, "total_steps": 4118, "loss": 1.9376, "learning_rate": 0.0001, "epoch": 0.011656143759106362, "percentage": 1.17, "elapsed_time": "0:15:42", "remaining_time": "22:11:18"} +{"current_steps": 49, "total_steps": 4118, "loss": 1.8109, "learning_rate": 0.0001, "epoch": 0.011898980087421079, "percentage": 1.19, "elapsed_time": "0:16:01", "remaining_time": "22:10:53"} +{"current_steps": 50, "total_steps": 4118, "loss": 1.8165, "learning_rate": 0.0001, "epoch": 0.012141816415735794, "percentage": 1.21, "elapsed_time": "0:16:21", "remaining_time": "22:10:27"} +{"current_steps": 51, "total_steps": 4118, "loss": 1.7482, "learning_rate": 0.0001, "epoch": 0.01238465274405051, "percentage": 1.24, "elapsed_time": "0:16:40", "remaining_time": "22:10:02"} +{"current_steps": 52, "total_steps": 4118, "loss": 1.7938, "learning_rate": 0.0001, "epoch": 0.012627489072365225, "percentage": 1.26, "elapsed_time": "0:17:00", "remaining_time": "22:09:39"} +{"current_steps": 53, "total_steps": 4118, "loss": 1.8563, "learning_rate": 0.0001, "epoch": 0.012870325400679943, "percentage": 1.29, "elapsed_time": "0:17:19", "remaining_time": "22:09:15"} +{"current_steps": 54, "total_steps": 4118, "loss": 1.7271, "learning_rate": 0.0001, "epoch": 0.013113161728994658, "percentage": 1.31, "elapsed_time": "0:17:39", "remaining_time": "22:08:51"} +{"current_steps": 55, "total_steps": 4118, "loss": 2.0677, "learning_rate": 0.0001, "epoch": 0.013355998057309373, "percentage": 1.34, "elapsed_time": "0:17:58", "remaining_time": "22:08:26"} +{"current_steps": 56, "total_steps": 4118, "loss": 1.7211, "learning_rate": 0.0001, "epoch": 0.013598834385624089, "percentage": 1.36, "elapsed_time": "0:18:18", "remaining_time": "22:08:02"} +{"current_steps": 57, "total_steps": 4118, "loss": 1.9068, "learning_rate": 0.0001, "epoch": 0.013841670713938806, "percentage": 1.38, "elapsed_time": "0:18:38", "remaining_time": "22:07:38"} +{"current_steps": 58, "total_steps": 4118, "loss": 1.8007, "learning_rate": 0.0001, "epoch": 0.014084507042253521, "percentage": 1.41, "elapsed_time": "0:18:57", "remaining_time": "22:07:16"} +{"current_steps": 59, "total_steps": 4118, "loss": 1.8028, "learning_rate": 0.0001, "epoch": 0.014327343370568237, "percentage": 1.43, "elapsed_time": "0:19:17", "remaining_time": "22:06:54"} +{"current_steps": 60, "total_steps": 4118, "loss": 1.7562, "learning_rate": 0.0001, "epoch": 0.014570179698882952, "percentage": 1.46, "elapsed_time": "0:19:36", "remaining_time": "22:06:32"} +{"current_steps": 61, "total_steps": 4118, "loss": 1.7515, "learning_rate": 0.0001, "epoch": 0.01481301602719767, "percentage": 1.48, "elapsed_time": "0:19:56", "remaining_time": "22:06:10"} +{"current_steps": 62, "total_steps": 4118, "loss": 1.8159, "learning_rate": 0.0001, "epoch": 0.015055852355512385, "percentage": 1.51, "elapsed_time": "0:20:15", "remaining_time": "22:05:49"} +{"current_steps": 63, "total_steps": 4118, "loss": 1.8585, "learning_rate": 0.0001, "epoch": 0.0152986886838271, "percentage": 1.53, "elapsed_time": "0:20:35", "remaining_time": "22:05:25"} +{"current_steps": 64, "total_steps": 4118, "loss": 1.745, "learning_rate": 0.0001, "epoch": 0.015541525012141816, "percentage": 1.55, "elapsed_time": "0:20:55", "remaining_time": "22:05:03"} +{"current_steps": 65, "total_steps": 4118, "loss": 1.8769, "learning_rate": 0.0001, "epoch": 0.01578436134045653, "percentage": 1.58, "elapsed_time": "0:21:14", "remaining_time": "22:04:40"} +{"current_steps": 66, "total_steps": 4118, "loss": 1.7518, "learning_rate": 0.0001, "epoch": 0.016027197668771247, "percentage": 1.6, "elapsed_time": "0:21:34", "remaining_time": "22:04:17"} +{"current_steps": 67, "total_steps": 4118, "loss": 1.8766, "learning_rate": 0.0001, "epoch": 0.016270033997085966, "percentage": 1.63, "elapsed_time": "0:21:53", "remaining_time": "22:03:54"} +{"current_steps": 68, "total_steps": 4118, "loss": 1.7991, "learning_rate": 0.0001, "epoch": 0.01651287032540068, "percentage": 1.65, "elapsed_time": "0:22:13", "remaining_time": "22:03:32"} +{"current_steps": 69, "total_steps": 4118, "loss": 2.0, "learning_rate": 0.0001, "epoch": 0.016755706653715396, "percentage": 1.68, "elapsed_time": "0:22:32", "remaining_time": "22:03:09"} +{"current_steps": 70, "total_steps": 4118, "loss": 1.8536, "learning_rate": 0.0001, "epoch": 0.016998542982030112, "percentage": 1.7, "elapsed_time": "0:22:52", "remaining_time": "22:02:47"} +{"current_steps": 71, "total_steps": 4118, "loss": 1.8945, "learning_rate": 0.0001, "epoch": 0.017241379310344827, "percentage": 1.72, "elapsed_time": "0:23:12", "remaining_time": "22:02:24"} +{"current_steps": 72, "total_steps": 4118, "loss": 1.7486, "learning_rate": 0.0001, "epoch": 0.017484215638659543, "percentage": 1.75, "elapsed_time": "0:23:31", "remaining_time": "22:02:01"} +{"current_steps": 73, "total_steps": 4118, "loss": 1.7831, "learning_rate": 0.0001, "epoch": 0.017727051966974258, "percentage": 1.77, "elapsed_time": "0:23:51", "remaining_time": "22:01:39"} +{"current_steps": 74, "total_steps": 4118, "loss": 1.9623, "learning_rate": 0.0001, "epoch": 0.017969888295288974, "percentage": 1.8, "elapsed_time": "0:24:10", "remaining_time": "22:01:18"} +{"current_steps": 75, "total_steps": 4118, "loss": 2.0, "learning_rate": 0.0001, "epoch": 0.018212724623603693, "percentage": 1.82, "elapsed_time": "0:24:30", "remaining_time": "22:00:56"} +{"current_steps": 76, "total_steps": 4118, "loss": 1.7527, "learning_rate": 0.0001, "epoch": 0.018455560951918408, "percentage": 1.85, "elapsed_time": "0:24:49", "remaining_time": "22:00:34"} +{"current_steps": 77, "total_steps": 4118, "loss": 1.7888, "learning_rate": 0.0001, "epoch": 0.018698397280233123, "percentage": 1.87, "elapsed_time": "0:25:09", "remaining_time": "22:00:13"} +{"current_steps": 78, "total_steps": 4118, "loss": 1.6755, "learning_rate": 0.0001, "epoch": 0.01894123360854784, "percentage": 1.89, "elapsed_time": "0:25:28", "remaining_time": "21:59:52"} +{"current_steps": 79, "total_steps": 4118, "loss": 1.7192, "learning_rate": 0.0001, "epoch": 0.019184069936862554, "percentage": 1.92, "elapsed_time": "0:25:48", "remaining_time": "21:59:31"} +{"current_steps": 80, "total_steps": 4118, "loss": 1.7928, "learning_rate": 0.0001, "epoch": 0.01942690626517727, "percentage": 1.94, "elapsed_time": "0:26:08", "remaining_time": "21:59:09"} +{"current_steps": 81, "total_steps": 4118, "loss": 1.8848, "learning_rate": 0.0001, "epoch": 0.019669742593491985, "percentage": 1.97, "elapsed_time": "0:26:27", "remaining_time": "21:58:48"} +{"current_steps": 82, "total_steps": 4118, "loss": 2.0491, "learning_rate": 0.0001, "epoch": 0.0199125789218067, "percentage": 1.99, "elapsed_time": "0:26:47", "remaining_time": "21:58:26"} +{"current_steps": 83, "total_steps": 4118, "loss": 1.7854, "learning_rate": 0.0001, "epoch": 0.02015541525012142, "percentage": 2.02, "elapsed_time": "0:27:06", "remaining_time": "21:58:05"} +{"current_steps": 84, "total_steps": 4118, "loss": 1.8976, "learning_rate": 0.0001, "epoch": 0.020398251578436135, "percentage": 2.04, "elapsed_time": "0:27:26", "remaining_time": "21:57:43"} +{"current_steps": 85, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.02064108790675085, "percentage": 2.06, "elapsed_time": "0:27:45", "remaining_time": "21:57:22"} +{"current_steps": 86, "total_steps": 4118, "loss": 1.8834, "learning_rate": 0.0001, "epoch": 0.020883924235065566, "percentage": 2.09, "elapsed_time": "0:28:05", "remaining_time": "21:57:00"} +{"current_steps": 87, "total_steps": 4118, "loss": 1.8921, "learning_rate": 0.0001, "epoch": 0.02112676056338028, "percentage": 2.11, "elapsed_time": "0:28:24", "remaining_time": "21:56:38"} +{"current_steps": 88, "total_steps": 4118, "loss": 1.8416, "learning_rate": 0.0001, "epoch": 0.021369596891694997, "percentage": 2.14, "elapsed_time": "0:28:44", "remaining_time": "21:56:17"} +{"current_steps": 89, "total_steps": 4118, "loss": 1.8377, "learning_rate": 0.0001, "epoch": 0.021612433220009712, "percentage": 2.16, "elapsed_time": "0:29:04", "remaining_time": "21:55:55"} +{"current_steps": 90, "total_steps": 4118, "loss": 1.8038, "learning_rate": 0.0001, "epoch": 0.021855269548324428, "percentage": 2.19, "elapsed_time": "0:29:23", "remaining_time": "21:55:34"} +{"current_steps": 91, "total_steps": 4118, "loss": 1.763, "learning_rate": 0.0001, "epoch": 0.022098105876639147, "percentage": 2.21, "elapsed_time": "0:29:43", "remaining_time": "21:55:13"} +{"current_steps": 92, "total_steps": 4118, "loss": 1.7428, "learning_rate": 0.0001, "epoch": 0.022340942204953862, "percentage": 2.23, "elapsed_time": "0:30:02", "remaining_time": "21:54:53"} +{"current_steps": 93, "total_steps": 4118, "loss": 1.922, "learning_rate": 0.0001, "epoch": 0.022583778533268577, "percentage": 2.26, "elapsed_time": "0:30:22", "remaining_time": "21:54:32"} +{"current_steps": 94, "total_steps": 4118, "loss": 1.8993, "learning_rate": 0.0001, "epoch": 0.022826614861583293, "percentage": 2.28, "elapsed_time": "0:30:41", "remaining_time": "21:54:11"} +{"current_steps": 95, "total_steps": 4118, "loss": 1.7119, "learning_rate": 0.0001, "epoch": 0.02306945118989801, "percentage": 2.31, "elapsed_time": "0:31:01", "remaining_time": "21:53:50"} +{"current_steps": 96, "total_steps": 4118, "loss": 1.8026, "learning_rate": 0.0001, "epoch": 0.023312287518212724, "percentage": 2.33, "elapsed_time": "0:31:21", "remaining_time": "21:53:28"} +{"current_steps": 97, "total_steps": 4118, "loss": 1.9133, "learning_rate": 0.0001, "epoch": 0.02355512384652744, "percentage": 2.36, "elapsed_time": "0:31:40", "remaining_time": "21:53:07"} +{"current_steps": 98, "total_steps": 4118, "loss": 1.6822, "learning_rate": 0.0001, "epoch": 0.023797960174842158, "percentage": 2.38, "elapsed_time": "0:32:00", "remaining_time": "21:52:46"} +{"current_steps": 99, "total_steps": 4118, "loss": 1.8274, "learning_rate": 0.0001, "epoch": 0.024040796503156873, "percentage": 2.4, "elapsed_time": "0:32:19", "remaining_time": "21:52:25"} +{"current_steps": 100, "total_steps": 4118, "loss": 1.8999, "learning_rate": 0.0001, "epoch": 0.02428363283147159, "percentage": 2.43, "elapsed_time": "0:32:39", "remaining_time": "21:52:03"} +{"current_steps": 101, "total_steps": 4118, "loss": 1.8899, "learning_rate": 0.0001, "epoch": 0.024526469159786304, "percentage": 2.45, "elapsed_time": "0:32:58", "remaining_time": "21:51:42"} +{"current_steps": 102, "total_steps": 4118, "loss": 1.8617, "learning_rate": 0.0001, "epoch": 0.02476930548810102, "percentage": 2.48, "elapsed_time": "0:33:18", "remaining_time": "21:51:21"} +{"current_steps": 103, "total_steps": 4118, "loss": 1.8013, "learning_rate": 0.0001, "epoch": 0.025012141816415735, "percentage": 2.5, "elapsed_time": "0:33:37", "remaining_time": "21:51:00"} +{"current_steps": 104, "total_steps": 4118, "loss": 1.4962, "learning_rate": 0.0001, "epoch": 0.02525497814473045, "percentage": 2.53, "elapsed_time": "0:33:57", "remaining_time": "21:50:40"} +{"current_steps": 105, "total_steps": 4118, "loss": 1.7555, "learning_rate": 0.0001, "epoch": 0.025497814473045166, "percentage": 2.55, "elapsed_time": "0:34:17", "remaining_time": "21:50:19"} +{"current_steps": 106, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.025740650801359885, "percentage": 2.57, "elapsed_time": "0:34:36", "remaining_time": "21:49:58"} +{"current_steps": 107, "total_steps": 4118, "loss": 2.0088, "learning_rate": 0.0001, "epoch": 0.0259834871296746, "percentage": 2.6, "elapsed_time": "0:34:56", "remaining_time": "21:49:38"} +{"current_steps": 108, "total_steps": 4118, "loss": 1.7168, "learning_rate": 0.0001, "epoch": 0.026226323457989316, "percentage": 2.62, "elapsed_time": "0:35:15", "remaining_time": "21:49:18"} +{"current_steps": 109, "total_steps": 4118, "loss": 1.9289, "learning_rate": 0.0001, "epoch": 0.02646915978630403, "percentage": 2.65, "elapsed_time": "0:35:35", "remaining_time": "21:48:57"} +{"current_steps": 110, "total_steps": 4118, "loss": 1.798, "learning_rate": 0.0001, "epoch": 0.026711996114618747, "percentage": 2.67, "elapsed_time": "0:35:54", "remaining_time": "21:48:37"} +{"current_steps": 111, "total_steps": 4118, "loss": 1.6961, "learning_rate": 0.0001, "epoch": 0.026954832442933462, "percentage": 2.7, "elapsed_time": "0:36:14", "remaining_time": "21:48:16"} +{"current_steps": 112, "total_steps": 4118, "loss": 1.8279, "learning_rate": 0.0001, "epoch": 0.027197668771248178, "percentage": 2.72, "elapsed_time": "0:36:34", "remaining_time": "21:47:56"} +{"current_steps": 113, "total_steps": 4118, "loss": 1.8064, "learning_rate": 0.0001, "epoch": 0.027440505099562893, "percentage": 2.74, "elapsed_time": "0:36:53", "remaining_time": "21:47:36"} +{"current_steps": 114, "total_steps": 4118, "loss": 1.6971, "learning_rate": 0.0001, "epoch": 0.027683341427877612, "percentage": 2.77, "elapsed_time": "0:37:13", "remaining_time": "21:47:15"} +{"current_steps": 115, "total_steps": 4118, "loss": 1.8134, "learning_rate": 0.0001, "epoch": 0.027926177756192327, "percentage": 2.79, "elapsed_time": "0:37:32", "remaining_time": "21:46:54"} +{"current_steps": 116, "total_steps": 4118, "loss": 1.7446, "learning_rate": 0.0001, "epoch": 0.028169014084507043, "percentage": 2.82, "elapsed_time": "0:37:52", "remaining_time": "21:46:33"} +{"current_steps": 117, "total_steps": 4118, "loss": 1.616, "learning_rate": 0.0001, "epoch": 0.02841185041282176, "percentage": 2.84, "elapsed_time": "0:38:11", "remaining_time": "21:46:12"} +{"current_steps": 118, "total_steps": 4118, "loss": 1.8249, "learning_rate": 0.0001, "epoch": 0.028654686741136474, "percentage": 2.87, "elapsed_time": "0:38:31", "remaining_time": "21:45:52"} +{"current_steps": 119, "total_steps": 4118, "loss": 1.7002, "learning_rate": 0.0001, "epoch": 0.02889752306945119, "percentage": 2.89, "elapsed_time": "0:38:50", "remaining_time": "21:45:32"} +{"current_steps": 120, "total_steps": 4118, "loss": 1.8309, "learning_rate": 0.0001, "epoch": 0.029140359397765905, "percentage": 2.91, "elapsed_time": "0:39:10", "remaining_time": "21:45:12"} +{"current_steps": 121, "total_steps": 4118, "loss": 1.8723, "learning_rate": 0.0001, "epoch": 0.02938319572608062, "percentage": 2.94, "elapsed_time": "0:39:30", "remaining_time": "21:44:51"} +{"current_steps": 122, "total_steps": 4118, "loss": 1.811, "learning_rate": 0.0001, "epoch": 0.02962603205439534, "percentage": 2.96, "elapsed_time": "0:39:49", "remaining_time": "21:44:30"} +{"current_steps": 123, "total_steps": 4118, "loss": 1.8061, "learning_rate": 0.0001, "epoch": 0.029868868382710054, "percentage": 2.99, "elapsed_time": "0:40:09", "remaining_time": "21:44:10"} +{"current_steps": 124, "total_steps": 4118, "loss": 1.862, "learning_rate": 0.0001, "epoch": 0.03011170471102477, "percentage": 3.01, "elapsed_time": "0:40:28", "remaining_time": "21:43:48"} +{"current_steps": 125, "total_steps": 4118, "loss": 1.9312, "learning_rate": 0.0001, "epoch": 0.030354541039339485, "percentage": 3.04, "elapsed_time": "0:40:48", "remaining_time": "21:43:28"} +{"current_steps": 126, "total_steps": 4118, "loss": 1.7396, "learning_rate": 0.0001, "epoch": 0.0305973773676542, "percentage": 3.06, "elapsed_time": "0:41:07", "remaining_time": "21:43:08"} +{"current_steps": 127, "total_steps": 4118, "loss": 1.8544, "learning_rate": 0.0001, "epoch": 0.030840213695968916, "percentage": 3.08, "elapsed_time": "0:41:27", "remaining_time": "21:42:48"} +{"current_steps": 128, "total_steps": 4118, "loss": 1.8991, "learning_rate": 0.0001, "epoch": 0.03108305002428363, "percentage": 3.11, "elapsed_time": "0:41:47", "remaining_time": "21:42:29"} +{"current_steps": 129, "total_steps": 4118, "loss": 1.793, "learning_rate": 0.0001, "epoch": 0.03132588635259835, "percentage": 3.13, "elapsed_time": "0:42:06", "remaining_time": "21:42:09"} +{"current_steps": 130, "total_steps": 4118, "loss": 1.9397, "learning_rate": 0.0001, "epoch": 0.03156872268091306, "percentage": 3.16, "elapsed_time": "0:42:26", "remaining_time": "21:41:48"} +{"current_steps": 131, "total_steps": 4118, "loss": 1.9118, "learning_rate": 0.0001, "epoch": 0.03181155900922778, "percentage": 3.18, "elapsed_time": "0:42:45", "remaining_time": "21:41:28"} +{"current_steps": 132, "total_steps": 4118, "loss": 1.8213, "learning_rate": 0.0001, "epoch": 0.03205439533754249, "percentage": 3.21, "elapsed_time": "0:43:05", "remaining_time": "21:41:09"} +{"current_steps": 133, "total_steps": 4118, "loss": 1.7903, "learning_rate": 0.0001, "epoch": 0.03229723166585721, "percentage": 3.23, "elapsed_time": "0:43:24", "remaining_time": "21:40:49"} +{"current_steps": 134, "total_steps": 4118, "loss": 1.9701, "learning_rate": 0.0001, "epoch": 0.03254006799417193, "percentage": 3.25, "elapsed_time": "0:43:44", "remaining_time": "21:40:29"} +{"current_steps": 135, "total_steps": 4118, "loss": 1.7392, "learning_rate": 0.0001, "epoch": 0.03278290432248664, "percentage": 3.28, "elapsed_time": "0:44:04", "remaining_time": "21:40:09"} +{"current_steps": 136, "total_steps": 4118, "loss": 1.7289, "learning_rate": 0.0001, "epoch": 0.03302574065080136, "percentage": 3.3, "elapsed_time": "0:44:23", "remaining_time": "21:39:48"} +{"current_steps": 137, "total_steps": 4118, "loss": 1.9272, "learning_rate": 0.0001, "epoch": 0.033268576979116074, "percentage": 3.33, "elapsed_time": "0:44:43", "remaining_time": "21:39:28"} +{"current_steps": 138, "total_steps": 4118, "loss": 1.6415, "learning_rate": 0.0001, "epoch": 0.03351141330743079, "percentage": 3.35, "elapsed_time": "0:45:02", "remaining_time": "21:39:08"} +{"current_steps": 139, "total_steps": 4118, "loss": 1.7081, "learning_rate": 0.0001, "epoch": 0.033754249635745505, "percentage": 3.38, "elapsed_time": "0:45:22", "remaining_time": "21:38:48"} +{"current_steps": 140, "total_steps": 4118, "loss": 1.7877, "learning_rate": 0.0001, "epoch": 0.033997085964060224, "percentage": 3.4, "elapsed_time": "0:45:41", "remaining_time": "21:38:27"} +{"current_steps": 141, "total_steps": 4118, "loss": 1.9245, "learning_rate": 0.0001, "epoch": 0.03423992229237494, "percentage": 3.42, "elapsed_time": "0:46:01", "remaining_time": "21:38:07"} +{"current_steps": 142, "total_steps": 4118, "loss": 1.8471, "learning_rate": 0.0001, "epoch": 0.034482758620689655, "percentage": 3.45, "elapsed_time": "0:46:20", "remaining_time": "21:37:47"} +{"current_steps": 143, "total_steps": 4118, "loss": 1.8551, "learning_rate": 0.0001, "epoch": 0.034725594949004374, "percentage": 3.47, "elapsed_time": "0:46:40", "remaining_time": "21:37:27"} +{"current_steps": 144, "total_steps": 4118, "loss": 1.7737, "learning_rate": 0.0001, "epoch": 0.034968431277319086, "percentage": 3.5, "elapsed_time": "0:47:00", "remaining_time": "21:37:07"} +{"current_steps": 145, "total_steps": 4118, "loss": 1.6737, "learning_rate": 0.0001, "epoch": 0.035211267605633804, "percentage": 3.52, "elapsed_time": "0:47:19", "remaining_time": "21:36:46"} +{"current_steps": 146, "total_steps": 4118, "loss": 1.9133, "learning_rate": 0.0001, "epoch": 0.035454103933948516, "percentage": 3.55, "elapsed_time": "0:47:39", "remaining_time": "21:36:26"} +{"current_steps": 147, "total_steps": 4118, "loss": 1.8421, "learning_rate": 0.0001, "epoch": 0.035696940262263235, "percentage": 3.57, "elapsed_time": "0:47:58", "remaining_time": "21:36:05"} +{"current_steps": 148, "total_steps": 4118, "loss": 1.7915, "learning_rate": 0.0001, "epoch": 0.03593977659057795, "percentage": 3.59, "elapsed_time": "0:48:18", "remaining_time": "21:35:45"} +{"current_steps": 149, "total_steps": 4118, "loss": 1.9026, "learning_rate": 0.0001, "epoch": 0.036182612918892666, "percentage": 3.62, "elapsed_time": "0:48:37", "remaining_time": "21:35:25"} +{"current_steps": 150, "total_steps": 4118, "loss": 1.9228, "learning_rate": 0.0001, "epoch": 0.036425449247207385, "percentage": 3.64, "elapsed_time": "0:48:57", "remaining_time": "21:35:05"} +{"current_steps": 151, "total_steps": 4118, "loss": 1.7392, "learning_rate": 0.0001, "epoch": 0.0366682855755221, "percentage": 3.67, "elapsed_time": "0:49:17", "remaining_time": "21:34:45"} +{"current_steps": 152, "total_steps": 4118, "loss": 1.6875, "learning_rate": 0.0001, "epoch": 0.036911121903836816, "percentage": 3.69, "elapsed_time": "0:49:36", "remaining_time": "21:34:24"} +{"current_steps": 153, "total_steps": 4118, "loss": 1.718, "learning_rate": 0.0001, "epoch": 0.03715395823215153, "percentage": 3.72, "elapsed_time": "0:49:56", "remaining_time": "21:34:04"} +{"current_steps": 154, "total_steps": 4118, "loss": 1.8072, "learning_rate": 0.0001, "epoch": 0.03739679456046625, "percentage": 3.74, "elapsed_time": "0:50:15", "remaining_time": "21:33:44"} +{"current_steps": 155, "total_steps": 4118, "loss": 1.7706, "learning_rate": 0.0001, "epoch": 0.03763963088878096, "percentage": 3.76, "elapsed_time": "0:50:35", "remaining_time": "21:33:24"} +{"current_steps": 156, "total_steps": 4118, "loss": 1.8921, "learning_rate": 0.0001, "epoch": 0.03788246721709568, "percentage": 3.79, "elapsed_time": "0:50:54", "remaining_time": "21:33:04"} +{"current_steps": 157, "total_steps": 4118, "loss": 1.6512, "learning_rate": 0.0001, "epoch": 0.0381253035454104, "percentage": 3.81, "elapsed_time": "0:51:14", "remaining_time": "21:32:44"} +{"current_steps": 158, "total_steps": 4118, "loss": 1.9681, "learning_rate": 0.0001, "epoch": 0.03836813987372511, "percentage": 3.84, "elapsed_time": "0:51:33", "remaining_time": "21:32:23"} +{"current_steps": 159, "total_steps": 4118, "loss": 1.7902, "learning_rate": 0.0001, "epoch": 0.03861097620203983, "percentage": 3.86, "elapsed_time": "0:51:53", "remaining_time": "21:32:03"} +{"current_steps": 160, "total_steps": 4118, "loss": 1.8762, "learning_rate": 0.0001, "epoch": 0.03885381253035454, "percentage": 3.89, "elapsed_time": "0:52:13", "remaining_time": "21:31:44"} +{"current_steps": 161, "total_steps": 4118, "loss": 1.7458, "learning_rate": 0.0001, "epoch": 0.03909664885866926, "percentage": 3.91, "elapsed_time": "0:52:32", "remaining_time": "21:31:23"} +{"current_steps": 162, "total_steps": 4118, "loss": 1.7809, "learning_rate": 0.0001, "epoch": 0.03933948518698397, "percentage": 3.93, "elapsed_time": "0:52:52", "remaining_time": "21:31:04"} +{"current_steps": 163, "total_steps": 4118, "loss": 1.9095, "learning_rate": 0.0001, "epoch": 0.03958232151529869, "percentage": 3.96, "elapsed_time": "0:53:11", "remaining_time": "21:30:43"} +{"current_steps": 164, "total_steps": 4118, "loss": 1.7167, "learning_rate": 0.0001, "epoch": 0.0398251578436134, "percentage": 3.98, "elapsed_time": "0:53:31", "remaining_time": "21:30:23"} +{"current_steps": 165, "total_steps": 4118, "loss": 1.8568, "learning_rate": 0.0001, "epoch": 0.04006799417192812, "percentage": 4.01, "elapsed_time": "0:53:50", "remaining_time": "21:30:03"} +{"current_steps": 166, "total_steps": 4118, "loss": 1.8251, "learning_rate": 0.0001, "epoch": 0.04031083050024284, "percentage": 4.03, "elapsed_time": "0:54:10", "remaining_time": "21:29:44"} +{"current_steps": 167, "total_steps": 4118, "loss": 1.8343, "learning_rate": 0.0001, "epoch": 0.04055366682855755, "percentage": 4.06, "elapsed_time": "0:54:30", "remaining_time": "21:29:24"} +{"current_steps": 168, "total_steps": 4118, "loss": 1.8375, "learning_rate": 0.0001, "epoch": 0.04079650315687227, "percentage": 4.08, "elapsed_time": "0:54:49", "remaining_time": "21:29:05"} +{"current_steps": 169, "total_steps": 4118, "loss": 1.8048, "learning_rate": 0.0001, "epoch": 0.04103933948518698, "percentage": 4.1, "elapsed_time": "0:55:09", "remaining_time": "21:28:45"} +{"current_steps": 170, "total_steps": 4118, "loss": 1.709, "learning_rate": 0.0001, "epoch": 0.0412821758135017, "percentage": 4.13, "elapsed_time": "0:55:28", "remaining_time": "21:28:25"} +{"current_steps": 171, "total_steps": 4118, "loss": 1.8391, "learning_rate": 0.0001, "epoch": 0.04152501214181641, "percentage": 4.15, "elapsed_time": "0:55:48", "remaining_time": "21:28:05"} +{"current_steps": 172, "total_steps": 4118, "loss": 1.7919, "learning_rate": 0.0001, "epoch": 0.04176784847013113, "percentage": 4.18, "elapsed_time": "0:56:07", "remaining_time": "21:27:45"} +{"current_steps": 173, "total_steps": 4118, "loss": 1.9728, "learning_rate": 0.0001, "epoch": 0.04201068479844585, "percentage": 4.2, "elapsed_time": "0:56:27", "remaining_time": "21:27:25"} +{"current_steps": 174, "total_steps": 4118, "loss": 1.6842, "learning_rate": 0.0001, "epoch": 0.04225352112676056, "percentage": 4.23, "elapsed_time": "0:56:46", "remaining_time": "21:27:05"} +{"current_steps": 175, "total_steps": 4118, "loss": 1.7332, "learning_rate": 0.0001, "epoch": 0.04249635745507528, "percentage": 4.25, "elapsed_time": "0:57:06", "remaining_time": "21:26:45"} +{"current_steps": 176, "total_steps": 4118, "loss": 1.8638, "learning_rate": 0.0001, "epoch": 0.042739193783389993, "percentage": 4.27, "elapsed_time": "0:57:26", "remaining_time": "21:26:25"} +{"current_steps": 177, "total_steps": 4118, "loss": 1.7592, "learning_rate": 0.0001, "epoch": 0.04298203011170471, "percentage": 4.3, "elapsed_time": "0:57:45", "remaining_time": "21:26:05"} +{"current_steps": 178, "total_steps": 4118, "loss": 1.7732, "learning_rate": 0.0001, "epoch": 0.043224866440019424, "percentage": 4.32, "elapsed_time": "0:58:05", "remaining_time": "21:25:44"} +{"current_steps": 179, "total_steps": 4118, "loss": 1.6924, "learning_rate": 0.0001, "epoch": 0.04346770276833414, "percentage": 4.35, "elapsed_time": "0:58:24", "remaining_time": "21:25:25"} +{"current_steps": 180, "total_steps": 4118, "loss": 1.7885, "learning_rate": 0.0001, "epoch": 0.043710539096648855, "percentage": 4.37, "elapsed_time": "0:58:44", "remaining_time": "21:25:06"} +{"current_steps": 181, "total_steps": 4118, "loss": 1.8507, "learning_rate": 0.0001, "epoch": 0.043953375424963574, "percentage": 4.4, "elapsed_time": "0:59:03", "remaining_time": "21:24:46"} +{"current_steps": 182, "total_steps": 4118, "loss": 1.8694, "learning_rate": 0.0001, "epoch": 0.04419621175327829, "percentage": 4.42, "elapsed_time": "0:59:23", "remaining_time": "21:24:27"} +{"current_steps": 183, "total_steps": 4118, "loss": 1.828, "learning_rate": 0.0001, "epoch": 0.044439048081593005, "percentage": 4.44, "elapsed_time": "0:59:43", "remaining_time": "21:24:06"} +{"current_steps": 184, "total_steps": 4118, "loss": 1.494, "learning_rate": 0.0001, "epoch": 0.044681884409907724, "percentage": 4.47, "elapsed_time": "1:00:02", "remaining_time": "21:23:46"} +{"current_steps": 185, "total_steps": 4118, "loss": 1.8124, "learning_rate": 0.0001, "epoch": 0.044924720738222436, "percentage": 4.49, "elapsed_time": "1:00:22", "remaining_time": "21:23:27"} +{"current_steps": 186, "total_steps": 4118, "loss": 1.9107, "learning_rate": 0.0001, "epoch": 0.045167557066537155, "percentage": 4.52, "elapsed_time": "1:00:41", "remaining_time": "21:23:07"} +{"current_steps": 187, "total_steps": 4118, "loss": 1.652, "learning_rate": 0.0001, "epoch": 0.04541039339485187, "percentage": 4.54, "elapsed_time": "1:01:01", "remaining_time": "21:22:47"} +{"current_steps": 188, "total_steps": 4118, "loss": 1.7774, "learning_rate": 0.0001, "epoch": 0.045653229723166586, "percentage": 4.57, "elapsed_time": "1:01:20", "remaining_time": "21:22:28"} +{"current_steps": 189, "total_steps": 4118, "loss": 1.6898, "learning_rate": 0.0001, "epoch": 0.045896066051481305, "percentage": 4.59, "elapsed_time": "1:01:40", "remaining_time": "21:22:08"} +{"current_steps": 190, "total_steps": 4118, "loss": 1.6929, "learning_rate": 0.0001, "epoch": 0.04613890237979602, "percentage": 4.61, "elapsed_time": "1:02:00", "remaining_time": "21:21:48"} +{"current_steps": 191, "total_steps": 4118, "loss": 1.8844, "learning_rate": 0.0001, "epoch": 0.046381738708110735, "percentage": 4.64, "elapsed_time": "1:02:19", "remaining_time": "21:21:28"} +{"current_steps": 192, "total_steps": 4118, "loss": 1.5737, "learning_rate": 0.0001, "epoch": 0.04662457503642545, "percentage": 4.66, "elapsed_time": "1:02:39", "remaining_time": "21:21:09"} +{"current_steps": 193, "total_steps": 4118, "loss": 1.731, "learning_rate": 0.0001, "epoch": 0.046867411364740166, "percentage": 4.69, "elapsed_time": "1:02:58", "remaining_time": "21:20:49"} +{"current_steps": 194, "total_steps": 4118, "loss": 1.8204, "learning_rate": 0.0001, "epoch": 0.04711024769305488, "percentage": 4.71, "elapsed_time": "1:03:18", "remaining_time": "21:20:29"} +{"current_steps": 195, "total_steps": 4118, "loss": 1.6753, "learning_rate": 0.0001, "epoch": 0.0473530840213696, "percentage": 4.74, "elapsed_time": "1:03:37", "remaining_time": "21:20:09"} +{"current_steps": 196, "total_steps": 4118, "loss": 1.8047, "learning_rate": 0.0001, "epoch": 0.047595920349684316, "percentage": 4.76, "elapsed_time": "1:03:57", "remaining_time": "21:19:49"} +{"current_steps": 197, "total_steps": 4118, "loss": 1.7479, "learning_rate": 0.0001, "epoch": 0.04783875667799903, "percentage": 4.78, "elapsed_time": "1:04:17", "remaining_time": "21:19:29"} +{"current_steps": 198, "total_steps": 4118, "loss": 1.7769, "learning_rate": 0.0001, "epoch": 0.04808159300631375, "percentage": 4.81, "elapsed_time": "1:04:36", "remaining_time": "21:19:09"} +{"current_steps": 199, "total_steps": 4118, "loss": 1.7173, "learning_rate": 0.0001, "epoch": 0.04832442933462846, "percentage": 4.83, "elapsed_time": "1:04:56", "remaining_time": "21:18:50"} +{"current_steps": 200, "total_steps": 4118, "loss": 1.8234, "learning_rate": 0.0001, "epoch": 0.04856726566294318, "percentage": 4.86, "elapsed_time": "1:05:15", "remaining_time": "21:18:30"} +{"current_steps": 201, "total_steps": 4118, "loss": 1.7442, "learning_rate": 0.0001, "epoch": 0.04881010199125789, "percentage": 4.88, "elapsed_time": "1:05:35", "remaining_time": "21:18:10"} +{"current_steps": 202, "total_steps": 4118, "loss": 1.932, "learning_rate": 0.0001, "epoch": 0.04905293831957261, "percentage": 4.91, "elapsed_time": "1:05:54", "remaining_time": "21:17:50"} +{"current_steps": 203, "total_steps": 4118, "loss": 1.7707, "learning_rate": 0.0001, "epoch": 0.04929577464788732, "percentage": 4.93, "elapsed_time": "1:06:14", "remaining_time": "21:17:30"} +{"current_steps": 204, "total_steps": 4118, "loss": 2.0603, "learning_rate": 0.0001, "epoch": 0.04953861097620204, "percentage": 4.95, "elapsed_time": "1:06:34", "remaining_time": "21:17:10"} +{"current_steps": 205, "total_steps": 4118, "loss": 1.8341, "learning_rate": 0.0001, "epoch": 0.04978144730451676, "percentage": 4.98, "elapsed_time": "1:06:53", "remaining_time": "21:16:50"} +{"current_steps": 206, "total_steps": 4118, "loss": 1.6752, "learning_rate": 0.0001, "epoch": 0.05002428363283147, "percentage": 5.0, "elapsed_time": "1:07:13", "remaining_time": "21:16:30"} +{"current_steps": 207, "total_steps": 4118, "loss": 1.7677, "learning_rate": 0.0001, "epoch": 0.05026711996114619, "percentage": 5.03, "elapsed_time": "1:07:32", "remaining_time": "21:16:10"} +{"current_steps": 208, "total_steps": 4118, "loss": 1.7345, "learning_rate": 0.0001, "epoch": 0.0505099562894609, "percentage": 5.05, "elapsed_time": "1:07:52", "remaining_time": "21:15:50"} +{"current_steps": 209, "total_steps": 4118, "loss": 1.7707, "learning_rate": 0.0001, "epoch": 0.05075279261777562, "percentage": 5.08, "elapsed_time": "1:08:11", "remaining_time": "21:15:30"} +{"current_steps": 210, "total_steps": 4118, "loss": 1.776, "learning_rate": 0.0001, "epoch": 0.05099562894609033, "percentage": 5.1, "elapsed_time": "1:08:31", "remaining_time": "21:15:10"} +{"current_steps": 211, "total_steps": 4118, "loss": 1.9368, "learning_rate": 0.0001, "epoch": 0.05123846527440505, "percentage": 5.12, "elapsed_time": "1:08:50", "remaining_time": "21:14:50"} +{"current_steps": 212, "total_steps": 4118, "loss": 1.647, "learning_rate": 0.0001, "epoch": 0.05148130160271977, "percentage": 5.15, "elapsed_time": "1:09:10", "remaining_time": "21:14:30"} +{"current_steps": 213, "total_steps": 4118, "loss": 1.8035, "learning_rate": 0.0001, "epoch": 0.05172413793103448, "percentage": 5.17, "elapsed_time": "1:09:30", "remaining_time": "21:14:10"} +{"current_steps": 214, "total_steps": 4118, "loss": 1.7283, "learning_rate": 0.0001, "epoch": 0.0519669742593492, "percentage": 5.2, "elapsed_time": "1:09:49", "remaining_time": "21:13:50"} +{"current_steps": 215, "total_steps": 4118, "loss": 1.8284, "learning_rate": 0.0001, "epoch": 0.05220981058766391, "percentage": 5.22, "elapsed_time": "1:10:09", "remaining_time": "21:13:30"} +{"current_steps": 216, "total_steps": 4118, "loss": 1.9195, "learning_rate": 0.0001, "epoch": 0.05245264691597863, "percentage": 5.25, "elapsed_time": "1:10:28", "remaining_time": "21:13:10"} +{"current_steps": 217, "total_steps": 4118, "loss": 1.848, "learning_rate": 0.0001, "epoch": 0.052695483244293344, "percentage": 5.27, "elapsed_time": "1:10:48", "remaining_time": "21:12:51"} +{"current_steps": 218, "total_steps": 4118, "loss": 1.9077, "learning_rate": 0.0001, "epoch": 0.05293831957260806, "percentage": 5.29, "elapsed_time": "1:11:07", "remaining_time": "21:12:30"} +{"current_steps": 219, "total_steps": 4118, "loss": 1.7965, "learning_rate": 0.0001, "epoch": 0.053181155900922775, "percentage": 5.32, "elapsed_time": "1:11:27", "remaining_time": "21:12:11"} +{"current_steps": 220, "total_steps": 4118, "loss": 1.9039, "learning_rate": 0.0001, "epoch": 0.053423992229237494, "percentage": 5.34, "elapsed_time": "1:11:46", "remaining_time": "21:11:51"} +{"current_steps": 221, "total_steps": 4118, "loss": 1.8851, "learning_rate": 0.0001, "epoch": 0.05366682855755221, "percentage": 5.37, "elapsed_time": "1:12:06", "remaining_time": "21:11:31"} +{"current_steps": 222, "total_steps": 4118, "loss": 1.6141, "learning_rate": 0.0001, "epoch": 0.053909664885866924, "percentage": 5.39, "elapsed_time": "1:12:26", "remaining_time": "21:11:11"} +{"current_steps": 223, "total_steps": 4118, "loss": 1.6202, "learning_rate": 0.0001, "epoch": 0.05415250121418164, "percentage": 5.42, "elapsed_time": "1:12:45", "remaining_time": "21:10:51"} +{"current_steps": 224, "total_steps": 4118, "loss": 1.8623, "learning_rate": 0.0001, "epoch": 0.054395337542496355, "percentage": 5.44, "elapsed_time": "1:13:05", "remaining_time": "21:10:31"} +{"current_steps": 225, "total_steps": 4118, "loss": 1.6309, "learning_rate": 0.0001, "epoch": 0.054638173870811074, "percentage": 5.46, "elapsed_time": "1:13:24", "remaining_time": "21:10:11"} +{"current_steps": 226, "total_steps": 4118, "loss": 1.8167, "learning_rate": 0.0001, "epoch": 0.054881010199125786, "percentage": 5.49, "elapsed_time": "1:13:44", "remaining_time": "21:09:51"} +{"current_steps": 227, "total_steps": 4118, "loss": 1.7182, "learning_rate": 0.0001, "epoch": 0.055123846527440505, "percentage": 5.51, "elapsed_time": "1:14:03", "remaining_time": "21:09:31"} +{"current_steps": 228, "total_steps": 4118, "loss": 1.6657, "learning_rate": 0.0001, "epoch": 0.055366682855755224, "percentage": 5.54, "elapsed_time": "1:14:23", "remaining_time": "21:09:11"} +{"current_steps": 229, "total_steps": 4118, "loss": 1.7889, "learning_rate": 0.0001, "epoch": 0.055609519184069936, "percentage": 5.56, "elapsed_time": "1:14:42", "remaining_time": "21:08:51"} +{"current_steps": 230, "total_steps": 4118, "loss": 1.8374, "learning_rate": 0.0001, "epoch": 0.055852355512384655, "percentage": 5.59, "elapsed_time": "1:15:02", "remaining_time": "21:08:31"} +{"current_steps": 231, "total_steps": 4118, "loss": 1.7509, "learning_rate": 0.0001, "epoch": 0.05609519184069937, "percentage": 5.61, "elapsed_time": "1:15:22", "remaining_time": "21:08:12"} +{"current_steps": 232, "total_steps": 4118, "loss": 1.9627, "learning_rate": 0.0001, "epoch": 0.056338028169014086, "percentage": 5.63, "elapsed_time": "1:15:41", "remaining_time": "21:07:52"} +{"current_steps": 233, "total_steps": 4118, "loss": 1.5503, "learning_rate": 0.0001, "epoch": 0.0565808644973288, "percentage": 5.66, "elapsed_time": "1:16:01", "remaining_time": "21:07:32"} +{"current_steps": 234, "total_steps": 4118, "loss": 1.8672, "learning_rate": 0.0001, "epoch": 0.05682370082564352, "percentage": 5.68, "elapsed_time": "1:16:20", "remaining_time": "21:07:13"} +{"current_steps": 235, "total_steps": 4118, "loss": 1.5859, "learning_rate": 0.0001, "epoch": 0.057066537153958236, "percentage": 5.71, "elapsed_time": "1:16:40", "remaining_time": "21:06:53"} +{"current_steps": 236, "total_steps": 4118, "loss": 1.9551, "learning_rate": 0.0001, "epoch": 0.05730937348227295, "percentage": 5.73, "elapsed_time": "1:16:59", "remaining_time": "21:06:32"} +{"current_steps": 237, "total_steps": 4118, "loss": 1.8325, "learning_rate": 0.0001, "epoch": 0.057552209810587666, "percentage": 5.76, "elapsed_time": "1:17:19", "remaining_time": "21:06:12"} +{"current_steps": 238, "total_steps": 4118, "loss": 1.884, "learning_rate": 0.0001, "epoch": 0.05779504613890238, "percentage": 5.78, "elapsed_time": "1:17:38", "remaining_time": "21:05:53"} +{"current_steps": 239, "total_steps": 4118, "loss": 1.6596, "learning_rate": 0.0001, "epoch": 0.0580378824672171, "percentage": 5.8, "elapsed_time": "1:17:58", "remaining_time": "21:05:33"} +{"current_steps": 240, "total_steps": 4118, "loss": 1.8653, "learning_rate": 0.0001, "epoch": 0.05828071879553181, "percentage": 5.83, "elapsed_time": "1:18:18", "remaining_time": "21:05:13"} +{"current_steps": 241, "total_steps": 4118, "loss": 1.874, "learning_rate": 0.0001, "epoch": 0.05852355512384653, "percentage": 5.85, "elapsed_time": "1:18:37", "remaining_time": "21:04:53"} +{"current_steps": 242, "total_steps": 4118, "loss": 1.8091, "learning_rate": 0.0001, "epoch": 0.05876639145216124, "percentage": 5.88, "elapsed_time": "1:18:57", "remaining_time": "21:04:34"} +{"current_steps": 243, "total_steps": 4118, "loss": 1.9075, "learning_rate": 0.0001, "epoch": 0.05900922778047596, "percentage": 5.9, "elapsed_time": "1:19:16", "remaining_time": "21:04:14"} +{"current_steps": 244, "total_steps": 4118, "loss": 1.7758, "learning_rate": 0.0001, "epoch": 0.05925206410879068, "percentage": 5.93, "elapsed_time": "1:19:36", "remaining_time": "21:03:54"} +{"current_steps": 245, "total_steps": 4118, "loss": 1.8534, "learning_rate": 0.0001, "epoch": 0.05949490043710539, "percentage": 5.95, "elapsed_time": "1:19:55", "remaining_time": "21:03:34"} +{"current_steps": 246, "total_steps": 4118, "loss": 1.8422, "learning_rate": 0.0001, "epoch": 0.05973773676542011, "percentage": 5.97, "elapsed_time": "1:20:15", "remaining_time": "21:03:14"} +{"current_steps": 247, "total_steps": 4118, "loss": 1.7791, "learning_rate": 0.0001, "epoch": 0.05998057309373482, "percentage": 6.0, "elapsed_time": "1:20:35", "remaining_time": "21:02:55"} +{"current_steps": 248, "total_steps": 4118, "loss": 1.7325, "learning_rate": 0.0001, "epoch": 0.06022340942204954, "percentage": 6.02, "elapsed_time": "1:20:54", "remaining_time": "21:02:35"} +{"current_steps": 249, "total_steps": 4118, "loss": 1.7863, "learning_rate": 0.0001, "epoch": 0.06046624575036425, "percentage": 6.05, "elapsed_time": "1:21:14", "remaining_time": "21:02:15"} +{"current_steps": 250, "total_steps": 4118, "loss": 1.7041, "learning_rate": 0.0001, "epoch": 0.06070908207867897, "percentage": 6.07, "elapsed_time": "1:21:33", "remaining_time": "21:01:55"} +{"current_steps": 251, "total_steps": 4118, "loss": 1.8094, "learning_rate": 0.0001, "epoch": 0.06095191840699369, "percentage": 6.1, "elapsed_time": "1:21:53", "remaining_time": "21:01:35"} +{"current_steps": 252, "total_steps": 4118, "loss": 1.8643, "learning_rate": 0.0001, "epoch": 0.0611947547353084, "percentage": 6.12, "elapsed_time": "1:22:12", "remaining_time": "21:01:15"} +{"current_steps": 253, "total_steps": 4118, "loss": 1.615, "learning_rate": 0.0001, "epoch": 0.06143759106362312, "percentage": 6.14, "elapsed_time": "1:22:32", "remaining_time": "21:00:55"} +{"current_steps": 254, "total_steps": 4118, "loss": 1.8526, "learning_rate": 0.0001, "epoch": 0.06168042739193783, "percentage": 6.17, "elapsed_time": "1:22:51", "remaining_time": "21:00:35"} +{"current_steps": 255, "total_steps": 4118, "loss": 1.9226, "learning_rate": 0.0001, "epoch": 0.06192326372025255, "percentage": 6.19, "elapsed_time": "1:23:11", "remaining_time": "21:00:16"} +{"current_steps": 256, "total_steps": 4118, "loss": 1.6703, "learning_rate": 0.0001, "epoch": 0.06216610004856726, "percentage": 6.22, "elapsed_time": "1:23:31", "remaining_time": "20:59:56"} +{"current_steps": 257, "total_steps": 4118, "loss": 1.7225, "learning_rate": 0.0001, "epoch": 0.06240893637688198, "percentage": 6.24, "elapsed_time": "1:23:50", "remaining_time": "20:59:36"} +{"current_steps": 258, "total_steps": 4118, "loss": 1.7159, "learning_rate": 0.0001, "epoch": 0.0626517727051967, "percentage": 6.27, "elapsed_time": "1:24:10", "remaining_time": "20:59:16"} +{"current_steps": 259, "total_steps": 4118, "loss": 1.6822, "learning_rate": 0.0001, "epoch": 0.06289460903351142, "percentage": 6.29, "elapsed_time": "1:24:29", "remaining_time": "20:58:56"} +{"current_steps": 260, "total_steps": 4118, "loss": 1.8625, "learning_rate": 0.0001, "epoch": 0.06313744536182612, "percentage": 6.31, "elapsed_time": "1:24:49", "remaining_time": "20:58:36"} +{"current_steps": 261, "total_steps": 4118, "loss": 1.674, "learning_rate": 0.0001, "epoch": 0.06338028169014084, "percentage": 6.34, "elapsed_time": "1:25:08", "remaining_time": "20:58:16"} +{"current_steps": 262, "total_steps": 4118, "loss": 1.9068, "learning_rate": 0.0001, "epoch": 0.06362311801845556, "percentage": 6.36, "elapsed_time": "1:25:28", "remaining_time": "20:57:57"} +{"current_steps": 263, "total_steps": 4118, "loss": 1.7135, "learning_rate": 0.0001, "epoch": 0.06386595434677028, "percentage": 6.39, "elapsed_time": "1:25:47", "remaining_time": "20:57:37"} +{"current_steps": 264, "total_steps": 4118, "loss": 1.8619, "learning_rate": 0.0001, "epoch": 0.06410879067508499, "percentage": 6.41, "elapsed_time": "1:26:07", "remaining_time": "20:57:17"} +{"current_steps": 265, "total_steps": 4118, "loss": 1.7791, "learning_rate": 0.0001, "epoch": 0.0643516270033997, "percentage": 6.44, "elapsed_time": "1:26:27", "remaining_time": "20:56:58"} +{"current_steps": 266, "total_steps": 4118, "loss": 1.722, "learning_rate": 0.0001, "epoch": 0.06459446333171442, "percentage": 6.46, "elapsed_time": "1:26:46", "remaining_time": "20:56:38"} +{"current_steps": 267, "total_steps": 4118, "loss": 1.8185, "learning_rate": 0.0001, "epoch": 0.06483729966002914, "percentage": 6.48, "elapsed_time": "1:27:06", "remaining_time": "20:56:18"} +{"current_steps": 268, "total_steps": 4118, "loss": 1.8696, "learning_rate": 0.0001, "epoch": 0.06508013598834386, "percentage": 6.51, "elapsed_time": "1:27:25", "remaining_time": "20:55:58"} +{"current_steps": 269, "total_steps": 4118, "loss": 1.9712, "learning_rate": 0.0001, "epoch": 0.06532297231665857, "percentage": 6.53, "elapsed_time": "1:27:45", "remaining_time": "20:55:39"} +{"current_steps": 270, "total_steps": 4118, "loss": 1.8229, "learning_rate": 0.0001, "epoch": 0.06556580864497329, "percentage": 6.56, "elapsed_time": "1:28:04", "remaining_time": "20:55:19"} +{"current_steps": 271, "total_steps": 4118, "loss": 1.8365, "learning_rate": 0.0001, "epoch": 0.065808644973288, "percentage": 6.58, "elapsed_time": "1:28:24", "remaining_time": "20:54:59"} +{"current_steps": 272, "total_steps": 4118, "loss": 1.8418, "learning_rate": 0.0001, "epoch": 0.06605148130160272, "percentage": 6.61, "elapsed_time": "1:28:44", "remaining_time": "20:54:39"} +{"current_steps": 273, "total_steps": 4118, "loss": 1.7385, "learning_rate": 0.0001, "epoch": 0.06629431762991743, "percentage": 6.63, "elapsed_time": "1:29:03", "remaining_time": "20:54:20"} +{"current_steps": 274, "total_steps": 4118, "loss": 1.6261, "learning_rate": 0.0001, "epoch": 0.06653715395823215, "percentage": 6.65, "elapsed_time": "1:29:23", "remaining_time": "20:54:00"} +{"current_steps": 275, "total_steps": 4118, "loss": 2.0492, "learning_rate": 0.0001, "epoch": 0.06677999028654687, "percentage": 6.68, "elapsed_time": "1:29:42", "remaining_time": "20:53:40"} +{"current_steps": 276, "total_steps": 4118, "loss": 1.6679, "learning_rate": 0.0001, "epoch": 0.06702282661486159, "percentage": 6.7, "elapsed_time": "1:30:02", "remaining_time": "20:53:20"} +{"current_steps": 277, "total_steps": 4118, "loss": 1.6637, "learning_rate": 0.0001, "epoch": 0.0672656629431763, "percentage": 6.73, "elapsed_time": "1:30:21", "remaining_time": "20:53:00"} +{"current_steps": 278, "total_steps": 4118, "loss": 1.8389, "learning_rate": 0.0001, "epoch": 0.06750849927149101, "percentage": 6.75, "elapsed_time": "1:30:41", "remaining_time": "20:52:41"} +{"current_steps": 279, "total_steps": 4118, "loss": 1.7553, "learning_rate": 0.0001, "epoch": 0.06775133559980573, "percentage": 6.78, "elapsed_time": "1:31:00", "remaining_time": "20:52:21"} +{"current_steps": 280, "total_steps": 4118, "loss": 1.9998, "learning_rate": 0.0001, "epoch": 0.06799417192812045, "percentage": 6.8, "elapsed_time": "1:31:20", "remaining_time": "20:52:01"} +{"current_steps": 281, "total_steps": 4118, "loss": 1.8031, "learning_rate": 0.0001, "epoch": 0.06823700825643517, "percentage": 6.82, "elapsed_time": "1:31:40", "remaining_time": "20:51:41"} +{"current_steps": 282, "total_steps": 4118, "loss": 1.7671, "learning_rate": 0.0001, "epoch": 0.06847984458474989, "percentage": 6.85, "elapsed_time": "1:31:59", "remaining_time": "20:51:22"} +{"current_steps": 283, "total_steps": 4118, "loss": 1.7511, "learning_rate": 0.0001, "epoch": 0.06872268091306459, "percentage": 6.87, "elapsed_time": "1:32:19", "remaining_time": "20:51:02"} +{"current_steps": 284, "total_steps": 4118, "loss": 1.805, "learning_rate": 0.0001, "epoch": 0.06896551724137931, "percentage": 6.9, "elapsed_time": "1:32:38", "remaining_time": "20:50:42"} +{"current_steps": 285, "total_steps": 4118, "loss": 1.7911, "learning_rate": 0.0001, "epoch": 0.06920835356969403, "percentage": 6.92, "elapsed_time": "1:32:58", "remaining_time": "20:50:22"} +{"current_steps": 286, "total_steps": 4118, "loss": 1.6621, "learning_rate": 0.0001, "epoch": 0.06945118989800875, "percentage": 6.95, "elapsed_time": "1:33:17", "remaining_time": "20:50:03"} +{"current_steps": 287, "total_steps": 4118, "loss": 1.8558, "learning_rate": 0.0001, "epoch": 0.06969402622632345, "percentage": 6.97, "elapsed_time": "1:33:37", "remaining_time": "20:49:43"} +{"current_steps": 288, "total_steps": 4118, "loss": 2.0038, "learning_rate": 0.0001, "epoch": 0.06993686255463817, "percentage": 6.99, "elapsed_time": "1:33:56", "remaining_time": "20:49:23"} +{"current_steps": 289, "total_steps": 4118, "loss": 1.8431, "learning_rate": 0.0001, "epoch": 0.07017969888295289, "percentage": 7.02, "elapsed_time": "1:34:16", "remaining_time": "20:49:04"} +{"current_steps": 290, "total_steps": 4118, "loss": 1.6519, "learning_rate": 0.0001, "epoch": 0.07042253521126761, "percentage": 7.04, "elapsed_time": "1:34:36", "remaining_time": "20:48:44"} +{"current_steps": 291, "total_steps": 4118, "loss": 1.8592, "learning_rate": 0.0001, "epoch": 0.07066537153958233, "percentage": 7.07, "elapsed_time": "1:34:55", "remaining_time": "20:48:24"} +{"current_steps": 292, "total_steps": 4118, "loss": 1.7219, "learning_rate": 0.0001, "epoch": 0.07090820786789703, "percentage": 7.09, "elapsed_time": "1:35:15", "remaining_time": "20:48:05"} +{"current_steps": 293, "total_steps": 4118, "loss": 1.7581, "learning_rate": 0.0001, "epoch": 0.07115104419621175, "percentage": 7.12, "elapsed_time": "1:35:34", "remaining_time": "20:47:45"} +{"current_steps": 294, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.07139388052452647, "percentage": 7.14, "elapsed_time": "1:35:54", "remaining_time": "20:47:25"} +{"current_steps": 295, "total_steps": 4118, "loss": 1.8268, "learning_rate": 0.0001, "epoch": 0.07163671685284119, "percentage": 7.16, "elapsed_time": "1:36:13", "remaining_time": "20:47:06"} +{"current_steps": 296, "total_steps": 4118, "loss": 1.7749, "learning_rate": 0.0001, "epoch": 0.0718795531811559, "percentage": 7.19, "elapsed_time": "1:36:33", "remaining_time": "20:46:46"} +{"current_steps": 297, "total_steps": 4118, "loss": 1.7159, "learning_rate": 0.0001, "epoch": 0.07212238950947061, "percentage": 7.21, "elapsed_time": "1:36:53", "remaining_time": "20:46:26"} +{"current_steps": 298, "total_steps": 4118, "loss": 1.7179, "learning_rate": 0.0001, "epoch": 0.07236522583778533, "percentage": 7.24, "elapsed_time": "1:37:12", "remaining_time": "20:46:07"} +{"current_steps": 299, "total_steps": 4118, "loss": 1.7337, "learning_rate": 0.0001, "epoch": 0.07260806216610005, "percentage": 7.26, "elapsed_time": "1:37:32", "remaining_time": "20:45:47"} +{"current_steps": 300, "total_steps": 4118, "loss": 1.7792, "learning_rate": 0.0001, "epoch": 0.07285089849441477, "percentage": 7.29, "elapsed_time": "1:37:51", "remaining_time": "20:45:28"} +{"current_steps": 301, "total_steps": 4118, "loss": 1.8536, "learning_rate": 0.0001, "epoch": 0.07309373482272948, "percentage": 7.31, "elapsed_time": "1:38:11", "remaining_time": "20:45:08"} +{"current_steps": 302, "total_steps": 4118, "loss": 1.6597, "learning_rate": 0.0001, "epoch": 0.0733365711510442, "percentage": 7.33, "elapsed_time": "1:38:30", "remaining_time": "20:44:48"} +{"current_steps": 303, "total_steps": 4118, "loss": 1.7763, "learning_rate": 0.0001, "epoch": 0.07357940747935891, "percentage": 7.36, "elapsed_time": "1:38:50", "remaining_time": "20:44:28"} +{"current_steps": 304, "total_steps": 4118, "loss": 1.8342, "learning_rate": 0.0001, "epoch": 0.07382224380767363, "percentage": 7.38, "elapsed_time": "1:39:10", "remaining_time": "20:44:09"} +{"current_steps": 305, "total_steps": 4118, "loss": 1.5388, "learning_rate": 0.0001, "epoch": 0.07406508013598834, "percentage": 7.41, "elapsed_time": "1:39:29", "remaining_time": "20:43:49"} +{"current_steps": 306, "total_steps": 4118, "loss": 1.8352, "learning_rate": 0.0001, "epoch": 0.07430791646430306, "percentage": 7.43, "elapsed_time": "1:39:49", "remaining_time": "20:43:29"} +{"current_steps": 307, "total_steps": 4118, "loss": 1.8093, "learning_rate": 0.0001, "epoch": 0.07455075279261777, "percentage": 7.46, "elapsed_time": "1:40:08", "remaining_time": "20:43:09"} +{"current_steps": 308, "total_steps": 4118, "loss": 1.8077, "learning_rate": 0.0001, "epoch": 0.0747935891209325, "percentage": 7.48, "elapsed_time": "1:40:28", "remaining_time": "20:42:50"} +{"current_steps": 309, "total_steps": 4118, "loss": 1.7357, "learning_rate": 0.0001, "epoch": 0.07503642544924721, "percentage": 7.5, "elapsed_time": "1:40:47", "remaining_time": "20:42:30"} +{"current_steps": 310, "total_steps": 4118, "loss": 1.8976, "learning_rate": 0.0001, "epoch": 0.07527926177756192, "percentage": 7.53, "elapsed_time": "1:41:07", "remaining_time": "20:42:10"} +{"current_steps": 311, "total_steps": 4118, "loss": 1.7181, "learning_rate": 0.0001, "epoch": 0.07552209810587664, "percentage": 7.55, "elapsed_time": "1:41:26", "remaining_time": "20:41:50"} +{"current_steps": 312, "total_steps": 4118, "loss": 1.6823, "learning_rate": 0.0001, "epoch": 0.07576493443419136, "percentage": 7.58, "elapsed_time": "1:41:46", "remaining_time": "20:41:31"} +{"current_steps": 313, "total_steps": 4118, "loss": 1.6511, "learning_rate": 0.0001, "epoch": 0.07600777076250607, "percentage": 7.6, "elapsed_time": "1:42:06", "remaining_time": "20:41:11"} +{"current_steps": 314, "total_steps": 4118, "loss": 1.8045, "learning_rate": 0.0001, "epoch": 0.0762506070908208, "percentage": 7.63, "elapsed_time": "1:42:25", "remaining_time": "20:40:51"} +{"current_steps": 315, "total_steps": 4118, "loss": 1.8092, "learning_rate": 0.0001, "epoch": 0.0764934434191355, "percentage": 7.65, "elapsed_time": "1:42:45", "remaining_time": "20:40:31"} +{"current_steps": 316, "total_steps": 4118, "loss": 1.7219, "learning_rate": 0.0001, "epoch": 0.07673627974745022, "percentage": 7.67, "elapsed_time": "1:43:04", "remaining_time": "20:40:12"} +{"current_steps": 317, "total_steps": 4118, "loss": 1.817, "learning_rate": 0.0001, "epoch": 0.07697911607576494, "percentage": 7.7, "elapsed_time": "1:43:24", "remaining_time": "20:39:52"} +{"current_steps": 318, "total_steps": 4118, "loss": 1.6898, "learning_rate": 0.0001, "epoch": 0.07722195240407966, "percentage": 7.72, "elapsed_time": "1:43:43", "remaining_time": "20:39:32"} +{"current_steps": 319, "total_steps": 4118, "loss": 1.8103, "learning_rate": 0.0001, "epoch": 0.07746478873239436, "percentage": 7.75, "elapsed_time": "1:44:03", "remaining_time": "20:39:12"} +{"current_steps": 320, "total_steps": 4118, "loss": 1.6871, "learning_rate": 0.0001, "epoch": 0.07770762506070908, "percentage": 7.77, "elapsed_time": "1:44:22", "remaining_time": "20:38:52"} +{"current_steps": 321, "total_steps": 4118, "loss": 1.7389, "learning_rate": 0.0001, "epoch": 0.0779504613890238, "percentage": 7.8, "elapsed_time": "1:44:42", "remaining_time": "20:38:33"} +{"current_steps": 322, "total_steps": 4118, "loss": 1.7553, "learning_rate": 0.0001, "epoch": 0.07819329771733852, "percentage": 7.82, "elapsed_time": "1:45:02", "remaining_time": "20:38:13"} +{"current_steps": 323, "total_steps": 4118, "loss": 1.6454, "learning_rate": 0.0001, "epoch": 0.07843613404565324, "percentage": 7.84, "elapsed_time": "1:45:21", "remaining_time": "20:37:53"} +{"current_steps": 324, "total_steps": 4118, "loss": 1.8142, "learning_rate": 0.0001, "epoch": 0.07867897037396794, "percentage": 7.87, "elapsed_time": "1:45:41", "remaining_time": "20:37:34"} +{"current_steps": 325, "total_steps": 4118, "loss": 1.7058, "learning_rate": 0.0001, "epoch": 0.07892180670228266, "percentage": 7.89, "elapsed_time": "1:46:00", "remaining_time": "20:37:14"} +{"current_steps": 326, "total_steps": 4118, "loss": 1.7188, "learning_rate": 0.0001, "epoch": 0.07916464303059738, "percentage": 7.92, "elapsed_time": "1:46:20", "remaining_time": "20:36:54"} +{"current_steps": 327, "total_steps": 4118, "loss": 1.8852, "learning_rate": 0.0001, "epoch": 0.0794074793589121, "percentage": 7.94, "elapsed_time": "1:46:39", "remaining_time": "20:36:35"} +{"current_steps": 328, "total_steps": 4118, "loss": 1.8122, "learning_rate": 0.0001, "epoch": 0.0796503156872268, "percentage": 7.97, "elapsed_time": "1:46:59", "remaining_time": "20:36:15"} +{"current_steps": 329, "total_steps": 4118, "loss": 1.6088, "learning_rate": 0.0001, "epoch": 0.07989315201554152, "percentage": 7.99, "elapsed_time": "1:47:18", "remaining_time": "20:35:55"} +{"current_steps": 330, "total_steps": 4118, "loss": 1.8858, "learning_rate": 0.0001, "epoch": 0.08013598834385624, "percentage": 8.01, "elapsed_time": "1:47:38", "remaining_time": "20:35:35"} +{"current_steps": 331, "total_steps": 4118, "loss": 1.7687, "learning_rate": 0.0001, "epoch": 0.08037882467217096, "percentage": 8.04, "elapsed_time": "1:47:58", "remaining_time": "20:35:16"} +{"current_steps": 332, "total_steps": 4118, "loss": 1.7079, "learning_rate": 0.0001, "epoch": 0.08062166100048568, "percentage": 8.06, "elapsed_time": "1:48:17", "remaining_time": "20:34:56"} +{"current_steps": 333, "total_steps": 4118, "loss": 1.8222, "learning_rate": 0.0001, "epoch": 0.08086449732880038, "percentage": 8.09, "elapsed_time": "1:48:37", "remaining_time": "20:34:36"} +{"current_steps": 334, "total_steps": 4118, "loss": 1.7532, "learning_rate": 0.0001, "epoch": 0.0811073336571151, "percentage": 8.11, "elapsed_time": "1:48:56", "remaining_time": "20:34:16"} +{"current_steps": 335, "total_steps": 4118, "loss": 1.5065, "learning_rate": 0.0001, "epoch": 0.08135016998542982, "percentage": 8.14, "elapsed_time": "1:49:16", "remaining_time": "20:33:56"} +{"current_steps": 336, "total_steps": 4118, "loss": 1.7718, "learning_rate": 0.0001, "epoch": 0.08159300631374454, "percentage": 8.16, "elapsed_time": "1:49:35", "remaining_time": "20:33:36"} +{"current_steps": 337, "total_steps": 4118, "loss": 1.835, "learning_rate": 0.0001, "epoch": 0.08183584264205926, "percentage": 8.18, "elapsed_time": "1:49:55", "remaining_time": "20:33:16"} +{"current_steps": 338, "total_steps": 4118, "loss": 1.7186, "learning_rate": 0.0001, "epoch": 0.08207867897037396, "percentage": 8.21, "elapsed_time": "1:50:14", "remaining_time": "20:32:57"} +{"current_steps": 339, "total_steps": 4118, "loss": 1.6271, "learning_rate": 0.0001, "epoch": 0.08232151529868868, "percentage": 8.23, "elapsed_time": "1:50:34", "remaining_time": "20:32:37"} +{"current_steps": 340, "total_steps": 4118, "loss": 1.745, "learning_rate": 0.0001, "epoch": 0.0825643516270034, "percentage": 8.26, "elapsed_time": "1:50:53", "remaining_time": "20:32:17"} +{"current_steps": 341, "total_steps": 4118, "loss": 1.5748, "learning_rate": 0.0001, "epoch": 0.08280718795531812, "percentage": 8.28, "elapsed_time": "1:51:13", "remaining_time": "20:31:57"} +{"current_steps": 342, "total_steps": 4118, "loss": 1.8616, "learning_rate": 0.0001, "epoch": 0.08305002428363283, "percentage": 8.31, "elapsed_time": "1:51:33", "remaining_time": "20:31:38"} +{"current_steps": 343, "total_steps": 4118, "loss": 1.8843, "learning_rate": 0.0001, "epoch": 0.08329286061194754, "percentage": 8.33, "elapsed_time": "1:51:52", "remaining_time": "20:31:18"} +{"current_steps": 344, "total_steps": 4118, "loss": 1.8349, "learning_rate": 0.0001, "epoch": 0.08353569694026226, "percentage": 8.35, "elapsed_time": "1:52:12", "remaining_time": "20:30:58"} +{"current_steps": 345, "total_steps": 4118, "loss": 1.6549, "learning_rate": 0.0001, "epoch": 0.08377853326857698, "percentage": 8.38, "elapsed_time": "1:52:31", "remaining_time": "20:30:39"} +{"current_steps": 346, "total_steps": 4118, "loss": 1.6946, "learning_rate": 0.0001, "epoch": 0.0840213695968917, "percentage": 8.4, "elapsed_time": "1:52:51", "remaining_time": "20:30:19"} +{"current_steps": 347, "total_steps": 4118, "loss": 1.7884, "learning_rate": 0.0001, "epoch": 0.0842642059252064, "percentage": 8.43, "elapsed_time": "1:53:10", "remaining_time": "20:29:59"} +{"current_steps": 348, "total_steps": 4118, "loss": 1.5942, "learning_rate": 0.0001, "epoch": 0.08450704225352113, "percentage": 8.45, "elapsed_time": "1:53:30", "remaining_time": "20:29:40"} +{"current_steps": 349, "total_steps": 4118, "loss": 1.7981, "learning_rate": 0.0001, "epoch": 0.08474987858183584, "percentage": 8.47, "elapsed_time": "1:53:50", "remaining_time": "20:29:20"} +{"current_steps": 350, "total_steps": 4118, "loss": 1.7776, "learning_rate": 0.0001, "epoch": 0.08499271491015056, "percentage": 8.5, "elapsed_time": "1:54:09", "remaining_time": "20:29:00"} +{"current_steps": 351, "total_steps": 4118, "loss": 1.8169, "learning_rate": 0.0001, "epoch": 0.08523555123846527, "percentage": 8.52, "elapsed_time": "1:54:29", "remaining_time": "20:28:40"} +{"current_steps": 352, "total_steps": 4118, "loss": 1.7757, "learning_rate": 0.0001, "epoch": 0.08547838756677999, "percentage": 8.55, "elapsed_time": "1:54:48", "remaining_time": "20:28:21"} +{"current_steps": 353, "total_steps": 4118, "loss": 1.7117, "learning_rate": 0.0001, "epoch": 0.0857212238950947, "percentage": 8.57, "elapsed_time": "1:55:08", "remaining_time": "20:28:01"} +{"current_steps": 354, "total_steps": 4118, "loss": 1.6416, "learning_rate": 0.0001, "epoch": 0.08596406022340942, "percentage": 8.6, "elapsed_time": "1:55:27", "remaining_time": "20:27:41"} +{"current_steps": 355, "total_steps": 4118, "loss": 1.8676, "learning_rate": 0.0001, "epoch": 0.08620689655172414, "percentage": 8.62, "elapsed_time": "1:55:47", "remaining_time": "20:27:21"} +{"current_steps": 356, "total_steps": 4118, "loss": 1.6686, "learning_rate": 0.0001, "epoch": 0.08644973288003885, "percentage": 8.64, "elapsed_time": "1:56:06", "remaining_time": "20:27:01"} +{"current_steps": 357, "total_steps": 4118, "loss": 1.7556, "learning_rate": 0.0001, "epoch": 0.08669256920835357, "percentage": 8.67, "elapsed_time": "1:56:26", "remaining_time": "20:26:42"} +{"current_steps": 358, "total_steps": 4118, "loss": 1.6959, "learning_rate": 0.0001, "epoch": 0.08693540553666829, "percentage": 8.69, "elapsed_time": "1:56:45", "remaining_time": "20:26:22"} +{"current_steps": 359, "total_steps": 4118, "loss": 1.9301, "learning_rate": 0.0001, "epoch": 0.087178241864983, "percentage": 8.72, "elapsed_time": "1:57:05", "remaining_time": "20:26:02"} +{"current_steps": 360, "total_steps": 4118, "loss": 1.7324, "learning_rate": 0.0001, "epoch": 0.08742107819329771, "percentage": 8.74, "elapsed_time": "1:57:25", "remaining_time": "20:25:43"} +{"current_steps": 361, "total_steps": 4118, "loss": 1.5471, "learning_rate": 0.0001, "epoch": 0.08766391452161243, "percentage": 8.77, "elapsed_time": "1:57:44", "remaining_time": "20:25:23"} +{"current_steps": 362, "total_steps": 4118, "loss": 1.8098, "learning_rate": 0.0001, "epoch": 0.08790675084992715, "percentage": 8.79, "elapsed_time": "1:58:04", "remaining_time": "20:25:03"} +{"current_steps": 363, "total_steps": 4118, "loss": 1.8482, "learning_rate": 0.0001, "epoch": 0.08814958717824187, "percentage": 8.81, "elapsed_time": "1:58:23", "remaining_time": "20:24:43"} +{"current_steps": 364, "total_steps": 4118, "loss": 1.7772, "learning_rate": 0.0001, "epoch": 0.08839242350655659, "percentage": 8.84, "elapsed_time": "1:58:43", "remaining_time": "20:24:23"} +{"current_steps": 365, "total_steps": 4118, "loss": 1.766, "learning_rate": 0.0001, "epoch": 0.08863525983487129, "percentage": 8.86, "elapsed_time": "1:59:02", "remaining_time": "20:24:04"} +{"current_steps": 366, "total_steps": 4118, "loss": 1.951, "learning_rate": 0.0001, "epoch": 0.08887809616318601, "percentage": 8.89, "elapsed_time": "1:59:22", "remaining_time": "20:23:44"} +{"current_steps": 367, "total_steps": 4118, "loss": 1.6565, "learning_rate": 0.0001, "epoch": 0.08912093249150073, "percentage": 8.91, "elapsed_time": "1:59:41", "remaining_time": "20:23:24"} +{"current_steps": 368, "total_steps": 4118, "loss": 1.8326, "learning_rate": 0.0001, "epoch": 0.08936376881981545, "percentage": 8.94, "elapsed_time": "2:00:01", "remaining_time": "20:23:05"} +{"current_steps": 369, "total_steps": 4118, "loss": 1.858, "learning_rate": 0.0001, "epoch": 0.08960660514813017, "percentage": 8.96, "elapsed_time": "2:00:21", "remaining_time": "20:22:45"} +{"current_steps": 370, "total_steps": 4118, "loss": 1.8237, "learning_rate": 0.0001, "epoch": 0.08984944147644487, "percentage": 8.98, "elapsed_time": "2:00:40", "remaining_time": "20:22:25"} +{"current_steps": 371, "total_steps": 4118, "loss": 1.6666, "learning_rate": 0.0001, "epoch": 0.09009227780475959, "percentage": 9.01, "elapsed_time": "2:01:00", "remaining_time": "20:22:05"} +{"current_steps": 372, "total_steps": 4118, "loss": 1.7635, "learning_rate": 0.0001, "epoch": 0.09033511413307431, "percentage": 9.03, "elapsed_time": "2:01:19", "remaining_time": "20:21:45"} +{"current_steps": 373, "total_steps": 4118, "loss": 1.754, "learning_rate": 0.0001, "epoch": 0.09057795046138903, "percentage": 9.06, "elapsed_time": "2:01:39", "remaining_time": "20:21:26"} +{"current_steps": 374, "total_steps": 4118, "loss": 1.9381, "learning_rate": 0.0001, "epoch": 0.09082078678970373, "percentage": 9.08, "elapsed_time": "2:01:58", "remaining_time": "20:21:06"} +{"current_steps": 375, "total_steps": 4118, "loss": 1.7204, "learning_rate": 0.0001, "epoch": 0.09106362311801845, "percentage": 9.11, "elapsed_time": "2:02:18", "remaining_time": "20:20:46"} +{"current_steps": 376, "total_steps": 4118, "loss": 1.8194, "learning_rate": 0.0001, "epoch": 0.09130645944633317, "percentage": 9.13, "elapsed_time": "2:02:37", "remaining_time": "20:20:26"} +{"current_steps": 377, "total_steps": 4118, "loss": 1.6406, "learning_rate": 0.0001, "epoch": 0.09154929577464789, "percentage": 9.15, "elapsed_time": "2:02:57", "remaining_time": "20:20:07"} +{"current_steps": 378, "total_steps": 4118, "loss": 1.8006, "learning_rate": 0.0001, "epoch": 0.09179213210296261, "percentage": 9.18, "elapsed_time": "2:03:17", "remaining_time": "20:19:47"} +{"current_steps": 379, "total_steps": 4118, "loss": 1.7876, "learning_rate": 0.0001, "epoch": 0.09203496843127731, "percentage": 9.2, "elapsed_time": "2:03:36", "remaining_time": "20:19:28"} +{"current_steps": 380, "total_steps": 4118, "loss": 1.726, "learning_rate": 0.0001, "epoch": 0.09227780475959203, "percentage": 9.23, "elapsed_time": "2:03:56", "remaining_time": "20:19:08"} +{"current_steps": 381, "total_steps": 4118, "loss": 1.7701, "learning_rate": 0.0001, "epoch": 0.09252064108790675, "percentage": 9.25, "elapsed_time": "2:04:15", "remaining_time": "20:18:48"} +{"current_steps": 382, "total_steps": 4118, "loss": 1.8187, "learning_rate": 0.0001, "epoch": 0.09276347741622147, "percentage": 9.28, "elapsed_time": "2:04:35", "remaining_time": "20:18:29"} +{"current_steps": 383, "total_steps": 4118, "loss": 1.7241, "learning_rate": 0.0001, "epoch": 0.09300631374453618, "percentage": 9.3, "elapsed_time": "2:04:54", "remaining_time": "20:18:09"} +{"current_steps": 384, "total_steps": 4118, "loss": 1.8323, "learning_rate": 0.0001, "epoch": 0.0932491500728509, "percentage": 9.32, "elapsed_time": "2:05:14", "remaining_time": "20:17:49"} +{"current_steps": 385, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.09349198640116561, "percentage": 9.35, "elapsed_time": "2:05:33", "remaining_time": "20:17:30"} +{"current_steps": 386, "total_steps": 4118, "loss": 1.6506, "learning_rate": 0.0001, "epoch": 0.09373482272948033, "percentage": 9.37, "elapsed_time": "2:05:53", "remaining_time": "20:17:10"} +{"current_steps": 387, "total_steps": 4118, "loss": 1.8175, "learning_rate": 0.0001, "epoch": 0.09397765905779505, "percentage": 9.4, "elapsed_time": "2:06:13", "remaining_time": "20:16:50"} +{"current_steps": 388, "total_steps": 4118, "loss": 1.8854, "learning_rate": 0.0001, "epoch": 0.09422049538610976, "percentage": 9.42, "elapsed_time": "2:06:32", "remaining_time": "20:16:31"} +{"current_steps": 389, "total_steps": 4118, "loss": 1.8345, "learning_rate": 0.0001, "epoch": 0.09446333171442448, "percentage": 9.45, "elapsed_time": "2:06:52", "remaining_time": "20:16:11"} +{"current_steps": 390, "total_steps": 4118, "loss": 1.791, "learning_rate": 0.0001, "epoch": 0.0947061680427392, "percentage": 9.47, "elapsed_time": "2:07:11", "remaining_time": "20:15:52"} +{"current_steps": 391, "total_steps": 4118, "loss": 1.7572, "learning_rate": 0.0001, "epoch": 0.09494900437105391, "percentage": 9.49, "elapsed_time": "2:07:31", "remaining_time": "20:15:32"} +{"current_steps": 392, "total_steps": 4118, "loss": 1.7995, "learning_rate": 0.0001, "epoch": 0.09519184069936863, "percentage": 9.52, "elapsed_time": "2:07:50", "remaining_time": "20:15:12"} +{"current_steps": 393, "total_steps": 4118, "loss": 1.6152, "learning_rate": 0.0001, "epoch": 0.09543467702768334, "percentage": 9.54, "elapsed_time": "2:08:10", "remaining_time": "20:14:52"} +{"current_steps": 394, "total_steps": 4118, "loss": 1.8339, "learning_rate": 0.0001, "epoch": 0.09567751335599806, "percentage": 9.57, "elapsed_time": "2:08:29", "remaining_time": "20:14:33"} +{"current_steps": 395, "total_steps": 4118, "loss": 1.7018, "learning_rate": 0.0001, "epoch": 0.09592034968431278, "percentage": 9.59, "elapsed_time": "2:08:49", "remaining_time": "20:14:13"} +{"current_steps": 396, "total_steps": 4118, "loss": 1.9143, "learning_rate": 0.0001, "epoch": 0.0961631860126275, "percentage": 9.62, "elapsed_time": "2:09:09", "remaining_time": "20:13:53"} +{"current_steps": 397, "total_steps": 4118, "loss": 1.8163, "learning_rate": 0.0001, "epoch": 0.0964060223409422, "percentage": 9.64, "elapsed_time": "2:09:28", "remaining_time": "20:13:33"} +{"current_steps": 398, "total_steps": 4118, "loss": 1.8803, "learning_rate": 0.0001, "epoch": 0.09664885866925692, "percentage": 9.66, "elapsed_time": "2:09:48", "remaining_time": "20:13:14"} +{"current_steps": 399, "total_steps": 4118, "loss": 1.6497, "learning_rate": 0.0001, "epoch": 0.09689169499757164, "percentage": 9.69, "elapsed_time": "2:10:07", "remaining_time": "20:12:54"} +{"current_steps": 400, "total_steps": 4118, "loss": 1.8508, "learning_rate": 0.0001, "epoch": 0.09713453132588636, "percentage": 9.71, "elapsed_time": "2:10:27", "remaining_time": "20:12:34"} +{"current_steps": 401, "total_steps": 4118, "loss": 1.9272, "learning_rate": 0.0001, "epoch": 0.09737736765420107, "percentage": 9.74, "elapsed_time": "2:10:46", "remaining_time": "20:12:15"} +{"current_steps": 402, "total_steps": 4118, "loss": 1.7785, "learning_rate": 0.0001, "epoch": 0.09762020398251578, "percentage": 9.76, "elapsed_time": "2:11:06", "remaining_time": "20:11:55"} +{"current_steps": 403, "total_steps": 4118, "loss": 1.7845, "learning_rate": 0.0001, "epoch": 0.0978630403108305, "percentage": 9.79, "elapsed_time": "2:11:25", "remaining_time": "20:11:35"} +{"current_steps": 404, "total_steps": 4118, "loss": 1.5593, "learning_rate": 0.0001, "epoch": 0.09810587663914522, "percentage": 9.81, "elapsed_time": "2:11:45", "remaining_time": "20:11:16"} +{"current_steps": 405, "total_steps": 4118, "loss": 1.8053, "learning_rate": 0.0001, "epoch": 0.09834871296745994, "percentage": 9.83, "elapsed_time": "2:12:05", "remaining_time": "20:10:56"} +{"current_steps": 406, "total_steps": 4118, "loss": 1.8878, "learning_rate": 0.0001, "epoch": 0.09859154929577464, "percentage": 9.86, "elapsed_time": "2:12:24", "remaining_time": "20:10:36"} +{"current_steps": 407, "total_steps": 4118, "loss": 1.9937, "learning_rate": 0.0001, "epoch": 0.09883438562408936, "percentage": 9.88, "elapsed_time": "2:12:44", "remaining_time": "20:10:17"} +{"current_steps": 408, "total_steps": 4118, "loss": 1.8615, "learning_rate": 0.0001, "epoch": 0.09907722195240408, "percentage": 9.91, "elapsed_time": "2:13:03", "remaining_time": "20:09:57"} +{"current_steps": 409, "total_steps": 4118, "loss": 1.8052, "learning_rate": 0.0001, "epoch": 0.0993200582807188, "percentage": 9.93, "elapsed_time": "2:13:23", "remaining_time": "20:09:37"} +{"current_steps": 410, "total_steps": 4118, "loss": 1.9118, "learning_rate": 0.0001, "epoch": 0.09956289460903352, "percentage": 9.96, "elapsed_time": "2:13:42", "remaining_time": "20:09:17"} +{"current_steps": 411, "total_steps": 4118, "loss": 1.9286, "learning_rate": 0.0001, "epoch": 0.09980573093734822, "percentage": 9.98, "elapsed_time": "2:14:02", "remaining_time": "20:08:58"} +{"current_steps": 412, "total_steps": 4118, "loss": 1.9078, "learning_rate": 0.0001, "epoch": 0.10004856726566294, "percentage": 10.0, "elapsed_time": "2:14:21", "remaining_time": "20:08:38"} +{"current_steps": 413, "total_steps": 4118, "loss": 1.7668, "learning_rate": 0.0001, "epoch": 0.10029140359397766, "percentage": 10.03, "elapsed_time": "2:14:41", "remaining_time": "20:08:18"} +{"current_steps": 414, "total_steps": 4118, "loss": 1.9453, "learning_rate": 0.0001, "epoch": 0.10053423992229238, "percentage": 10.05, "elapsed_time": "2:15:01", "remaining_time": "20:07:59"} +{"current_steps": 415, "total_steps": 4118, "loss": 1.8397, "learning_rate": 0.0001, "epoch": 0.1007770762506071, "percentage": 10.08, "elapsed_time": "2:15:20", "remaining_time": "20:07:39"} +{"current_steps": 416, "total_steps": 4118, "loss": 1.8323, "learning_rate": 0.0001, "epoch": 0.1010199125789218, "percentage": 10.1, "elapsed_time": "2:15:40", "remaining_time": "20:07:20"} +{"current_steps": 417, "total_steps": 4118, "loss": 1.8363, "learning_rate": 0.0001, "epoch": 0.10126274890723652, "percentage": 10.13, "elapsed_time": "2:15:59", "remaining_time": "20:07:00"} +{"current_steps": 418, "total_steps": 4118, "loss": 1.9228, "learning_rate": 0.0001, "epoch": 0.10150558523555124, "percentage": 10.15, "elapsed_time": "2:16:19", "remaining_time": "20:06:41"} +{"current_steps": 419, "total_steps": 4118, "loss": 1.7261, "learning_rate": 0.0001, "epoch": 0.10174842156386596, "percentage": 10.17, "elapsed_time": "2:16:38", "remaining_time": "20:06:21"} +{"current_steps": 420, "total_steps": 4118, "loss": 1.738, "learning_rate": 0.0001, "epoch": 0.10199125789218066, "percentage": 10.2, "elapsed_time": "2:16:58", "remaining_time": "20:06:01"} +{"current_steps": 421, "total_steps": 4118, "loss": 1.9034, "learning_rate": 0.0001, "epoch": 0.10223409422049538, "percentage": 10.22, "elapsed_time": "2:17:17", "remaining_time": "20:05:41"} +{"current_steps": 422, "total_steps": 4118, "loss": 1.6837, "learning_rate": 0.0001, "epoch": 0.1024769305488101, "percentage": 10.25, "elapsed_time": "2:17:37", "remaining_time": "20:05:22"} +{"current_steps": 423, "total_steps": 4118, "loss": 1.74, "learning_rate": 0.0001, "epoch": 0.10271976687712482, "percentage": 10.27, "elapsed_time": "2:17:57", "remaining_time": "20:05:02"} +{"current_steps": 424, "total_steps": 4118, "loss": 1.7351, "learning_rate": 0.0001, "epoch": 0.10296260320543954, "percentage": 10.3, "elapsed_time": "2:18:16", "remaining_time": "20:04:42"} +{"current_steps": 425, "total_steps": 4118, "loss": 1.8174, "learning_rate": 0.0001, "epoch": 0.10320543953375425, "percentage": 10.32, "elapsed_time": "2:18:36", "remaining_time": "20:04:23"} +{"current_steps": 426, "total_steps": 4118, "loss": 1.7677, "learning_rate": 0.0001, "epoch": 0.10344827586206896, "percentage": 10.34, "elapsed_time": "2:18:55", "remaining_time": "20:04:03"} +{"current_steps": 427, "total_steps": 4118, "loss": 1.5447, "learning_rate": 0.0001, "epoch": 0.10369111219038368, "percentage": 10.37, "elapsed_time": "2:19:15", "remaining_time": "20:03:43"} +{"current_steps": 428, "total_steps": 4118, "loss": 1.828, "learning_rate": 0.0001, "epoch": 0.1039339485186984, "percentage": 10.39, "elapsed_time": "2:19:34", "remaining_time": "20:03:24"} +{"current_steps": 429, "total_steps": 4118, "loss": 1.7072, "learning_rate": 0.0001, "epoch": 0.1041767848470131, "percentage": 10.42, "elapsed_time": "2:19:54", "remaining_time": "20:03:04"} +{"current_steps": 430, "total_steps": 4118, "loss": 1.8452, "learning_rate": 0.0001, "epoch": 0.10441962117532783, "percentage": 10.44, "elapsed_time": "2:20:14", "remaining_time": "20:02:45"} +{"current_steps": 431, "total_steps": 4118, "loss": 1.5471, "learning_rate": 0.0001, "epoch": 0.10466245750364254, "percentage": 10.47, "elapsed_time": "2:20:33", "remaining_time": "20:02:25"} +{"current_steps": 432, "total_steps": 4118, "loss": 1.8674, "learning_rate": 0.0001, "epoch": 0.10490529383195726, "percentage": 10.49, "elapsed_time": "2:20:53", "remaining_time": "20:02:05"} +{"current_steps": 433, "total_steps": 4118, "loss": 1.7189, "learning_rate": 0.0001, "epoch": 0.10514813016027198, "percentage": 10.51, "elapsed_time": "2:21:12", "remaining_time": "20:01:46"} +{"current_steps": 434, "total_steps": 4118, "loss": 1.736, "learning_rate": 0.0001, "epoch": 0.10539096648858669, "percentage": 10.54, "elapsed_time": "2:21:32", "remaining_time": "20:01:26"} +{"current_steps": 435, "total_steps": 4118, "loss": 1.7611, "learning_rate": 0.0001, "epoch": 0.1056338028169014, "percentage": 10.56, "elapsed_time": "2:21:51", "remaining_time": "20:01:06"} +{"current_steps": 436, "total_steps": 4118, "loss": 1.6746, "learning_rate": 0.0001, "epoch": 0.10587663914521613, "percentage": 10.59, "elapsed_time": "2:22:11", "remaining_time": "20:00:46"} +{"current_steps": 437, "total_steps": 4118, "loss": 1.8153, "learning_rate": 0.0001, "epoch": 0.10611947547353084, "percentage": 10.61, "elapsed_time": "2:22:30", "remaining_time": "20:00:27"} +{"current_steps": 438, "total_steps": 4118, "loss": 1.8945, "learning_rate": 0.0001, "epoch": 0.10636231180184555, "percentage": 10.64, "elapsed_time": "2:22:50", "remaining_time": "20:00:07"} +{"current_steps": 439, "total_steps": 4118, "loss": 1.6173, "learning_rate": 0.0001, "epoch": 0.10660514813016027, "percentage": 10.66, "elapsed_time": "2:23:10", "remaining_time": "19:59:47"} +{"current_steps": 440, "total_steps": 4118, "loss": 1.9262, "learning_rate": 0.0001, "epoch": 0.10684798445847499, "percentage": 10.68, "elapsed_time": "2:23:29", "remaining_time": "19:59:28"} +{"current_steps": 441, "total_steps": 4118, "loss": 1.7516, "learning_rate": 0.0001, "epoch": 0.1070908207867897, "percentage": 10.71, "elapsed_time": "2:23:49", "remaining_time": "19:59:08"} +{"current_steps": 442, "total_steps": 4118, "loss": 1.787, "learning_rate": 0.0001, "epoch": 0.10733365711510442, "percentage": 10.73, "elapsed_time": "2:24:08", "remaining_time": "19:58:48"} +{"current_steps": 443, "total_steps": 4118, "loss": 1.8915, "learning_rate": 0.0001, "epoch": 0.10757649344341913, "percentage": 10.76, "elapsed_time": "2:24:28", "remaining_time": "19:58:29"} +{"current_steps": 444, "total_steps": 4118, "loss": 1.8129, "learning_rate": 0.0001, "epoch": 0.10781932977173385, "percentage": 10.78, "elapsed_time": "2:24:47", "remaining_time": "19:58:09"} +{"current_steps": 445, "total_steps": 4118, "loss": 1.79, "learning_rate": 0.0001, "epoch": 0.10806216610004857, "percentage": 10.81, "elapsed_time": "2:25:07", "remaining_time": "19:57:49"} +{"current_steps": 446, "total_steps": 4118, "loss": 1.6976, "learning_rate": 0.0001, "epoch": 0.10830500242836329, "percentage": 10.83, "elapsed_time": "2:25:26", "remaining_time": "19:57:29"} +{"current_steps": 447, "total_steps": 4118, "loss": 1.9803, "learning_rate": 0.0001, "epoch": 0.108547838756678, "percentage": 10.85, "elapsed_time": "2:25:46", "remaining_time": "19:57:09"} +{"current_steps": 448, "total_steps": 4118, "loss": 1.8585, "learning_rate": 0.0001, "epoch": 0.10879067508499271, "percentage": 10.88, "elapsed_time": "2:26:05", "remaining_time": "19:56:50"} +{"current_steps": 449, "total_steps": 4118, "loss": 1.7326, "learning_rate": 0.0001, "epoch": 0.10903351141330743, "percentage": 10.9, "elapsed_time": "2:26:25", "remaining_time": "19:56:30"} +{"current_steps": 450, "total_steps": 4118, "loss": 1.8009, "learning_rate": 0.0001, "epoch": 0.10927634774162215, "percentage": 10.93, "elapsed_time": "2:26:45", "remaining_time": "19:56:10"} +{"current_steps": 451, "total_steps": 4118, "loss": 1.7593, "learning_rate": 0.0001, "epoch": 0.10951918406993687, "percentage": 10.95, "elapsed_time": "2:27:04", "remaining_time": "19:55:51"} +{"current_steps": 452, "total_steps": 4118, "loss": 1.9124, "learning_rate": 0.0001, "epoch": 0.10976202039825157, "percentage": 10.98, "elapsed_time": "2:27:24", "remaining_time": "19:55:31"} +{"current_steps": 453, "total_steps": 4118, "loss": 1.8058, "learning_rate": 0.0001, "epoch": 0.11000485672656629, "percentage": 11.0, "elapsed_time": "2:27:43", "remaining_time": "19:55:11"} +{"current_steps": 454, "total_steps": 4118, "loss": 1.7938, "learning_rate": 0.0001, "epoch": 0.11024769305488101, "percentage": 11.02, "elapsed_time": "2:28:03", "remaining_time": "19:54:51"} +{"current_steps": 455, "total_steps": 4118, "loss": 1.8046, "learning_rate": 0.0001, "epoch": 0.11049052938319573, "percentage": 11.05, "elapsed_time": "2:28:22", "remaining_time": "19:54:31"} +{"current_steps": 456, "total_steps": 4118, "loss": 1.6204, "learning_rate": 0.0001, "epoch": 0.11073336571151045, "percentage": 11.07, "elapsed_time": "2:28:42", "remaining_time": "19:54:12"} +{"current_steps": 457, "total_steps": 4118, "loss": 1.7018, "learning_rate": 0.0001, "epoch": 0.11097620203982515, "percentage": 11.1, "elapsed_time": "2:29:01", "remaining_time": "19:53:52"} +{"current_steps": 458, "total_steps": 4118, "loss": 1.6849, "learning_rate": 0.0001, "epoch": 0.11121903836813987, "percentage": 11.12, "elapsed_time": "2:29:21", "remaining_time": "19:53:33"} +{"current_steps": 459, "total_steps": 4118, "loss": 1.6503, "learning_rate": 0.0001, "epoch": 0.11146187469645459, "percentage": 11.15, "elapsed_time": "2:29:41", "remaining_time": "19:53:13"} +{"current_steps": 460, "total_steps": 4118, "loss": 1.811, "learning_rate": 0.0001, "epoch": 0.11170471102476931, "percentage": 11.17, "elapsed_time": "2:30:00", "remaining_time": "19:52:53"} +{"current_steps": 461, "total_steps": 4118, "loss": 1.7863, "learning_rate": 0.0001, "epoch": 0.11194754735308401, "percentage": 11.19, "elapsed_time": "2:30:20", "remaining_time": "19:52:34"} +{"current_steps": 462, "total_steps": 4118, "loss": 1.7207, "learning_rate": 0.0001, "epoch": 0.11219038368139873, "percentage": 11.22, "elapsed_time": "2:30:39", "remaining_time": "19:52:14"} +{"current_steps": 463, "total_steps": 4118, "loss": 1.7714, "learning_rate": 0.0001, "epoch": 0.11243322000971345, "percentage": 11.24, "elapsed_time": "2:30:59", "remaining_time": "19:51:55"} +{"current_steps": 464, "total_steps": 4118, "loss": 1.6993, "learning_rate": 0.0001, "epoch": 0.11267605633802817, "percentage": 11.27, "elapsed_time": "2:31:18", "remaining_time": "19:51:35"} +{"current_steps": 465, "total_steps": 4118, "loss": 1.7934, "learning_rate": 0.0001, "epoch": 0.11291889266634289, "percentage": 11.29, "elapsed_time": "2:31:38", "remaining_time": "19:51:16"} +{"current_steps": 466, "total_steps": 4118, "loss": 1.7009, "learning_rate": 0.0001, "epoch": 0.1131617289946576, "percentage": 11.32, "elapsed_time": "2:31:57", "remaining_time": "19:50:56"} +{"current_steps": 467, "total_steps": 4118, "loss": 1.6113, "learning_rate": 0.0001, "epoch": 0.11340456532297231, "percentage": 11.34, "elapsed_time": "2:32:17", "remaining_time": "19:50:36"} +{"current_steps": 468, "total_steps": 4118, "loss": 1.6944, "learning_rate": 0.0001, "epoch": 0.11364740165128703, "percentage": 11.36, "elapsed_time": "2:32:37", "remaining_time": "19:50:16"} +{"current_steps": 469, "total_steps": 4118, "loss": 1.8537, "learning_rate": 0.0001, "epoch": 0.11389023797960175, "percentage": 11.39, "elapsed_time": "2:32:56", "remaining_time": "19:49:57"} +{"current_steps": 470, "total_steps": 4118, "loss": 1.7883, "learning_rate": 0.0001, "epoch": 0.11413307430791647, "percentage": 11.41, "elapsed_time": "2:33:16", "remaining_time": "19:49:37"} +{"current_steps": 471, "total_steps": 4118, "loss": 1.7361, "learning_rate": 0.0001, "epoch": 0.11437591063623118, "percentage": 11.44, "elapsed_time": "2:33:35", "remaining_time": "19:49:17"} +{"current_steps": 472, "total_steps": 4118, "loss": 1.7357, "learning_rate": 0.0001, "epoch": 0.1146187469645459, "percentage": 11.46, "elapsed_time": "2:33:55", "remaining_time": "19:48:58"} +{"current_steps": 473, "total_steps": 4118, "loss": 1.6686, "learning_rate": 0.0001, "epoch": 0.11486158329286061, "percentage": 11.49, "elapsed_time": "2:34:14", "remaining_time": "19:48:38"} +{"current_steps": 474, "total_steps": 4118, "loss": 1.6045, "learning_rate": 0.0001, "epoch": 0.11510441962117533, "percentage": 11.51, "elapsed_time": "2:34:34", "remaining_time": "19:48:18"} +{"current_steps": 475, "total_steps": 4118, "loss": 1.8015, "learning_rate": 0.0001, "epoch": 0.11534725594949004, "percentage": 11.53, "elapsed_time": "2:34:53", "remaining_time": "19:47:59"} +{"current_steps": 476, "total_steps": 4118, "loss": 1.7562, "learning_rate": 0.0001, "epoch": 0.11559009227780476, "percentage": 11.56, "elapsed_time": "2:35:13", "remaining_time": "19:47:39"} +{"current_steps": 477, "total_steps": 4118, "loss": 1.8338, "learning_rate": 0.0001, "epoch": 0.11583292860611948, "percentage": 11.58, "elapsed_time": "2:35:32", "remaining_time": "19:47:19"} +{"current_steps": 478, "total_steps": 4118, "loss": 1.6276, "learning_rate": 0.0001, "epoch": 0.1160757649344342, "percentage": 11.61, "elapsed_time": "2:35:52", "remaining_time": "19:47:00"} +{"current_steps": 479, "total_steps": 4118, "loss": 1.9028, "learning_rate": 0.0001, "epoch": 0.11631860126274891, "percentage": 11.63, "elapsed_time": "2:36:12", "remaining_time": "19:46:40"} +{"current_steps": 480, "total_steps": 4118, "loss": 1.7026, "learning_rate": 0.0001, "epoch": 0.11656143759106362, "percentage": 11.66, "elapsed_time": "2:36:31", "remaining_time": "19:46:20"} +{"current_steps": 481, "total_steps": 4118, "loss": 1.7897, "learning_rate": 0.0001, "epoch": 0.11680427391937834, "percentage": 11.68, "elapsed_time": "2:36:51", "remaining_time": "19:46:01"} +{"current_steps": 482, "total_steps": 4118, "loss": 1.6795, "learning_rate": 0.0001, "epoch": 0.11704711024769306, "percentage": 11.7, "elapsed_time": "2:37:10", "remaining_time": "19:45:41"} +{"current_steps": 483, "total_steps": 4118, "loss": 1.6404, "learning_rate": 0.0001, "epoch": 0.11728994657600778, "percentage": 11.73, "elapsed_time": "2:37:30", "remaining_time": "19:45:22"} +{"current_steps": 484, "total_steps": 4118, "loss": 1.8267, "learning_rate": 0.0001, "epoch": 0.11753278290432248, "percentage": 11.75, "elapsed_time": "2:37:49", "remaining_time": "19:45:02"} +{"current_steps": 485, "total_steps": 4118, "loss": 1.6754, "learning_rate": 0.0001, "epoch": 0.1177756192326372, "percentage": 11.78, "elapsed_time": "2:38:09", "remaining_time": "19:44:42"} +{"current_steps": 486, "total_steps": 4118, "loss": 1.6589, "learning_rate": 0.0001, "epoch": 0.11801845556095192, "percentage": 11.8, "elapsed_time": "2:38:29", "remaining_time": "19:44:23"} +{"current_steps": 487, "total_steps": 4118, "loss": 1.6347, "learning_rate": 0.0001, "epoch": 0.11826129188926664, "percentage": 11.83, "elapsed_time": "2:38:48", "remaining_time": "19:44:03"} +{"current_steps": 488, "total_steps": 4118, "loss": 1.7277, "learning_rate": 0.0001, "epoch": 0.11850412821758136, "percentage": 11.85, "elapsed_time": "2:39:08", "remaining_time": "19:43:44"} +{"current_steps": 489, "total_steps": 4118, "loss": 1.7813, "learning_rate": 0.0001, "epoch": 0.11874696454589606, "percentage": 11.87, "elapsed_time": "2:39:27", "remaining_time": "19:43:24"} +{"current_steps": 490, "total_steps": 4118, "loss": 1.9246, "learning_rate": 0.0001, "epoch": 0.11898980087421078, "percentage": 11.9, "elapsed_time": "2:39:47", "remaining_time": "19:43:04"} +{"current_steps": 491, "total_steps": 4118, "loss": 1.8058, "learning_rate": 0.0001, "epoch": 0.1192326372025255, "percentage": 11.92, "elapsed_time": "2:40:06", "remaining_time": "19:42:45"} +{"current_steps": 492, "total_steps": 4118, "loss": 1.8664, "learning_rate": 0.0001, "epoch": 0.11947547353084022, "percentage": 11.95, "elapsed_time": "2:40:26", "remaining_time": "19:42:25"} +{"current_steps": 493, "total_steps": 4118, "loss": 1.7442, "learning_rate": 0.0001, "epoch": 0.11971830985915492, "percentage": 11.97, "elapsed_time": "2:40:45", "remaining_time": "19:42:05"} +{"current_steps": 494, "total_steps": 4118, "loss": 1.7299, "learning_rate": 0.0001, "epoch": 0.11996114618746964, "percentage": 12.0, "elapsed_time": "2:41:05", "remaining_time": "19:41:46"} +{"current_steps": 495, "total_steps": 4118, "loss": 1.6994, "learning_rate": 0.0001, "epoch": 0.12020398251578436, "percentage": 12.02, "elapsed_time": "2:41:24", "remaining_time": "19:41:26"} +{"current_steps": 496, "total_steps": 4118, "loss": 1.6304, "learning_rate": 0.0001, "epoch": 0.12044681884409908, "percentage": 12.04, "elapsed_time": "2:41:44", "remaining_time": "19:41:06"} +{"current_steps": 497, "total_steps": 4118, "loss": 1.881, "learning_rate": 0.0001, "epoch": 0.1206896551724138, "percentage": 12.07, "elapsed_time": "2:42:04", "remaining_time": "19:40:47"} +{"current_steps": 498, "total_steps": 4118, "loss": 1.9511, "learning_rate": 0.0001, "epoch": 0.1209324915007285, "percentage": 12.09, "elapsed_time": "2:42:23", "remaining_time": "19:40:27"} +{"current_steps": 499, "total_steps": 4118, "loss": 1.8009, "learning_rate": 0.0001, "epoch": 0.12117532782904322, "percentage": 12.12, "elapsed_time": "2:42:43", "remaining_time": "19:40:08"} +{"current_steps": 500, "total_steps": 4118, "loss": 1.8173, "learning_rate": 0.0001, "epoch": 0.12141816415735794, "percentage": 12.14, "elapsed_time": "2:43:02", "remaining_time": "19:39:48"} +{"current_steps": 501, "total_steps": 4118, "loss": 1.6158, "learning_rate": 0.0001, "epoch": 0.12166100048567266, "percentage": 12.17, "elapsed_time": "2:43:24", "remaining_time": "19:39:46"} +{"current_steps": 502, "total_steps": 4118, "loss": 1.6568, "learning_rate": 0.0001, "epoch": 0.12190383681398738, "percentage": 12.19, "elapsed_time": "2:43:44", "remaining_time": "19:39:27"} +{"current_steps": 503, "total_steps": 4118, "loss": 1.9099, "learning_rate": 0.0001, "epoch": 0.12214667314230208, "percentage": 12.21, "elapsed_time": "2:44:04", "remaining_time": "19:39:07"} +{"current_steps": 504, "total_steps": 4118, "loss": 1.6819, "learning_rate": 0.0001, "epoch": 0.1223895094706168, "percentage": 12.24, "elapsed_time": "2:44:23", "remaining_time": "19:38:47"} +{"current_steps": 505, "total_steps": 4118, "loss": 1.7439, "learning_rate": 0.0001, "epoch": 0.12263234579893152, "percentage": 12.26, "elapsed_time": "2:44:43", "remaining_time": "19:38:28"} +{"current_steps": 506, "total_steps": 4118, "loss": 1.7791, "learning_rate": 0.0001, "epoch": 0.12287518212724624, "percentage": 12.29, "elapsed_time": "2:45:02", "remaining_time": "19:38:08"} +{"current_steps": 507, "total_steps": 4118, "loss": 1.5696, "learning_rate": 0.0001, "epoch": 0.12311801845556095, "percentage": 12.31, "elapsed_time": "2:45:22", "remaining_time": "19:37:48"} +{"current_steps": 508, "total_steps": 4118, "loss": 1.8222, "learning_rate": 0.0001, "epoch": 0.12336085478387566, "percentage": 12.34, "elapsed_time": "2:45:41", "remaining_time": "19:37:29"} +{"current_steps": 509, "total_steps": 4118, "loss": 1.8684, "learning_rate": 0.0001, "epoch": 0.12360369111219038, "percentage": 12.36, "elapsed_time": "2:46:01", "remaining_time": "19:37:09"} +{"current_steps": 510, "total_steps": 4118, "loss": 1.8502, "learning_rate": 0.0001, "epoch": 0.1238465274405051, "percentage": 12.38, "elapsed_time": "2:46:20", "remaining_time": "19:36:50"} +{"current_steps": 511, "total_steps": 4118, "loss": 1.6784, "learning_rate": 0.0001, "epoch": 0.12408936376881982, "percentage": 12.41, "elapsed_time": "2:46:40", "remaining_time": "19:36:30"} +{"current_steps": 512, "total_steps": 4118, "loss": 1.6773, "learning_rate": 0.0001, "epoch": 0.12433220009713453, "percentage": 12.43, "elapsed_time": "2:47:00", "remaining_time": "19:36:10"} +{"current_steps": 513, "total_steps": 4118, "loss": 1.7038, "learning_rate": 0.0001, "epoch": 0.12457503642544925, "percentage": 12.46, "elapsed_time": "2:47:19", "remaining_time": "19:35:51"} +{"current_steps": 514, "total_steps": 4118, "loss": 1.6937, "learning_rate": 0.0001, "epoch": 0.12481787275376396, "percentage": 12.48, "elapsed_time": "2:47:39", "remaining_time": "19:35:31"} +{"current_steps": 515, "total_steps": 4118, "loss": 1.9453, "learning_rate": 0.0001, "epoch": 0.12506070908207867, "percentage": 12.51, "elapsed_time": "2:47:58", "remaining_time": "19:35:11"} +{"current_steps": 516, "total_steps": 4118, "loss": 1.7107, "learning_rate": 0.0001, "epoch": 0.1253035454103934, "percentage": 12.53, "elapsed_time": "2:48:18", "remaining_time": "19:34:52"} +{"current_steps": 517, "total_steps": 4118, "loss": 1.7148, "learning_rate": 0.0001, "epoch": 0.1255463817387081, "percentage": 12.55, "elapsed_time": "2:48:37", "remaining_time": "19:34:32"} +{"current_steps": 518, "total_steps": 4118, "loss": 1.6136, "learning_rate": 0.0001, "epoch": 0.12578921806702284, "percentage": 12.58, "elapsed_time": "2:48:57", "remaining_time": "19:34:12"} +{"current_steps": 519, "total_steps": 4118, "loss": 1.971, "learning_rate": 0.0001, "epoch": 0.12603205439533754, "percentage": 12.6, "elapsed_time": "2:49:16", "remaining_time": "19:33:52"} +{"current_steps": 520, "total_steps": 4118, "loss": 1.8336, "learning_rate": 0.0001, "epoch": 0.12627489072365225, "percentage": 12.63, "elapsed_time": "2:49:36", "remaining_time": "19:33:33"} +{"current_steps": 521, "total_steps": 4118, "loss": 1.8283, "learning_rate": 0.0001, "epoch": 0.12651772705196698, "percentage": 12.65, "elapsed_time": "2:49:55", "remaining_time": "19:33:13"} +{"current_steps": 522, "total_steps": 4118, "loss": 1.5477, "learning_rate": 0.0001, "epoch": 0.1267605633802817, "percentage": 12.68, "elapsed_time": "2:50:15", "remaining_time": "19:32:53"} +{"current_steps": 523, "total_steps": 4118, "loss": 1.8824, "learning_rate": 0.0001, "epoch": 0.1270033997085964, "percentage": 12.7, "elapsed_time": "2:50:35", "remaining_time": "19:32:33"} +{"current_steps": 524, "total_steps": 4118, "loss": 1.8165, "learning_rate": 0.0001, "epoch": 0.12724623603691113, "percentage": 12.72, "elapsed_time": "2:50:54", "remaining_time": "19:32:14"} +{"current_steps": 525, "total_steps": 4118, "loss": 1.7759, "learning_rate": 0.0001, "epoch": 0.12748907236522583, "percentage": 12.75, "elapsed_time": "2:51:14", "remaining_time": "19:31:54"} +{"current_steps": 526, "total_steps": 4118, "loss": 1.933, "learning_rate": 0.0001, "epoch": 0.12773190869354056, "percentage": 12.77, "elapsed_time": "2:51:33", "remaining_time": "19:31:35"} +{"current_steps": 527, "total_steps": 4118, "loss": 1.7725, "learning_rate": 0.0001, "epoch": 0.12797474502185527, "percentage": 12.8, "elapsed_time": "2:51:53", "remaining_time": "19:31:15"} +{"current_steps": 528, "total_steps": 4118, "loss": 1.8016, "learning_rate": 0.0001, "epoch": 0.12821758135016997, "percentage": 12.82, "elapsed_time": "2:52:12", "remaining_time": "19:30:55"} +{"current_steps": 529, "total_steps": 4118, "loss": 1.8947, "learning_rate": 0.0001, "epoch": 0.1284604176784847, "percentage": 12.85, "elapsed_time": "2:52:32", "remaining_time": "19:30:36"} +{"current_steps": 530, "total_steps": 4118, "loss": 1.8154, "learning_rate": 0.0001, "epoch": 0.1287032540067994, "percentage": 12.87, "elapsed_time": "2:52:51", "remaining_time": "19:30:16"} +{"current_steps": 531, "total_steps": 4118, "loss": 1.7494, "learning_rate": 0.0001, "epoch": 0.12894609033511414, "percentage": 12.89, "elapsed_time": "2:53:11", "remaining_time": "19:29:56"} +{"current_steps": 532, "total_steps": 4118, "loss": 1.8233, "learning_rate": 0.0001, "epoch": 0.12918892666342885, "percentage": 12.92, "elapsed_time": "2:53:31", "remaining_time": "19:29:37"} +{"current_steps": 533, "total_steps": 4118, "loss": 1.7795, "learning_rate": 0.0001, "epoch": 0.12943176299174355, "percentage": 12.94, "elapsed_time": "2:53:50", "remaining_time": "19:29:17"} +{"current_steps": 534, "total_steps": 4118, "loss": 1.812, "learning_rate": 0.0001, "epoch": 0.1296745993200583, "percentage": 12.97, "elapsed_time": "2:54:10", "remaining_time": "19:28:58"} +{"current_steps": 535, "total_steps": 4118, "loss": 1.6853, "learning_rate": 0.0001, "epoch": 0.129917435648373, "percentage": 12.99, "elapsed_time": "2:54:29", "remaining_time": "19:28:38"} +{"current_steps": 536, "total_steps": 4118, "loss": 1.7371, "learning_rate": 0.0001, "epoch": 0.13016027197668772, "percentage": 13.02, "elapsed_time": "2:54:49", "remaining_time": "19:28:18"} +{"current_steps": 537, "total_steps": 4118, "loss": 1.7264, "learning_rate": 0.0001, "epoch": 0.13040310830500243, "percentage": 13.04, "elapsed_time": "2:55:08", "remaining_time": "19:27:59"} +{"current_steps": 538, "total_steps": 4118, "loss": 1.7232, "learning_rate": 0.0001, "epoch": 0.13064594463331713, "percentage": 13.06, "elapsed_time": "2:55:28", "remaining_time": "19:27:39"} +{"current_steps": 539, "total_steps": 4118, "loss": 1.7582, "learning_rate": 0.0001, "epoch": 0.13088878096163187, "percentage": 13.09, "elapsed_time": "2:55:48", "remaining_time": "19:27:19"} +{"current_steps": 540, "total_steps": 4118, "loss": 1.7761, "learning_rate": 0.0001, "epoch": 0.13113161728994657, "percentage": 13.11, "elapsed_time": "2:56:07", "remaining_time": "19:27:00"} +{"current_steps": 541, "total_steps": 4118, "loss": 1.6277, "learning_rate": 0.0001, "epoch": 0.1313744536182613, "percentage": 13.14, "elapsed_time": "2:56:27", "remaining_time": "19:26:40"} +{"current_steps": 542, "total_steps": 4118, "loss": 1.828, "learning_rate": 0.0001, "epoch": 0.131617289946576, "percentage": 13.16, "elapsed_time": "2:56:46", "remaining_time": "19:26:21"} +{"current_steps": 543, "total_steps": 4118, "loss": 1.5999, "learning_rate": 0.0001, "epoch": 0.13186012627489072, "percentage": 13.19, "elapsed_time": "2:57:06", "remaining_time": "19:26:01"} +{"current_steps": 544, "total_steps": 4118, "loss": 1.6546, "learning_rate": 0.0001, "epoch": 0.13210296260320545, "percentage": 13.21, "elapsed_time": "2:57:26", "remaining_time": "19:25:42"} +{"current_steps": 545, "total_steps": 4118, "loss": 1.8338, "learning_rate": 0.0001, "epoch": 0.13234579893152015, "percentage": 13.23, "elapsed_time": "2:57:45", "remaining_time": "19:25:23"} +{"current_steps": 546, "total_steps": 4118, "loss": 1.8413, "learning_rate": 0.0001, "epoch": 0.13258863525983486, "percentage": 13.26, "elapsed_time": "2:58:05", "remaining_time": "19:25:03"} +{"current_steps": 547, "total_steps": 4118, "loss": 1.8663, "learning_rate": 0.0001, "epoch": 0.1328314715881496, "percentage": 13.28, "elapsed_time": "2:58:24", "remaining_time": "19:24:43"} +{"current_steps": 548, "total_steps": 4118, "loss": 1.7586, "learning_rate": 0.0001, "epoch": 0.1330743079164643, "percentage": 13.31, "elapsed_time": "2:58:44", "remaining_time": "19:24:24"} +{"current_steps": 549, "total_steps": 4118, "loss": 1.643, "learning_rate": 0.0001, "epoch": 0.13331714424477903, "percentage": 13.33, "elapsed_time": "2:59:03", "remaining_time": "19:24:04"} +{"current_steps": 550, "total_steps": 4118, "loss": 1.8034, "learning_rate": 0.0001, "epoch": 0.13355998057309373, "percentage": 13.36, "elapsed_time": "2:59:23", "remaining_time": "19:23:44"} +{"current_steps": 551, "total_steps": 4118, "loss": 1.7259, "learning_rate": 0.0001, "epoch": 0.13380281690140844, "percentage": 13.38, "elapsed_time": "2:59:42", "remaining_time": "19:23:25"} +{"current_steps": 552, "total_steps": 4118, "loss": 1.9435, "learning_rate": 0.0001, "epoch": 0.13404565322972317, "percentage": 13.4, "elapsed_time": "3:00:02", "remaining_time": "19:23:05"} +{"current_steps": 553, "total_steps": 4118, "loss": 1.6303, "learning_rate": 0.0001, "epoch": 0.13428848955803788, "percentage": 13.43, "elapsed_time": "3:00:22", "remaining_time": "19:22:45"} +{"current_steps": 554, "total_steps": 4118, "loss": 1.9107, "learning_rate": 0.0001, "epoch": 0.1345313258863526, "percentage": 13.45, "elapsed_time": "3:00:41", "remaining_time": "19:22:26"} +{"current_steps": 555, "total_steps": 4118, "loss": 1.8296, "learning_rate": 0.0001, "epoch": 0.13477416221466731, "percentage": 13.48, "elapsed_time": "3:01:01", "remaining_time": "19:22:06"} +{"current_steps": 556, "total_steps": 4118, "loss": 1.6947, "learning_rate": 0.0001, "epoch": 0.13501699854298202, "percentage": 13.5, "elapsed_time": "3:01:20", "remaining_time": "19:21:47"} +{"current_steps": 557, "total_steps": 4118, "loss": 1.9624, "learning_rate": 0.0001, "epoch": 0.13525983487129675, "percentage": 13.53, "elapsed_time": "3:01:40", "remaining_time": "19:21:27"} +{"current_steps": 558, "total_steps": 4118, "loss": 1.8825, "learning_rate": 0.0001, "epoch": 0.13550267119961146, "percentage": 13.55, "elapsed_time": "3:01:59", "remaining_time": "19:21:08"} +{"current_steps": 559, "total_steps": 4118, "loss": 1.9115, "learning_rate": 0.0001, "epoch": 0.1357455075279262, "percentage": 13.57, "elapsed_time": "3:02:19", "remaining_time": "19:20:48"} +{"current_steps": 560, "total_steps": 4118, "loss": 1.8239, "learning_rate": 0.0001, "epoch": 0.1359883438562409, "percentage": 13.6, "elapsed_time": "3:02:39", "remaining_time": "19:20:28"} +{"current_steps": 561, "total_steps": 4118, "loss": 1.7641, "learning_rate": 0.0001, "epoch": 0.1362311801845556, "percentage": 13.62, "elapsed_time": "3:02:58", "remaining_time": "19:20:09"} +{"current_steps": 562, "total_steps": 4118, "loss": 1.6009, "learning_rate": 0.0001, "epoch": 0.13647401651287033, "percentage": 13.65, "elapsed_time": "3:03:18", "remaining_time": "19:19:49"} +{"current_steps": 563, "total_steps": 4118, "loss": 1.7826, "learning_rate": 0.0001, "epoch": 0.13671685284118504, "percentage": 13.67, "elapsed_time": "3:03:37", "remaining_time": "19:19:29"} +{"current_steps": 564, "total_steps": 4118, "loss": 1.5952, "learning_rate": 0.0001, "epoch": 0.13695968916949977, "percentage": 13.7, "elapsed_time": "3:03:57", "remaining_time": "19:19:10"} +{"current_steps": 565, "total_steps": 4118, "loss": 1.6196, "learning_rate": 0.0001, "epoch": 0.13720252549781448, "percentage": 13.72, "elapsed_time": "3:04:16", "remaining_time": "19:18:50"} +{"current_steps": 566, "total_steps": 4118, "loss": 1.7813, "learning_rate": 0.0001, "epoch": 0.13744536182612918, "percentage": 13.74, "elapsed_time": "3:04:36", "remaining_time": "19:18:30"} +{"current_steps": 567, "total_steps": 4118, "loss": 1.8235, "learning_rate": 0.0001, "epoch": 0.1376881981544439, "percentage": 13.77, "elapsed_time": "3:04:55", "remaining_time": "19:18:11"} +{"current_steps": 568, "total_steps": 4118, "loss": 1.8319, "learning_rate": 0.0001, "epoch": 0.13793103448275862, "percentage": 13.79, "elapsed_time": "3:05:15", "remaining_time": "19:17:51"} +{"current_steps": 569, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.13817387081107332, "percentage": 13.82, "elapsed_time": "3:05:35", "remaining_time": "19:17:32"} +{"current_steps": 570, "total_steps": 4118, "loss": 1.8709, "learning_rate": 0.0001, "epoch": 0.13841670713938806, "percentage": 13.84, "elapsed_time": "3:05:54", "remaining_time": "19:17:12"} +{"current_steps": 571, "total_steps": 4118, "loss": 1.8451, "learning_rate": 0.0001, "epoch": 0.13865954346770276, "percentage": 13.87, "elapsed_time": "3:06:14", "remaining_time": "19:16:52"} +{"current_steps": 572, "total_steps": 4118, "loss": 1.7931, "learning_rate": 0.0001, "epoch": 0.1389023797960175, "percentage": 13.89, "elapsed_time": "3:06:33", "remaining_time": "19:16:33"} +{"current_steps": 573, "total_steps": 4118, "loss": 1.8135, "learning_rate": 0.0001, "epoch": 0.1391452161243322, "percentage": 13.91, "elapsed_time": "3:06:53", "remaining_time": "19:16:13"} +{"current_steps": 574, "total_steps": 4118, "loss": 1.8214, "learning_rate": 0.0001, "epoch": 0.1393880524526469, "percentage": 13.94, "elapsed_time": "3:07:12", "remaining_time": "19:15:54"} +{"current_steps": 575, "total_steps": 4118, "loss": 1.7692, "learning_rate": 0.0001, "epoch": 0.13963088878096164, "percentage": 13.96, "elapsed_time": "3:07:32", "remaining_time": "19:15:34"} +{"current_steps": 576, "total_steps": 4118, "loss": 1.8644, "learning_rate": 0.0001, "epoch": 0.13987372510927634, "percentage": 13.99, "elapsed_time": "3:07:52", "remaining_time": "19:15:14"} +{"current_steps": 577, "total_steps": 4118, "loss": 1.7655, "learning_rate": 0.0001, "epoch": 0.14011656143759108, "percentage": 14.01, "elapsed_time": "3:08:11", "remaining_time": "19:14:55"} +{"current_steps": 578, "total_steps": 4118, "loss": 1.7431, "learning_rate": 0.0001, "epoch": 0.14035939776590578, "percentage": 14.04, "elapsed_time": "3:08:31", "remaining_time": "19:14:35"} +{"current_steps": 579, "total_steps": 4118, "loss": 1.8038, "learning_rate": 0.0001, "epoch": 0.14060223409422049, "percentage": 14.06, "elapsed_time": "3:08:50", "remaining_time": "19:14:16"} +{"current_steps": 580, "total_steps": 4118, "loss": 1.7464, "learning_rate": 0.0001, "epoch": 0.14084507042253522, "percentage": 14.08, "elapsed_time": "3:09:10", "remaining_time": "19:13:56"} +{"current_steps": 581, "total_steps": 4118, "loss": 1.661, "learning_rate": 0.0001, "epoch": 0.14108790675084992, "percentage": 14.11, "elapsed_time": "3:09:29", "remaining_time": "19:13:37"} +{"current_steps": 582, "total_steps": 4118, "loss": 1.7671, "learning_rate": 0.0001, "epoch": 0.14133074307916466, "percentage": 14.13, "elapsed_time": "3:09:49", "remaining_time": "19:13:17"} +{"current_steps": 583, "total_steps": 4118, "loss": 1.7979, "learning_rate": 0.0001, "epoch": 0.14157357940747936, "percentage": 14.16, "elapsed_time": "3:10:08", "remaining_time": "19:12:57"} +{"current_steps": 584, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.14181641573579407, "percentage": 14.18, "elapsed_time": "3:10:28", "remaining_time": "19:12:37"} +{"current_steps": 585, "total_steps": 4118, "loss": 1.7929, "learning_rate": 0.0001, "epoch": 0.1420592520641088, "percentage": 14.21, "elapsed_time": "3:10:48", "remaining_time": "19:12:18"} +{"current_steps": 586, "total_steps": 4118, "loss": 1.8005, "learning_rate": 0.0001, "epoch": 0.1423020883924235, "percentage": 14.23, "elapsed_time": "3:11:07", "remaining_time": "19:11:58"} +{"current_steps": 587, "total_steps": 4118, "loss": 1.8274, "learning_rate": 0.0001, "epoch": 0.1425449247207382, "percentage": 14.25, "elapsed_time": "3:11:27", "remaining_time": "19:11:38"} +{"current_steps": 588, "total_steps": 4118, "loss": 1.8188, "learning_rate": 0.0001, "epoch": 0.14278776104905294, "percentage": 14.28, "elapsed_time": "3:11:46", "remaining_time": "19:11:19"} +{"current_steps": 589, "total_steps": 4118, "loss": 1.5645, "learning_rate": 0.0001, "epoch": 0.14303059737736765, "percentage": 14.3, "elapsed_time": "3:12:06", "remaining_time": "19:10:59"} +{"current_steps": 590, "total_steps": 4118, "loss": 1.9063, "learning_rate": 0.0001, "epoch": 0.14327343370568238, "percentage": 14.33, "elapsed_time": "3:12:25", "remaining_time": "19:10:40"} +{"current_steps": 591, "total_steps": 4118, "loss": 1.7288, "learning_rate": 0.0001, "epoch": 0.14351627003399708, "percentage": 14.35, "elapsed_time": "3:12:45", "remaining_time": "19:10:20"} +{"current_steps": 592, "total_steps": 4118, "loss": 1.7959, "learning_rate": 0.0001, "epoch": 0.1437591063623118, "percentage": 14.38, "elapsed_time": "3:13:04", "remaining_time": "19:10:00"} +{"current_steps": 593, "total_steps": 4118, "loss": 1.7845, "learning_rate": 0.0001, "epoch": 0.14400194269062652, "percentage": 14.4, "elapsed_time": "3:13:24", "remaining_time": "19:09:41"} +{"current_steps": 594, "total_steps": 4118, "loss": 1.9152, "learning_rate": 0.0001, "epoch": 0.14424477901894123, "percentage": 14.42, "elapsed_time": "3:13:44", "remaining_time": "19:09:21"} +{"current_steps": 595, "total_steps": 4118, "loss": 1.8534, "learning_rate": 0.0001, "epoch": 0.14448761534725596, "percentage": 14.45, "elapsed_time": "3:14:03", "remaining_time": "19:09:01"} +{"current_steps": 596, "total_steps": 4118, "loss": 1.5326, "learning_rate": 0.0001, "epoch": 0.14473045167557066, "percentage": 14.47, "elapsed_time": "3:14:23", "remaining_time": "19:08:42"} +{"current_steps": 597, "total_steps": 4118, "loss": 1.8016, "learning_rate": 0.0001, "epoch": 0.14497328800388537, "percentage": 14.5, "elapsed_time": "3:14:42", "remaining_time": "19:08:22"} +{"current_steps": 598, "total_steps": 4118, "loss": 1.7529, "learning_rate": 0.0001, "epoch": 0.1452161243322001, "percentage": 14.52, "elapsed_time": "3:15:02", "remaining_time": "19:08:02"} +{"current_steps": 599, "total_steps": 4118, "loss": 1.7353, "learning_rate": 0.0001, "epoch": 0.1454589606605148, "percentage": 14.55, "elapsed_time": "3:15:21", "remaining_time": "19:07:43"} +{"current_steps": 600, "total_steps": 4118, "loss": 1.6686, "learning_rate": 0.0001, "epoch": 0.14570179698882954, "percentage": 14.57, "elapsed_time": "3:15:41", "remaining_time": "19:07:23"} +{"current_steps": 601, "total_steps": 4118, "loss": 1.84, "learning_rate": 0.0001, "epoch": 0.14594463331714425, "percentage": 14.59, "elapsed_time": "3:16:00", "remaining_time": "19:07:03"} +{"current_steps": 602, "total_steps": 4118, "loss": 1.7258, "learning_rate": 0.0001, "epoch": 0.14618746964545895, "percentage": 14.62, "elapsed_time": "3:16:20", "remaining_time": "19:06:44"} +{"current_steps": 603, "total_steps": 4118, "loss": 1.7845, "learning_rate": 0.0001, "epoch": 0.14643030597377368, "percentage": 14.64, "elapsed_time": "3:16:39", "remaining_time": "19:06:24"} +{"current_steps": 604, "total_steps": 4118, "loss": 1.8626, "learning_rate": 0.0001, "epoch": 0.1466731423020884, "percentage": 14.67, "elapsed_time": "3:16:59", "remaining_time": "19:06:04"} +{"current_steps": 605, "total_steps": 4118, "loss": 1.6946, "learning_rate": 0.0001, "epoch": 0.14691597863040312, "percentage": 14.69, "elapsed_time": "3:17:19", "remaining_time": "19:05:45"} +{"current_steps": 606, "total_steps": 4118, "loss": 1.7773, "learning_rate": 0.0001, "epoch": 0.14715881495871783, "percentage": 14.72, "elapsed_time": "3:17:38", "remaining_time": "19:05:25"} +{"current_steps": 607, "total_steps": 4118, "loss": 1.5652, "learning_rate": 0.0001, "epoch": 0.14740165128703253, "percentage": 14.74, "elapsed_time": "3:17:58", "remaining_time": "19:05:05"} +{"current_steps": 608, "total_steps": 4118, "loss": 1.7541, "learning_rate": 0.0001, "epoch": 0.14764448761534726, "percentage": 14.76, "elapsed_time": "3:18:17", "remaining_time": "19:04:46"} +{"current_steps": 609, "total_steps": 4118, "loss": 1.7812, "learning_rate": 0.0001, "epoch": 0.14788732394366197, "percentage": 14.79, "elapsed_time": "3:18:37", "remaining_time": "19:04:26"} +{"current_steps": 610, "total_steps": 4118, "loss": 1.8527, "learning_rate": 0.0001, "epoch": 0.14813016027197667, "percentage": 14.81, "elapsed_time": "3:18:56", "remaining_time": "19:04:07"} +{"current_steps": 611, "total_steps": 4118, "loss": 1.8548, "learning_rate": 0.0001, "epoch": 0.1483729966002914, "percentage": 14.84, "elapsed_time": "3:19:16", "remaining_time": "19:03:47"} +{"current_steps": 612, "total_steps": 4118, "loss": 1.8248, "learning_rate": 0.0001, "epoch": 0.1486158329286061, "percentage": 14.86, "elapsed_time": "3:19:36", "remaining_time": "19:03:27"} +{"current_steps": 613, "total_steps": 4118, "loss": 1.9658, "learning_rate": 0.0001, "epoch": 0.14885866925692084, "percentage": 14.89, "elapsed_time": "3:19:55", "remaining_time": "19:03:08"} +{"current_steps": 614, "total_steps": 4118, "loss": 1.7976, "learning_rate": 0.0001, "epoch": 0.14910150558523555, "percentage": 14.91, "elapsed_time": "3:20:15", "remaining_time": "19:02:48"} +{"current_steps": 615, "total_steps": 4118, "loss": 1.8203, "learning_rate": 0.0001, "epoch": 0.14934434191355025, "percentage": 14.93, "elapsed_time": "3:20:34", "remaining_time": "19:02:29"} +{"current_steps": 616, "total_steps": 4118, "loss": 1.807, "learning_rate": 0.0001, "epoch": 0.149587178241865, "percentage": 14.96, "elapsed_time": "3:20:54", "remaining_time": "19:02:09"} +{"current_steps": 617, "total_steps": 4118, "loss": 1.6622, "learning_rate": 0.0001, "epoch": 0.1498300145701797, "percentage": 14.98, "elapsed_time": "3:21:13", "remaining_time": "19:01:49"} +{"current_steps": 618, "total_steps": 4118, "loss": 1.8262, "learning_rate": 0.0001, "epoch": 0.15007285089849443, "percentage": 15.01, "elapsed_time": "3:21:33", "remaining_time": "19:01:30"} +{"current_steps": 619, "total_steps": 4118, "loss": 1.8568, "learning_rate": 0.0001, "epoch": 0.15031568722680913, "percentage": 15.03, "elapsed_time": "3:21:52", "remaining_time": "19:01:10"} +{"current_steps": 620, "total_steps": 4118, "loss": 1.6277, "learning_rate": 0.0001, "epoch": 0.15055852355512384, "percentage": 15.06, "elapsed_time": "3:22:12", "remaining_time": "19:00:50"} +{"current_steps": 621, "total_steps": 4118, "loss": 1.7724, "learning_rate": 0.0001, "epoch": 0.15080135988343857, "percentage": 15.08, "elapsed_time": "3:22:32", "remaining_time": "19:00:31"} +{"current_steps": 622, "total_steps": 4118, "loss": 1.7932, "learning_rate": 0.0001, "epoch": 0.15104419621175327, "percentage": 15.1, "elapsed_time": "3:22:51", "remaining_time": "19:00:11"} +{"current_steps": 623, "total_steps": 4118, "loss": 1.7423, "learning_rate": 0.0001, "epoch": 0.151287032540068, "percentage": 15.13, "elapsed_time": "3:23:11", "remaining_time": "18:59:52"} +{"current_steps": 624, "total_steps": 4118, "loss": 1.8657, "learning_rate": 0.0001, "epoch": 0.1515298688683827, "percentage": 15.15, "elapsed_time": "3:23:30", "remaining_time": "18:59:32"} +{"current_steps": 625, "total_steps": 4118, "loss": 1.9231, "learning_rate": 0.0001, "epoch": 0.15177270519669742, "percentage": 15.18, "elapsed_time": "3:23:50", "remaining_time": "18:59:12"} +{"current_steps": 626, "total_steps": 4118, "loss": 1.5881, "learning_rate": 0.0001, "epoch": 0.15201554152501215, "percentage": 15.2, "elapsed_time": "3:24:09", "remaining_time": "18:58:53"} +{"current_steps": 627, "total_steps": 4118, "loss": 1.6657, "learning_rate": 0.0001, "epoch": 0.15225837785332685, "percentage": 15.23, "elapsed_time": "3:24:29", "remaining_time": "18:58:33"} +{"current_steps": 628, "total_steps": 4118, "loss": 1.7372, "learning_rate": 0.0001, "epoch": 0.1525012141816416, "percentage": 15.25, "elapsed_time": "3:24:48", "remaining_time": "18:58:13"} +{"current_steps": 629, "total_steps": 4118, "loss": 1.667, "learning_rate": 0.0001, "epoch": 0.1527440505099563, "percentage": 15.27, "elapsed_time": "3:25:08", "remaining_time": "18:57:54"} +{"current_steps": 630, "total_steps": 4118, "loss": 1.7223, "learning_rate": 0.0001, "epoch": 0.152986886838271, "percentage": 15.3, "elapsed_time": "3:25:28", "remaining_time": "18:57:34"} +{"current_steps": 631, "total_steps": 4118, "loss": 1.814, "learning_rate": 0.0001, "epoch": 0.15322972316658573, "percentage": 15.32, "elapsed_time": "3:25:47", "remaining_time": "18:57:14"} +{"current_steps": 632, "total_steps": 4118, "loss": 1.7924, "learning_rate": 0.0001, "epoch": 0.15347255949490043, "percentage": 15.35, "elapsed_time": "3:26:07", "remaining_time": "18:56:55"} +{"current_steps": 633, "total_steps": 4118, "loss": 1.7274, "learning_rate": 0.0001, "epoch": 0.15371539582321514, "percentage": 15.37, "elapsed_time": "3:26:26", "remaining_time": "18:56:35"} +{"current_steps": 634, "total_steps": 4118, "loss": 1.5844, "learning_rate": 0.0001, "epoch": 0.15395823215152987, "percentage": 15.4, "elapsed_time": "3:26:46", "remaining_time": "18:56:16"} +{"current_steps": 635, "total_steps": 4118, "loss": 1.8009, "learning_rate": 0.0001, "epoch": 0.15420106847984458, "percentage": 15.42, "elapsed_time": "3:27:05", "remaining_time": "18:55:56"} +{"current_steps": 636, "total_steps": 4118, "loss": 1.9098, "learning_rate": 0.0001, "epoch": 0.1544439048081593, "percentage": 15.44, "elapsed_time": "3:27:25", "remaining_time": "18:55:36"} +{"current_steps": 637, "total_steps": 4118, "loss": 1.7576, "learning_rate": 0.0001, "epoch": 0.15468674113647402, "percentage": 15.47, "elapsed_time": "3:27:45", "remaining_time": "18:55:17"} +{"current_steps": 638, "total_steps": 4118, "loss": 1.7545, "learning_rate": 0.0001, "epoch": 0.15492957746478872, "percentage": 15.49, "elapsed_time": "3:28:04", "remaining_time": "18:54:57"} +{"current_steps": 639, "total_steps": 4118, "loss": 1.7251, "learning_rate": 0.0001, "epoch": 0.15517241379310345, "percentage": 15.52, "elapsed_time": "3:28:24", "remaining_time": "18:54:38"} +{"current_steps": 640, "total_steps": 4118, "loss": 1.6234, "learning_rate": 0.0001, "epoch": 0.15541525012141816, "percentage": 15.54, "elapsed_time": "3:28:43", "remaining_time": "18:54:18"} +{"current_steps": 641, "total_steps": 4118, "loss": 1.7612, "learning_rate": 0.0001, "epoch": 0.1556580864497329, "percentage": 15.57, "elapsed_time": "3:29:03", "remaining_time": "18:53:58"} +{"current_steps": 642, "total_steps": 4118, "loss": 1.7741, "learning_rate": 0.0001, "epoch": 0.1559009227780476, "percentage": 15.59, "elapsed_time": "3:29:22", "remaining_time": "18:53:39"} +{"current_steps": 643, "total_steps": 4118, "loss": 1.7839, "learning_rate": 0.0001, "epoch": 0.1561437591063623, "percentage": 15.61, "elapsed_time": "3:29:42", "remaining_time": "18:53:19"} +{"current_steps": 644, "total_steps": 4118, "loss": 1.7371, "learning_rate": 0.0001, "epoch": 0.15638659543467703, "percentage": 15.64, "elapsed_time": "3:30:01", "remaining_time": "18:53:00"} +{"current_steps": 645, "total_steps": 4118, "loss": 1.9128, "learning_rate": 0.0001, "epoch": 0.15662943176299174, "percentage": 15.66, "elapsed_time": "3:30:21", "remaining_time": "18:52:40"} +{"current_steps": 646, "total_steps": 4118, "loss": 1.983, "learning_rate": 0.0001, "epoch": 0.15687226809130647, "percentage": 15.69, "elapsed_time": "3:30:41", "remaining_time": "18:52:21"} +{"current_steps": 647, "total_steps": 4118, "loss": 1.7721, "learning_rate": 0.0001, "epoch": 0.15711510441962118, "percentage": 15.71, "elapsed_time": "3:31:00", "remaining_time": "18:52:01"} +{"current_steps": 648, "total_steps": 4118, "loss": 1.8579, "learning_rate": 0.0001, "epoch": 0.15735794074793588, "percentage": 15.74, "elapsed_time": "3:31:20", "remaining_time": "18:51:42"} +{"current_steps": 649, "total_steps": 4118, "loss": 1.9163, "learning_rate": 0.0001, "epoch": 0.15760077707625061, "percentage": 15.76, "elapsed_time": "3:31:39", "remaining_time": "18:51:22"} +{"current_steps": 650, "total_steps": 4118, "loss": 1.7292, "learning_rate": 0.0001, "epoch": 0.15784361340456532, "percentage": 15.78, "elapsed_time": "3:31:59", "remaining_time": "18:51:02"} +{"current_steps": 651, "total_steps": 4118, "loss": 1.7381, "learning_rate": 0.0001, "epoch": 0.15808644973288005, "percentage": 15.81, "elapsed_time": "3:32:18", "remaining_time": "18:50:43"} +{"current_steps": 652, "total_steps": 4118, "loss": 1.9559, "learning_rate": 0.0001, "epoch": 0.15832928606119476, "percentage": 15.83, "elapsed_time": "3:32:38", "remaining_time": "18:50:23"} +{"current_steps": 653, "total_steps": 4118, "loss": 1.769, "learning_rate": 0.0001, "epoch": 0.15857212238950946, "percentage": 15.86, "elapsed_time": "3:32:58", "remaining_time": "18:50:03"} +{"current_steps": 654, "total_steps": 4118, "loss": 1.8505, "learning_rate": 0.0001, "epoch": 0.1588149587178242, "percentage": 15.88, "elapsed_time": "3:33:17", "remaining_time": "18:49:44"} +{"current_steps": 655, "total_steps": 4118, "loss": 1.7132, "learning_rate": 0.0001, "epoch": 0.1590577950461389, "percentage": 15.91, "elapsed_time": "3:33:37", "remaining_time": "18:49:24"} +{"current_steps": 656, "total_steps": 4118, "loss": 1.8778, "learning_rate": 0.0001, "epoch": 0.1593006313744536, "percentage": 15.93, "elapsed_time": "3:33:56", "remaining_time": "18:49:05"} +{"current_steps": 657, "total_steps": 4118, "loss": 1.7544, "learning_rate": 0.0001, "epoch": 0.15954346770276834, "percentage": 15.95, "elapsed_time": "3:34:16", "remaining_time": "18:48:45"} +{"current_steps": 658, "total_steps": 4118, "loss": 1.8701, "learning_rate": 0.0001, "epoch": 0.15978630403108304, "percentage": 15.98, "elapsed_time": "3:34:35", "remaining_time": "18:48:25"} +{"current_steps": 659, "total_steps": 4118, "loss": 1.8293, "learning_rate": 0.0001, "epoch": 0.16002914035939778, "percentage": 16.0, "elapsed_time": "3:34:55", "remaining_time": "18:48:06"} +{"current_steps": 660, "total_steps": 4118, "loss": 1.7935, "learning_rate": 0.0001, "epoch": 0.16027197668771248, "percentage": 16.03, "elapsed_time": "3:35:14", "remaining_time": "18:47:46"} +{"current_steps": 661, "total_steps": 4118, "loss": 1.7554, "learning_rate": 0.0001, "epoch": 0.16051481301602719, "percentage": 16.05, "elapsed_time": "3:35:34", "remaining_time": "18:47:26"} +{"current_steps": 662, "total_steps": 4118, "loss": 1.8386, "learning_rate": 0.0001, "epoch": 0.16075764934434192, "percentage": 16.08, "elapsed_time": "3:35:54", "remaining_time": "18:47:07"} +{"current_steps": 663, "total_steps": 4118, "loss": 1.7206, "learning_rate": 0.0001, "epoch": 0.16100048567265662, "percentage": 16.1, "elapsed_time": "3:36:13", "remaining_time": "18:46:47"} +{"current_steps": 664, "total_steps": 4118, "loss": 1.8007, "learning_rate": 0.0001, "epoch": 0.16124332200097136, "percentage": 16.12, "elapsed_time": "3:36:33", "remaining_time": "18:46:28"} +{"current_steps": 665, "total_steps": 4118, "loss": 1.7234, "learning_rate": 0.0001, "epoch": 0.16148615832928606, "percentage": 16.15, "elapsed_time": "3:36:52", "remaining_time": "18:46:08"} +{"current_steps": 666, "total_steps": 4118, "loss": 1.7677, "learning_rate": 0.0001, "epoch": 0.16172899465760077, "percentage": 16.17, "elapsed_time": "3:37:12", "remaining_time": "18:45:49"} +{"current_steps": 667, "total_steps": 4118, "loss": 1.5539, "learning_rate": 0.0001, "epoch": 0.1619718309859155, "percentage": 16.2, "elapsed_time": "3:37:31", "remaining_time": "18:45:29"} +{"current_steps": 668, "total_steps": 4118, "loss": 1.7562, "learning_rate": 0.0001, "epoch": 0.1622146673142302, "percentage": 16.22, "elapsed_time": "3:37:51", "remaining_time": "18:45:09"} +{"current_steps": 669, "total_steps": 4118, "loss": 1.8744, "learning_rate": 0.0001, "epoch": 0.16245750364254494, "percentage": 16.25, "elapsed_time": "3:38:11", "remaining_time": "18:44:50"} +{"current_steps": 670, "total_steps": 4118, "loss": 1.7625, "learning_rate": 0.0001, "epoch": 0.16270033997085964, "percentage": 16.27, "elapsed_time": "3:38:30", "remaining_time": "18:44:30"} +{"current_steps": 671, "total_steps": 4118, "loss": 1.6964, "learning_rate": 0.0001, "epoch": 0.16294317629917435, "percentage": 16.29, "elapsed_time": "3:38:50", "remaining_time": "18:44:11"} +{"current_steps": 672, "total_steps": 4118, "loss": 1.7055, "learning_rate": 0.0001, "epoch": 0.16318601262748908, "percentage": 16.32, "elapsed_time": "3:39:09", "remaining_time": "18:43:51"} +{"current_steps": 673, "total_steps": 4118, "loss": 1.682, "learning_rate": 0.0001, "epoch": 0.16342884895580378, "percentage": 16.34, "elapsed_time": "3:39:29", "remaining_time": "18:43:31"} +{"current_steps": 674, "total_steps": 4118, "loss": 1.883, "learning_rate": 0.0001, "epoch": 0.16367168528411852, "percentage": 16.37, "elapsed_time": "3:39:48", "remaining_time": "18:43:12"} +{"current_steps": 675, "total_steps": 4118, "loss": 2.0329, "learning_rate": 0.0001, "epoch": 0.16391452161243322, "percentage": 16.39, "elapsed_time": "3:40:08", "remaining_time": "18:42:52"} +{"current_steps": 676, "total_steps": 4118, "loss": 1.883, "learning_rate": 0.0001, "epoch": 0.16415735794074793, "percentage": 16.42, "elapsed_time": "3:40:28", "remaining_time": "18:42:33"} +{"current_steps": 677, "total_steps": 4118, "loss": 1.7345, "learning_rate": 0.0001, "epoch": 0.16440019426906266, "percentage": 16.44, "elapsed_time": "3:40:47", "remaining_time": "18:42:13"} +{"current_steps": 678, "total_steps": 4118, "loss": 1.7555, "learning_rate": 0.0001, "epoch": 0.16464303059737737, "percentage": 16.46, "elapsed_time": "3:41:07", "remaining_time": "18:41:53"} +{"current_steps": 679, "total_steps": 4118, "loss": 1.8222, "learning_rate": 0.0001, "epoch": 0.16488586692569207, "percentage": 16.49, "elapsed_time": "3:41:26", "remaining_time": "18:41:34"} +{"current_steps": 680, "total_steps": 4118, "loss": 1.7996, "learning_rate": 0.0001, "epoch": 0.1651287032540068, "percentage": 16.51, "elapsed_time": "3:41:46", "remaining_time": "18:41:14"} +{"current_steps": 681, "total_steps": 4118, "loss": 1.7302, "learning_rate": 0.0001, "epoch": 0.1653715395823215, "percentage": 16.54, "elapsed_time": "3:42:05", "remaining_time": "18:40:55"} +{"current_steps": 682, "total_steps": 4118, "loss": 1.7713, "learning_rate": 0.0001, "epoch": 0.16561437591063624, "percentage": 16.56, "elapsed_time": "3:42:25", "remaining_time": "18:40:35"} +{"current_steps": 683, "total_steps": 4118, "loss": 1.6538, "learning_rate": 0.0001, "epoch": 0.16585721223895095, "percentage": 16.59, "elapsed_time": "3:42:44", "remaining_time": "18:40:16"} +{"current_steps": 684, "total_steps": 4118, "loss": 1.7016, "learning_rate": 0.0001, "epoch": 0.16610004856726565, "percentage": 16.61, "elapsed_time": "3:43:04", "remaining_time": "18:39:56"} +{"current_steps": 685, "total_steps": 4118, "loss": 1.878, "learning_rate": 0.0001, "epoch": 0.16634288489558038, "percentage": 16.63, "elapsed_time": "3:43:24", "remaining_time": "18:39:36"} +{"current_steps": 686, "total_steps": 4118, "loss": 1.8109, "learning_rate": 0.0001, "epoch": 0.1665857212238951, "percentage": 16.66, "elapsed_time": "3:43:43", "remaining_time": "18:39:17"} +{"current_steps": 687, "total_steps": 4118, "loss": 1.6424, "learning_rate": 0.0001, "epoch": 0.16682855755220982, "percentage": 16.68, "elapsed_time": "3:44:03", "remaining_time": "18:38:57"} +{"current_steps": 688, "total_steps": 4118, "loss": 1.8527, "learning_rate": 0.0001, "epoch": 0.16707139388052453, "percentage": 16.71, "elapsed_time": "3:44:22", "remaining_time": "18:38:38"} +{"current_steps": 689, "total_steps": 4118, "loss": 1.8635, "learning_rate": 0.0001, "epoch": 0.16731423020883923, "percentage": 16.73, "elapsed_time": "3:44:42", "remaining_time": "18:38:18"} +{"current_steps": 690, "total_steps": 4118, "loss": 1.8115, "learning_rate": 0.0001, "epoch": 0.16755706653715396, "percentage": 16.76, "elapsed_time": "3:45:01", "remaining_time": "18:37:59"} +{"current_steps": 691, "total_steps": 4118, "loss": 1.7171, "learning_rate": 0.0001, "epoch": 0.16779990286546867, "percentage": 16.78, "elapsed_time": "3:45:21", "remaining_time": "18:37:39"} +{"current_steps": 692, "total_steps": 4118, "loss": 1.7339, "learning_rate": 0.0001, "epoch": 0.1680427391937834, "percentage": 16.8, "elapsed_time": "3:45:41", "remaining_time": "18:37:19"} +{"current_steps": 693, "total_steps": 4118, "loss": 1.4545, "learning_rate": 0.0001, "epoch": 0.1682855755220981, "percentage": 16.83, "elapsed_time": "3:46:00", "remaining_time": "18:37:00"} +{"current_steps": 694, "total_steps": 4118, "loss": 1.922, "learning_rate": 0.0001, "epoch": 0.1685284118504128, "percentage": 16.85, "elapsed_time": "3:46:20", "remaining_time": "18:36:40"} +{"current_steps": 695, "total_steps": 4118, "loss": 1.725, "learning_rate": 0.0001, "epoch": 0.16877124817872755, "percentage": 16.88, "elapsed_time": "3:46:39", "remaining_time": "18:36:20"} +{"current_steps": 696, "total_steps": 4118, "loss": 1.8416, "learning_rate": 0.0001, "epoch": 0.16901408450704225, "percentage": 16.9, "elapsed_time": "3:46:59", "remaining_time": "18:36:01"} +{"current_steps": 697, "total_steps": 4118, "loss": 1.6349, "learning_rate": 0.0001, "epoch": 0.16925692083535698, "percentage": 16.93, "elapsed_time": "3:47:18", "remaining_time": "18:35:41"} +{"current_steps": 698, "total_steps": 4118, "loss": 1.7578, "learning_rate": 0.0001, "epoch": 0.1694997571636717, "percentage": 16.95, "elapsed_time": "3:47:38", "remaining_time": "18:35:22"} +{"current_steps": 699, "total_steps": 4118, "loss": 1.8133, "learning_rate": 0.0001, "epoch": 0.1697425934919864, "percentage": 16.97, "elapsed_time": "3:47:57", "remaining_time": "18:35:02"} +{"current_steps": 700, "total_steps": 4118, "loss": 1.6891, "learning_rate": 0.0001, "epoch": 0.16998542982030113, "percentage": 17.0, "elapsed_time": "3:48:17", "remaining_time": "18:34:42"} +{"current_steps": 701, "total_steps": 4118, "loss": 1.7461, "learning_rate": 0.0001, "epoch": 0.17022826614861583, "percentage": 17.02, "elapsed_time": "3:48:37", "remaining_time": "18:34:23"} +{"current_steps": 702, "total_steps": 4118, "loss": 1.7799, "learning_rate": 0.0001, "epoch": 0.17047110247693054, "percentage": 17.05, "elapsed_time": "3:48:56", "remaining_time": "18:34:03"} +{"current_steps": 703, "total_steps": 4118, "loss": 1.6693, "learning_rate": 0.0001, "epoch": 0.17071393880524527, "percentage": 17.07, "elapsed_time": "3:49:16", "remaining_time": "18:33:44"} +{"current_steps": 704, "total_steps": 4118, "loss": 1.8091, "learning_rate": 0.0001, "epoch": 0.17095677513355997, "percentage": 17.1, "elapsed_time": "3:49:35", "remaining_time": "18:33:24"} +{"current_steps": 705, "total_steps": 4118, "loss": 1.6315, "learning_rate": 0.0001, "epoch": 0.1711996114618747, "percentage": 17.12, "elapsed_time": "3:49:55", "remaining_time": "18:33:04"} +{"current_steps": 706, "total_steps": 4118, "loss": 1.6837, "learning_rate": 0.0001, "epoch": 0.1714424477901894, "percentage": 17.14, "elapsed_time": "3:50:14", "remaining_time": "18:32:45"} +{"current_steps": 707, "total_steps": 4118, "loss": 1.9185, "learning_rate": 0.0001, "epoch": 0.17168528411850412, "percentage": 17.17, "elapsed_time": "3:50:34", "remaining_time": "18:32:25"} +{"current_steps": 708, "total_steps": 4118, "loss": 1.7465, "learning_rate": 0.0001, "epoch": 0.17192812044681885, "percentage": 17.19, "elapsed_time": "3:50:53", "remaining_time": "18:32:05"} +{"current_steps": 709, "total_steps": 4118, "loss": 1.8794, "learning_rate": 0.0001, "epoch": 0.17217095677513355, "percentage": 17.22, "elapsed_time": "3:51:13", "remaining_time": "18:31:46"} +{"current_steps": 710, "total_steps": 4118, "loss": 1.8323, "learning_rate": 0.0001, "epoch": 0.1724137931034483, "percentage": 17.24, "elapsed_time": "3:51:33", "remaining_time": "18:31:26"} +{"current_steps": 711, "total_steps": 4118, "loss": 1.7666, "learning_rate": 0.0001, "epoch": 0.172656629431763, "percentage": 17.27, "elapsed_time": "3:51:52", "remaining_time": "18:31:06"} +{"current_steps": 712, "total_steps": 4118, "loss": 1.7603, "learning_rate": 0.0001, "epoch": 0.1728994657600777, "percentage": 17.29, "elapsed_time": "3:52:12", "remaining_time": "18:30:47"} +{"current_steps": 713, "total_steps": 4118, "loss": 1.6341, "learning_rate": 0.0001, "epoch": 0.17314230208839243, "percentage": 17.31, "elapsed_time": "3:52:31", "remaining_time": "18:30:27"} +{"current_steps": 714, "total_steps": 4118, "loss": 1.7325, "learning_rate": 0.0001, "epoch": 0.17338513841670714, "percentage": 17.34, "elapsed_time": "3:52:51", "remaining_time": "18:30:07"} +{"current_steps": 715, "total_steps": 4118, "loss": 1.8528, "learning_rate": 0.0001, "epoch": 0.17362797474502187, "percentage": 17.36, "elapsed_time": "3:53:10", "remaining_time": "18:29:48"} +{"current_steps": 716, "total_steps": 4118, "loss": 1.7265, "learning_rate": 0.0001, "epoch": 0.17387081107333657, "percentage": 17.39, "elapsed_time": "3:53:30", "remaining_time": "18:29:28"} +{"current_steps": 717, "total_steps": 4118, "loss": 1.8017, "learning_rate": 0.0001, "epoch": 0.17411364740165128, "percentage": 17.41, "elapsed_time": "3:53:49", "remaining_time": "18:29:08"} +{"current_steps": 718, "total_steps": 4118, "loss": 1.8295, "learning_rate": 0.0001, "epoch": 0.174356483729966, "percentage": 17.44, "elapsed_time": "3:54:09", "remaining_time": "18:28:49"} +{"current_steps": 719, "total_steps": 4118, "loss": 1.8157, "learning_rate": 0.0001, "epoch": 0.17459932005828072, "percentage": 17.46, "elapsed_time": "3:54:28", "remaining_time": "18:28:29"} +{"current_steps": 720, "total_steps": 4118, "loss": 1.3937, "learning_rate": 0.0001, "epoch": 0.17484215638659542, "percentage": 17.48, "elapsed_time": "3:54:48", "remaining_time": "18:28:10"} +{"current_steps": 721, "total_steps": 4118, "loss": 1.6899, "learning_rate": 0.0001, "epoch": 0.17508499271491015, "percentage": 17.51, "elapsed_time": "3:55:08", "remaining_time": "18:27:50"} +{"current_steps": 722, "total_steps": 4118, "loss": 1.997, "learning_rate": 0.0001, "epoch": 0.17532782904322486, "percentage": 17.53, "elapsed_time": "3:55:27", "remaining_time": "18:27:30"} +{"current_steps": 723, "total_steps": 4118, "loss": 1.6886, "learning_rate": 0.0001, "epoch": 0.1755706653715396, "percentage": 17.56, "elapsed_time": "3:55:47", "remaining_time": "18:27:11"} +{"current_steps": 724, "total_steps": 4118, "loss": 1.8914, "learning_rate": 0.0001, "epoch": 0.1758135016998543, "percentage": 17.58, "elapsed_time": "3:56:06", "remaining_time": "18:26:51"} +{"current_steps": 725, "total_steps": 4118, "loss": 1.946, "learning_rate": 0.0001, "epoch": 0.176056338028169, "percentage": 17.61, "elapsed_time": "3:56:26", "remaining_time": "18:26:31"} +{"current_steps": 726, "total_steps": 4118, "loss": 1.7441, "learning_rate": 0.0001, "epoch": 0.17629917435648373, "percentage": 17.63, "elapsed_time": "3:56:45", "remaining_time": "18:26:12"} +{"current_steps": 727, "total_steps": 4118, "loss": 1.6801, "learning_rate": 0.0001, "epoch": 0.17654201068479844, "percentage": 17.65, "elapsed_time": "3:57:05", "remaining_time": "18:25:52"} +{"current_steps": 728, "total_steps": 4118, "loss": 1.8096, "learning_rate": 0.0001, "epoch": 0.17678484701311317, "percentage": 17.68, "elapsed_time": "3:57:24", "remaining_time": "18:25:33"} +{"current_steps": 729, "total_steps": 4118, "loss": 1.9008, "learning_rate": 0.0001, "epoch": 0.17702768334142788, "percentage": 17.7, "elapsed_time": "3:57:44", "remaining_time": "18:25:13"} +{"current_steps": 730, "total_steps": 4118, "loss": 1.6961, "learning_rate": 0.0001, "epoch": 0.17727051966974258, "percentage": 17.73, "elapsed_time": "3:58:04", "remaining_time": "18:24:53"} +{"current_steps": 731, "total_steps": 4118, "loss": 1.7769, "learning_rate": 0.0001, "epoch": 0.17751335599805732, "percentage": 17.75, "elapsed_time": "3:58:23", "remaining_time": "18:24:34"} +{"current_steps": 732, "total_steps": 4118, "loss": 1.6921, "learning_rate": 0.0001, "epoch": 0.17775619232637202, "percentage": 17.78, "elapsed_time": "3:58:43", "remaining_time": "18:24:14"} +{"current_steps": 733, "total_steps": 4118, "loss": 1.6341, "learning_rate": 0.0001, "epoch": 0.17799902865468675, "percentage": 17.8, "elapsed_time": "3:59:02", "remaining_time": "18:23:55"} +{"current_steps": 734, "total_steps": 4118, "loss": 1.6847, "learning_rate": 0.0001, "epoch": 0.17824186498300146, "percentage": 17.82, "elapsed_time": "3:59:22", "remaining_time": "18:23:35"} +{"current_steps": 735, "total_steps": 4118, "loss": 1.7098, "learning_rate": 0.0001, "epoch": 0.17848470131131616, "percentage": 17.85, "elapsed_time": "3:59:41", "remaining_time": "18:23:15"} +{"current_steps": 736, "total_steps": 4118, "loss": 1.747, "learning_rate": 0.0001, "epoch": 0.1787275376396309, "percentage": 17.87, "elapsed_time": "4:00:01", "remaining_time": "18:22:56"} +{"current_steps": 737, "total_steps": 4118, "loss": 1.937, "learning_rate": 0.0001, "epoch": 0.1789703739679456, "percentage": 17.9, "elapsed_time": "4:00:21", "remaining_time": "18:22:36"} +{"current_steps": 738, "total_steps": 4118, "loss": 1.7386, "learning_rate": 0.0001, "epoch": 0.17921321029626033, "percentage": 17.92, "elapsed_time": "4:00:40", "remaining_time": "18:22:17"} +{"current_steps": 739, "total_steps": 4118, "loss": 1.7379, "learning_rate": 0.0001, "epoch": 0.17945604662457504, "percentage": 17.95, "elapsed_time": "4:01:00", "remaining_time": "18:21:57"} +{"current_steps": 740, "total_steps": 4118, "loss": 1.5692, "learning_rate": 0.0001, "epoch": 0.17969888295288974, "percentage": 17.97, "elapsed_time": "4:01:19", "remaining_time": "18:21:38"} +{"current_steps": 741, "total_steps": 4118, "loss": 1.8535, "learning_rate": 0.0001, "epoch": 0.17994171928120448, "percentage": 17.99, "elapsed_time": "4:01:39", "remaining_time": "18:21:18"} +{"current_steps": 742, "total_steps": 4118, "loss": 1.9047, "learning_rate": 0.0001, "epoch": 0.18018455560951918, "percentage": 18.02, "elapsed_time": "4:01:58", "remaining_time": "18:20:58"} +{"current_steps": 743, "total_steps": 4118, "loss": 1.8267, "learning_rate": 0.0001, "epoch": 0.1804273919378339, "percentage": 18.04, "elapsed_time": "4:02:18", "remaining_time": "18:20:39"} +{"current_steps": 744, "total_steps": 4118, "loss": 1.8546, "learning_rate": 0.0001, "epoch": 0.18067022826614862, "percentage": 18.07, "elapsed_time": "4:02:38", "remaining_time": "18:20:19"} +{"current_steps": 745, "total_steps": 4118, "loss": 1.9559, "learning_rate": 0.0001, "epoch": 0.18091306459446332, "percentage": 18.09, "elapsed_time": "4:02:57", "remaining_time": "18:20:00"} +{"current_steps": 746, "total_steps": 4118, "loss": 1.8696, "learning_rate": 0.0001, "epoch": 0.18115590092277806, "percentage": 18.12, "elapsed_time": "4:03:17", "remaining_time": "18:19:40"} +{"current_steps": 747, "total_steps": 4118, "loss": 1.6375, "learning_rate": 0.0001, "epoch": 0.18139873725109276, "percentage": 18.14, "elapsed_time": "4:03:36", "remaining_time": "18:19:21"} +{"current_steps": 748, "total_steps": 4118, "loss": 1.7519, "learning_rate": 0.0001, "epoch": 0.18164157357940747, "percentage": 18.16, "elapsed_time": "4:03:56", "remaining_time": "18:19:01"} +{"current_steps": 749, "total_steps": 4118, "loss": 1.7697, "learning_rate": 0.0001, "epoch": 0.1818844099077222, "percentage": 18.19, "elapsed_time": "4:04:15", "remaining_time": "18:18:41"} +{"current_steps": 750, "total_steps": 4118, "loss": 1.8393, "learning_rate": 0.0001, "epoch": 0.1821272462360369, "percentage": 18.21, "elapsed_time": "4:04:35", "remaining_time": "18:18:22"} +{"current_steps": 751, "total_steps": 4118, "loss": 1.6867, "learning_rate": 0.0001, "epoch": 0.18237008256435164, "percentage": 18.24, "elapsed_time": "4:04:55", "remaining_time": "18:18:02"} +{"current_steps": 752, "total_steps": 4118, "loss": 1.7904, "learning_rate": 0.0001, "epoch": 0.18261291889266634, "percentage": 18.26, "elapsed_time": "4:05:14", "remaining_time": "18:17:43"} +{"current_steps": 753, "total_steps": 4118, "loss": 1.8719, "learning_rate": 0.0001, "epoch": 0.18285575522098105, "percentage": 18.29, "elapsed_time": "4:05:34", "remaining_time": "18:17:23"} +{"current_steps": 754, "total_steps": 4118, "loss": 1.6061, "learning_rate": 0.0001, "epoch": 0.18309859154929578, "percentage": 18.31, "elapsed_time": "4:05:53", "remaining_time": "18:17:04"} +{"current_steps": 755, "total_steps": 4118, "loss": 1.8629, "learning_rate": 0.0001, "epoch": 0.18334142787761049, "percentage": 18.33, "elapsed_time": "4:06:13", "remaining_time": "18:16:44"} +{"current_steps": 756, "total_steps": 4118, "loss": 1.7367, "learning_rate": 0.0001, "epoch": 0.18358426420592522, "percentage": 18.36, "elapsed_time": "4:06:32", "remaining_time": "18:16:25"} +{"current_steps": 757, "total_steps": 4118, "loss": 1.8345, "learning_rate": 0.0001, "epoch": 0.18382710053423992, "percentage": 18.38, "elapsed_time": "4:06:52", "remaining_time": "18:16:05"} +{"current_steps": 758, "total_steps": 4118, "loss": 1.7433, "learning_rate": 0.0001, "epoch": 0.18406993686255463, "percentage": 18.41, "elapsed_time": "4:07:12", "remaining_time": "18:15:46"} +{"current_steps": 759, "total_steps": 4118, "loss": 1.767, "learning_rate": 0.0001, "epoch": 0.18431277319086936, "percentage": 18.43, "elapsed_time": "4:07:31", "remaining_time": "18:15:26"} +{"current_steps": 760, "total_steps": 4118, "loss": 1.6869, "learning_rate": 0.0001, "epoch": 0.18455560951918407, "percentage": 18.46, "elapsed_time": "4:07:51", "remaining_time": "18:15:07"} +{"current_steps": 761, "total_steps": 4118, "loss": 1.5689, "learning_rate": 0.0001, "epoch": 0.1847984458474988, "percentage": 18.48, "elapsed_time": "4:08:10", "remaining_time": "18:14:47"} +{"current_steps": 762, "total_steps": 4118, "loss": 1.8531, "learning_rate": 0.0001, "epoch": 0.1850412821758135, "percentage": 18.5, "elapsed_time": "4:08:30", "remaining_time": "18:14:27"} +{"current_steps": 763, "total_steps": 4118, "loss": 1.5906, "learning_rate": 0.0001, "epoch": 0.1852841185041282, "percentage": 18.53, "elapsed_time": "4:08:49", "remaining_time": "18:14:08"} +{"current_steps": 764, "total_steps": 4118, "loss": 1.6561, "learning_rate": 0.0001, "epoch": 0.18552695483244294, "percentage": 18.55, "elapsed_time": "4:09:09", "remaining_time": "18:13:48"} +{"current_steps": 765, "total_steps": 4118, "loss": 1.7301, "learning_rate": 0.0001, "epoch": 0.18576979116075765, "percentage": 18.58, "elapsed_time": "4:09:29", "remaining_time": "18:13:29"} +{"current_steps": 766, "total_steps": 4118, "loss": 1.6066, "learning_rate": 0.0001, "epoch": 0.18601262748907235, "percentage": 18.6, "elapsed_time": "4:09:48", "remaining_time": "18:13:09"} +{"current_steps": 767, "total_steps": 4118, "loss": 1.9282, "learning_rate": 0.0001, "epoch": 0.18625546381738708, "percentage": 18.63, "elapsed_time": "4:10:08", "remaining_time": "18:12:50"} +{"current_steps": 768, "total_steps": 4118, "loss": 1.6496, "learning_rate": 0.0001, "epoch": 0.1864983001457018, "percentage": 18.65, "elapsed_time": "4:10:27", "remaining_time": "18:12:30"} +{"current_steps": 769, "total_steps": 4118, "loss": 1.8311, "learning_rate": 0.0001, "epoch": 0.18674113647401652, "percentage": 18.67, "elapsed_time": "4:10:47", "remaining_time": "18:12:10"} +{"current_steps": 770, "total_steps": 4118, "loss": 1.8035, "learning_rate": 0.0001, "epoch": 0.18698397280233123, "percentage": 18.7, "elapsed_time": "4:11:06", "remaining_time": "18:11:51"} +{"current_steps": 771, "total_steps": 4118, "loss": 1.8926, "learning_rate": 0.0001, "epoch": 0.18722680913064593, "percentage": 18.72, "elapsed_time": "4:11:26", "remaining_time": "18:11:31"} +{"current_steps": 772, "total_steps": 4118, "loss": 1.713, "learning_rate": 0.0001, "epoch": 0.18746964545896067, "percentage": 18.75, "elapsed_time": "4:11:45", "remaining_time": "18:11:12"} +{"current_steps": 773, "total_steps": 4118, "loss": 1.7891, "learning_rate": 0.0001, "epoch": 0.18771248178727537, "percentage": 18.77, "elapsed_time": "4:12:05", "remaining_time": "18:10:52"} +{"current_steps": 774, "total_steps": 4118, "loss": 1.6539, "learning_rate": 0.0001, "epoch": 0.1879553181155901, "percentage": 18.8, "elapsed_time": "4:12:25", "remaining_time": "18:10:33"} +{"current_steps": 775, "total_steps": 4118, "loss": 1.6747, "learning_rate": 0.0001, "epoch": 0.1881981544439048, "percentage": 18.82, "elapsed_time": "4:12:44", "remaining_time": "18:10:13"} +{"current_steps": 776, "total_steps": 4118, "loss": 1.6727, "learning_rate": 0.0001, "epoch": 0.1884409907722195, "percentage": 18.84, "elapsed_time": "4:13:04", "remaining_time": "18:09:54"} +{"current_steps": 777, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.18868382710053425, "percentage": 18.87, "elapsed_time": "4:13:23", "remaining_time": "18:09:34"} +{"current_steps": 778, "total_steps": 4118, "loss": 1.6216, "learning_rate": 0.0001, "epoch": 0.18892666342884895, "percentage": 18.89, "elapsed_time": "4:13:43", "remaining_time": "18:09:14"} +{"current_steps": 779, "total_steps": 4118, "loss": 1.8959, "learning_rate": 0.0001, "epoch": 0.18916949975716368, "percentage": 18.92, "elapsed_time": "4:14:02", "remaining_time": "18:08:55"} +{"current_steps": 780, "total_steps": 4118, "loss": 1.718, "learning_rate": 0.0001, "epoch": 0.1894123360854784, "percentage": 18.94, "elapsed_time": "4:14:22", "remaining_time": "18:08:35"} +{"current_steps": 781, "total_steps": 4118, "loss": 1.8335, "learning_rate": 0.0001, "epoch": 0.1896551724137931, "percentage": 18.97, "elapsed_time": "4:14:42", "remaining_time": "18:08:15"} +{"current_steps": 782, "total_steps": 4118, "loss": 1.8291, "learning_rate": 0.0001, "epoch": 0.18989800874210783, "percentage": 18.99, "elapsed_time": "4:15:01", "remaining_time": "18:07:56"} +{"current_steps": 783, "total_steps": 4118, "loss": 1.8237, "learning_rate": 0.0001, "epoch": 0.19014084507042253, "percentage": 19.01, "elapsed_time": "4:15:21", "remaining_time": "18:07:36"} +{"current_steps": 784, "total_steps": 4118, "loss": 1.6781, "learning_rate": 0.0001, "epoch": 0.19038368139873726, "percentage": 19.04, "elapsed_time": "4:15:40", "remaining_time": "18:07:17"} +{"current_steps": 785, "total_steps": 4118, "loss": 1.6763, "learning_rate": 0.0001, "epoch": 0.19062651772705197, "percentage": 19.06, "elapsed_time": "4:16:00", "remaining_time": "18:06:57"} +{"current_steps": 786, "total_steps": 4118, "loss": 1.9524, "learning_rate": 0.0001, "epoch": 0.19086935405536667, "percentage": 19.09, "elapsed_time": "4:16:19", "remaining_time": "18:06:37"} +{"current_steps": 787, "total_steps": 4118, "loss": 1.6927, "learning_rate": 0.0001, "epoch": 0.1911121903836814, "percentage": 19.11, "elapsed_time": "4:16:39", "remaining_time": "18:06:18"} +{"current_steps": 788, "total_steps": 4118, "loss": 1.7464, "learning_rate": 0.0001, "epoch": 0.1913550267119961, "percentage": 19.14, "elapsed_time": "4:16:58", "remaining_time": "18:05:58"} +{"current_steps": 789, "total_steps": 4118, "loss": 1.8327, "learning_rate": 0.0001, "epoch": 0.19159786304031082, "percentage": 19.16, "elapsed_time": "4:17:18", "remaining_time": "18:05:39"} +{"current_steps": 790, "total_steps": 4118, "loss": 1.961, "learning_rate": 0.0001, "epoch": 0.19184069936862555, "percentage": 19.18, "elapsed_time": "4:17:38", "remaining_time": "18:05:19"} +{"current_steps": 791, "total_steps": 4118, "loss": 1.7782, "learning_rate": 0.0001, "epoch": 0.19208353569694026, "percentage": 19.21, "elapsed_time": "4:17:57", "remaining_time": "18:05:00"} +{"current_steps": 792, "total_steps": 4118, "loss": 1.7706, "learning_rate": 0.0001, "epoch": 0.192326372025255, "percentage": 19.23, "elapsed_time": "4:18:17", "remaining_time": "18:04:40"} +{"current_steps": 793, "total_steps": 4118, "loss": 1.5666, "learning_rate": 0.0001, "epoch": 0.1925692083535697, "percentage": 19.26, "elapsed_time": "4:18:36", "remaining_time": "18:04:20"} +{"current_steps": 794, "total_steps": 4118, "loss": 1.6428, "learning_rate": 0.0001, "epoch": 0.1928120446818844, "percentage": 19.28, "elapsed_time": "4:18:56", "remaining_time": "18:04:01"} +{"current_steps": 795, "total_steps": 4118, "loss": 1.7622, "learning_rate": 0.0001, "epoch": 0.19305488101019913, "percentage": 19.31, "elapsed_time": "4:19:15", "remaining_time": "18:03:41"} +{"current_steps": 796, "total_steps": 4118, "loss": 1.896, "learning_rate": 0.0001, "epoch": 0.19329771733851384, "percentage": 19.33, "elapsed_time": "4:19:35", "remaining_time": "18:03:22"} +{"current_steps": 797, "total_steps": 4118, "loss": 1.9316, "learning_rate": 0.0001, "epoch": 0.19354055366682857, "percentage": 19.35, "elapsed_time": "4:19:55", "remaining_time": "18:03:02"} +{"current_steps": 798, "total_steps": 4118, "loss": 1.7647, "learning_rate": 0.0001, "epoch": 0.19378338999514327, "percentage": 19.38, "elapsed_time": "4:20:14", "remaining_time": "18:02:42"} +{"current_steps": 799, "total_steps": 4118, "loss": 1.6899, "learning_rate": 0.0001, "epoch": 0.19402622632345798, "percentage": 19.4, "elapsed_time": "4:20:34", "remaining_time": "18:02:23"} +{"current_steps": 800, "total_steps": 4118, "loss": 1.9301, "learning_rate": 0.0001, "epoch": 0.1942690626517727, "percentage": 19.43, "elapsed_time": "4:20:53", "remaining_time": "18:02:03"} +{"current_steps": 801, "total_steps": 4118, "loss": 1.7524, "learning_rate": 0.0001, "epoch": 0.19451189898008742, "percentage": 19.45, "elapsed_time": "4:21:13", "remaining_time": "18:01:44"} +{"current_steps": 802, "total_steps": 4118, "loss": 1.8614, "learning_rate": 0.0001, "epoch": 0.19475473530840215, "percentage": 19.48, "elapsed_time": "4:21:32", "remaining_time": "18:01:24"} +{"current_steps": 803, "total_steps": 4118, "loss": 1.9322, "learning_rate": 0.0001, "epoch": 0.19499757163671685, "percentage": 19.5, "elapsed_time": "4:21:52", "remaining_time": "18:01:05"} +{"current_steps": 804, "total_steps": 4118, "loss": 1.8182, "learning_rate": 0.0001, "epoch": 0.19524040796503156, "percentage": 19.52, "elapsed_time": "4:22:11", "remaining_time": "18:00:45"} +{"current_steps": 805, "total_steps": 4118, "loss": 1.8435, "learning_rate": 0.0001, "epoch": 0.1954832442933463, "percentage": 19.55, "elapsed_time": "4:22:31", "remaining_time": "18:00:25"} +{"current_steps": 806, "total_steps": 4118, "loss": 1.6269, "learning_rate": 0.0001, "epoch": 0.195726080621661, "percentage": 19.57, "elapsed_time": "4:22:51", "remaining_time": "18:00:05"} +{"current_steps": 807, "total_steps": 4118, "loss": 1.615, "learning_rate": 0.0001, "epoch": 0.19596891694997573, "percentage": 19.6, "elapsed_time": "4:23:10", "remaining_time": "17:59:46"} +{"current_steps": 808, "total_steps": 4118, "loss": 1.5634, "learning_rate": 0.0001, "epoch": 0.19621175327829043, "percentage": 19.62, "elapsed_time": "4:23:30", "remaining_time": "17:59:26"} +{"current_steps": 809, "total_steps": 4118, "loss": 1.7999, "learning_rate": 0.0001, "epoch": 0.19645458960660514, "percentage": 19.65, "elapsed_time": "4:23:49", "remaining_time": "17:59:07"} +{"current_steps": 810, "total_steps": 4118, "loss": 1.8655, "learning_rate": 0.0001, "epoch": 0.19669742593491987, "percentage": 19.67, "elapsed_time": "4:24:09", "remaining_time": "17:58:47"} +{"current_steps": 811, "total_steps": 4118, "loss": 1.8148, "learning_rate": 0.0001, "epoch": 0.19694026226323458, "percentage": 19.69, "elapsed_time": "4:24:28", "remaining_time": "17:58:28"} +{"current_steps": 812, "total_steps": 4118, "loss": 1.7526, "learning_rate": 0.0001, "epoch": 0.19718309859154928, "percentage": 19.72, "elapsed_time": "4:24:48", "remaining_time": "17:58:08"} +{"current_steps": 813, "total_steps": 4118, "loss": 1.8331, "learning_rate": 0.0001, "epoch": 0.19742593491986402, "percentage": 19.74, "elapsed_time": "4:25:07", "remaining_time": "17:57:48"} +{"current_steps": 814, "total_steps": 4118, "loss": 1.8168, "learning_rate": 0.0001, "epoch": 0.19766877124817872, "percentage": 19.77, "elapsed_time": "4:25:27", "remaining_time": "17:57:29"} +{"current_steps": 815, "total_steps": 4118, "loss": 1.6528, "learning_rate": 0.0001, "epoch": 0.19791160757649345, "percentage": 19.79, "elapsed_time": "4:25:47", "remaining_time": "17:57:09"} +{"current_steps": 816, "total_steps": 4118, "loss": 1.6415, "learning_rate": 0.0001, "epoch": 0.19815444390480816, "percentage": 19.82, "elapsed_time": "4:26:06", "remaining_time": "17:56:50"} +{"current_steps": 817, "total_steps": 4118, "loss": 1.7449, "learning_rate": 0.0001, "epoch": 0.19839728023312286, "percentage": 19.84, "elapsed_time": "4:26:26", "remaining_time": "17:56:30"} +{"current_steps": 818, "total_steps": 4118, "loss": 1.9202, "learning_rate": 0.0001, "epoch": 0.1986401165614376, "percentage": 19.86, "elapsed_time": "4:26:45", "remaining_time": "17:56:11"} +{"current_steps": 819, "total_steps": 4118, "loss": 1.8138, "learning_rate": 0.0001, "epoch": 0.1988829528897523, "percentage": 19.89, "elapsed_time": "4:27:05", "remaining_time": "17:55:51"} +{"current_steps": 820, "total_steps": 4118, "loss": 1.7411, "learning_rate": 0.0001, "epoch": 0.19912578921806703, "percentage": 19.91, "elapsed_time": "4:27:24", "remaining_time": "17:55:31"} +{"current_steps": 821, "total_steps": 4118, "loss": 1.8478, "learning_rate": 0.0001, "epoch": 0.19936862554638174, "percentage": 19.94, "elapsed_time": "4:27:44", "remaining_time": "17:55:12"} +{"current_steps": 822, "total_steps": 4118, "loss": 1.7753, "learning_rate": 0.0001, "epoch": 0.19961146187469644, "percentage": 19.96, "elapsed_time": "4:28:04", "remaining_time": "17:54:52"} +{"current_steps": 823, "total_steps": 4118, "loss": 1.7139, "learning_rate": 0.0001, "epoch": 0.19985429820301118, "percentage": 19.99, "elapsed_time": "4:28:23", "remaining_time": "17:54:33"} +{"current_steps": 824, "total_steps": 4118, "loss": 1.6086, "learning_rate": 0.0001, "epoch": 0.20009713453132588, "percentage": 20.01, "elapsed_time": "4:28:43", "remaining_time": "17:54:13"} +{"current_steps": 825, "total_steps": 4118, "loss": 1.785, "learning_rate": 0.0001, "epoch": 0.20033997085964061, "percentage": 20.03, "elapsed_time": "4:29:02", "remaining_time": "17:53:53"} +{"current_steps": 826, "total_steps": 4118, "loss": 1.9259, "learning_rate": 0.0001, "epoch": 0.20058280718795532, "percentage": 20.06, "elapsed_time": "4:29:22", "remaining_time": "17:53:34"} +{"current_steps": 827, "total_steps": 4118, "loss": 1.7319, "learning_rate": 0.0001, "epoch": 0.20082564351627002, "percentage": 20.08, "elapsed_time": "4:29:41", "remaining_time": "17:53:14"} +{"current_steps": 828, "total_steps": 4118, "loss": 1.6365, "learning_rate": 0.0001, "epoch": 0.20106847984458476, "percentage": 20.11, "elapsed_time": "4:30:01", "remaining_time": "17:52:55"} +{"current_steps": 829, "total_steps": 4118, "loss": 1.65, "learning_rate": 0.0001, "epoch": 0.20131131617289946, "percentage": 20.13, "elapsed_time": "4:30:20", "remaining_time": "17:52:35"} +{"current_steps": 830, "total_steps": 4118, "loss": 1.8233, "learning_rate": 0.0001, "epoch": 0.2015541525012142, "percentage": 20.16, "elapsed_time": "4:30:40", "remaining_time": "17:52:15"} +{"current_steps": 831, "total_steps": 4118, "loss": 1.8651, "learning_rate": 0.0001, "epoch": 0.2017969888295289, "percentage": 20.18, "elapsed_time": "4:31:00", "remaining_time": "17:51:56"} +{"current_steps": 832, "total_steps": 4118, "loss": 1.7226, "learning_rate": 0.0001, "epoch": 0.2020398251578436, "percentage": 20.2, "elapsed_time": "4:31:19", "remaining_time": "17:51:36"} +{"current_steps": 833, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.20228266148615834, "percentage": 20.23, "elapsed_time": "4:31:39", "remaining_time": "17:51:17"} +{"current_steps": 834, "total_steps": 4118, "loss": 1.7435, "learning_rate": 0.0001, "epoch": 0.20252549781447304, "percentage": 20.25, "elapsed_time": "4:31:58", "remaining_time": "17:50:57"} +{"current_steps": 835, "total_steps": 4118, "loss": 1.672, "learning_rate": 0.0001, "epoch": 0.20276833414278775, "percentage": 20.28, "elapsed_time": "4:32:18", "remaining_time": "17:50:38"} +{"current_steps": 836, "total_steps": 4118, "loss": 1.7364, "learning_rate": 0.0001, "epoch": 0.20301117047110248, "percentage": 20.3, "elapsed_time": "4:32:37", "remaining_time": "17:50:18"} +{"current_steps": 837, "total_steps": 4118, "loss": 1.7313, "learning_rate": 0.0001, "epoch": 0.2032540067994172, "percentage": 20.33, "elapsed_time": "4:32:57", "remaining_time": "17:49:59"} +{"current_steps": 838, "total_steps": 4118, "loss": 1.7037, "learning_rate": 0.0001, "epoch": 0.20349684312773192, "percentage": 20.35, "elapsed_time": "4:33:17", "remaining_time": "17:49:39"} +{"current_steps": 839, "total_steps": 4118, "loss": 1.8865, "learning_rate": 0.0001, "epoch": 0.20373967945604662, "percentage": 20.37, "elapsed_time": "4:33:36", "remaining_time": "17:49:19"} +{"current_steps": 840, "total_steps": 4118, "loss": 1.8882, "learning_rate": 0.0001, "epoch": 0.20398251578436133, "percentage": 20.4, "elapsed_time": "4:33:56", "remaining_time": "17:49:00"} +{"current_steps": 841, "total_steps": 4118, "loss": 1.8797, "learning_rate": 0.0001, "epoch": 0.20422535211267606, "percentage": 20.42, "elapsed_time": "4:34:15", "remaining_time": "17:48:40"} +{"current_steps": 842, "total_steps": 4118, "loss": 1.7358, "learning_rate": 0.0001, "epoch": 0.20446818844099077, "percentage": 20.45, "elapsed_time": "4:34:35", "remaining_time": "17:48:21"} +{"current_steps": 843, "total_steps": 4118, "loss": 1.6714, "learning_rate": 0.0001, "epoch": 0.2047110247693055, "percentage": 20.47, "elapsed_time": "4:34:54", "remaining_time": "17:48:01"} +{"current_steps": 844, "total_steps": 4118, "loss": 1.6924, "learning_rate": 0.0001, "epoch": 0.2049538610976202, "percentage": 20.5, "elapsed_time": "4:35:14", "remaining_time": "17:47:41"} +{"current_steps": 845, "total_steps": 4118, "loss": 1.7582, "learning_rate": 0.0001, "epoch": 0.2051966974259349, "percentage": 20.52, "elapsed_time": "4:35:33", "remaining_time": "17:47:22"} +{"current_steps": 846, "total_steps": 4118, "loss": 1.6872, "learning_rate": 0.0001, "epoch": 0.20543953375424964, "percentage": 20.54, "elapsed_time": "4:35:53", "remaining_time": "17:47:02"} +{"current_steps": 847, "total_steps": 4118, "loss": 1.7276, "learning_rate": 0.0001, "epoch": 0.20568237008256435, "percentage": 20.57, "elapsed_time": "4:36:13", "remaining_time": "17:46:43"} +{"current_steps": 848, "total_steps": 4118, "loss": 1.7984, "learning_rate": 0.0001, "epoch": 0.20592520641087908, "percentage": 20.59, "elapsed_time": "4:36:32", "remaining_time": "17:46:23"} +{"current_steps": 849, "total_steps": 4118, "loss": 1.7296, "learning_rate": 0.0001, "epoch": 0.20616804273919379, "percentage": 20.62, "elapsed_time": "4:36:52", "remaining_time": "17:46:03"} +{"current_steps": 850, "total_steps": 4118, "loss": 1.8638, "learning_rate": 0.0001, "epoch": 0.2064108790675085, "percentage": 20.64, "elapsed_time": "4:37:11", "remaining_time": "17:45:44"} +{"current_steps": 851, "total_steps": 4118, "loss": 1.7687, "learning_rate": 0.0001, "epoch": 0.20665371539582322, "percentage": 20.67, "elapsed_time": "4:37:31", "remaining_time": "17:45:24"} +{"current_steps": 852, "total_steps": 4118, "loss": 1.7183, "learning_rate": 0.0001, "epoch": 0.20689655172413793, "percentage": 20.69, "elapsed_time": "4:37:50", "remaining_time": "17:45:05"} +{"current_steps": 853, "total_steps": 4118, "loss": 1.6975, "learning_rate": 0.0001, "epoch": 0.20713938805245263, "percentage": 20.71, "elapsed_time": "4:38:10", "remaining_time": "17:44:45"} +{"current_steps": 854, "total_steps": 4118, "loss": 1.6581, "learning_rate": 0.0001, "epoch": 0.20738222438076737, "percentage": 20.74, "elapsed_time": "4:38:30", "remaining_time": "17:44:25"} +{"current_steps": 855, "total_steps": 4118, "loss": 1.6647, "learning_rate": 0.0001, "epoch": 0.20762506070908207, "percentage": 20.76, "elapsed_time": "4:38:49", "remaining_time": "17:44:06"} +{"current_steps": 856, "total_steps": 4118, "loss": 1.8399, "learning_rate": 0.0001, "epoch": 0.2078678970373968, "percentage": 20.79, "elapsed_time": "4:39:09", "remaining_time": "17:43:46"} +{"current_steps": 857, "total_steps": 4118, "loss": 1.6535, "learning_rate": 0.0001, "epoch": 0.2081107333657115, "percentage": 20.81, "elapsed_time": "4:39:28", "remaining_time": "17:43:27"} +{"current_steps": 858, "total_steps": 4118, "loss": 1.7269, "learning_rate": 0.0001, "epoch": 0.2083535696940262, "percentage": 20.84, "elapsed_time": "4:39:48", "remaining_time": "17:43:07"} +{"current_steps": 859, "total_steps": 4118, "loss": 1.8314, "learning_rate": 0.0001, "epoch": 0.20859640602234095, "percentage": 20.86, "elapsed_time": "4:40:07", "remaining_time": "17:42:48"} +{"current_steps": 860, "total_steps": 4118, "loss": 1.8421, "learning_rate": 0.0001, "epoch": 0.20883924235065565, "percentage": 20.88, "elapsed_time": "4:40:27", "remaining_time": "17:42:28"} +{"current_steps": 861, "total_steps": 4118, "loss": 1.7897, "learning_rate": 0.0001, "epoch": 0.20908207867897038, "percentage": 20.91, "elapsed_time": "4:40:47", "remaining_time": "17:42:09"} +{"current_steps": 862, "total_steps": 4118, "loss": 1.716, "learning_rate": 0.0001, "epoch": 0.2093249150072851, "percentage": 20.93, "elapsed_time": "4:41:06", "remaining_time": "17:41:49"} +{"current_steps": 863, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.2095677513355998, "percentage": 20.96, "elapsed_time": "4:41:26", "remaining_time": "17:41:29"} +{"current_steps": 864, "total_steps": 4118, "loss": 1.8572, "learning_rate": 0.0001, "epoch": 0.20981058766391453, "percentage": 20.98, "elapsed_time": "4:41:45", "remaining_time": "17:41:10"} +{"current_steps": 865, "total_steps": 4118, "loss": 1.7734, "learning_rate": 0.0001, "epoch": 0.21005342399222923, "percentage": 21.01, "elapsed_time": "4:42:05", "remaining_time": "17:40:50"} +{"current_steps": 866, "total_steps": 4118, "loss": 1.7994, "learning_rate": 0.0001, "epoch": 0.21029626032054397, "percentage": 21.03, "elapsed_time": "4:42:24", "remaining_time": "17:40:31"} +{"current_steps": 867, "total_steps": 4118, "loss": 1.6912, "learning_rate": 0.0001, "epoch": 0.21053909664885867, "percentage": 21.05, "elapsed_time": "4:42:44", "remaining_time": "17:40:11"} +{"current_steps": 868, "total_steps": 4118, "loss": 1.7204, "learning_rate": 0.0001, "epoch": 0.21078193297717338, "percentage": 21.08, "elapsed_time": "4:43:03", "remaining_time": "17:39:51"} +{"current_steps": 869, "total_steps": 4118, "loss": 1.7688, "learning_rate": 0.0001, "epoch": 0.2110247693054881, "percentage": 21.1, "elapsed_time": "4:43:23", "remaining_time": "17:39:32"} +{"current_steps": 870, "total_steps": 4118, "loss": 1.6713, "learning_rate": 0.0001, "epoch": 0.2112676056338028, "percentage": 21.13, "elapsed_time": "4:43:43", "remaining_time": "17:39:12"} +{"current_steps": 871, "total_steps": 4118, "loss": 1.6778, "learning_rate": 0.0001, "epoch": 0.21151044196211755, "percentage": 21.15, "elapsed_time": "4:44:02", "remaining_time": "17:38:52"} +{"current_steps": 872, "total_steps": 4118, "loss": 1.8462, "learning_rate": 0.0001, "epoch": 0.21175327829043225, "percentage": 21.18, "elapsed_time": "4:44:22", "remaining_time": "17:38:33"} +{"current_steps": 873, "total_steps": 4118, "loss": 1.6798, "learning_rate": 0.0001, "epoch": 0.21199611461874696, "percentage": 21.2, "elapsed_time": "4:44:41", "remaining_time": "17:38:13"} +{"current_steps": 874, "total_steps": 4118, "loss": 1.6544, "learning_rate": 0.0001, "epoch": 0.2122389509470617, "percentage": 21.22, "elapsed_time": "4:45:01", "remaining_time": "17:37:54"} +{"current_steps": 875, "total_steps": 4118, "loss": 1.5163, "learning_rate": 0.0001, "epoch": 0.2124817872753764, "percentage": 21.25, "elapsed_time": "4:45:20", "remaining_time": "17:37:34"} +{"current_steps": 876, "total_steps": 4118, "loss": 1.8315, "learning_rate": 0.0001, "epoch": 0.2127246236036911, "percentage": 21.27, "elapsed_time": "4:45:40", "remaining_time": "17:37:15"} +{"current_steps": 877, "total_steps": 4118, "loss": 1.7318, "learning_rate": 0.0001, "epoch": 0.21296745993200583, "percentage": 21.3, "elapsed_time": "4:45:59", "remaining_time": "17:36:55"} +{"current_steps": 878, "total_steps": 4118, "loss": 1.7128, "learning_rate": 0.0001, "epoch": 0.21321029626032054, "percentage": 21.32, "elapsed_time": "4:46:19", "remaining_time": "17:36:36"} +{"current_steps": 879, "total_steps": 4118, "loss": 1.8404, "learning_rate": 0.0001, "epoch": 0.21345313258863527, "percentage": 21.35, "elapsed_time": "4:46:39", "remaining_time": "17:36:16"} +{"current_steps": 880, "total_steps": 4118, "loss": 1.7819, "learning_rate": 0.0001, "epoch": 0.21369596891694997, "percentage": 21.37, "elapsed_time": "4:46:58", "remaining_time": "17:35:56"} +{"current_steps": 881, "total_steps": 4118, "loss": 1.7104, "learning_rate": 0.0001, "epoch": 0.21393880524526468, "percentage": 21.39, "elapsed_time": "4:47:18", "remaining_time": "17:35:37"} +{"current_steps": 882, "total_steps": 4118, "loss": 1.7719, "learning_rate": 0.0001, "epoch": 0.2141816415735794, "percentage": 21.42, "elapsed_time": "4:47:37", "remaining_time": "17:35:17"} +{"current_steps": 883, "total_steps": 4118, "loss": 1.9424, "learning_rate": 0.0001, "epoch": 0.21442447790189412, "percentage": 21.44, "elapsed_time": "4:47:57", "remaining_time": "17:34:58"} +{"current_steps": 884, "total_steps": 4118, "loss": 1.6995, "learning_rate": 0.0001, "epoch": 0.21466731423020885, "percentage": 21.47, "elapsed_time": "4:48:16", "remaining_time": "17:34:38"} +{"current_steps": 885, "total_steps": 4118, "loss": 1.8407, "learning_rate": 0.0001, "epoch": 0.21491015055852355, "percentage": 21.49, "elapsed_time": "4:48:36", "remaining_time": "17:34:18"} +{"current_steps": 886, "total_steps": 4118, "loss": 1.6048, "learning_rate": 0.0001, "epoch": 0.21515298688683826, "percentage": 21.52, "elapsed_time": "4:48:56", "remaining_time": "17:33:59"} +{"current_steps": 887, "total_steps": 4118, "loss": 1.7945, "learning_rate": 0.0001, "epoch": 0.215395823215153, "percentage": 21.54, "elapsed_time": "4:49:15", "remaining_time": "17:33:39"} +{"current_steps": 888, "total_steps": 4118, "loss": 1.5209, "learning_rate": 0.0001, "epoch": 0.2156386595434677, "percentage": 21.56, "elapsed_time": "4:49:35", "remaining_time": "17:33:20"} +{"current_steps": 889, "total_steps": 4118, "loss": 1.8161, "learning_rate": 0.0001, "epoch": 0.21588149587178243, "percentage": 21.59, "elapsed_time": "4:49:54", "remaining_time": "17:33:00"} +{"current_steps": 890, "total_steps": 4118, "loss": 1.7688, "learning_rate": 0.0001, "epoch": 0.21612433220009714, "percentage": 21.61, "elapsed_time": "4:50:14", "remaining_time": "17:32:40"} +{"current_steps": 891, "total_steps": 4118, "loss": 1.5922, "learning_rate": 0.0001, "epoch": 0.21636716852841184, "percentage": 21.64, "elapsed_time": "4:50:33", "remaining_time": "17:32:21"} +{"current_steps": 892, "total_steps": 4118, "loss": 1.6985, "learning_rate": 0.0001, "epoch": 0.21661000485672657, "percentage": 21.66, "elapsed_time": "4:50:53", "remaining_time": "17:32:01"} +{"current_steps": 893, "total_steps": 4118, "loss": 1.7044, "learning_rate": 0.0001, "epoch": 0.21685284118504128, "percentage": 21.69, "elapsed_time": "4:51:12", "remaining_time": "17:31:42"} +{"current_steps": 894, "total_steps": 4118, "loss": 1.7955, "learning_rate": 0.0001, "epoch": 0.217095677513356, "percentage": 21.71, "elapsed_time": "4:51:32", "remaining_time": "17:31:22"} +{"current_steps": 895, "total_steps": 4118, "loss": 1.691, "learning_rate": 0.0001, "epoch": 0.21733851384167072, "percentage": 21.73, "elapsed_time": "4:51:52", "remaining_time": "17:31:02"} +{"current_steps": 896, "total_steps": 4118, "loss": 1.6215, "learning_rate": 0.0001, "epoch": 0.21758135016998542, "percentage": 21.76, "elapsed_time": "4:52:11", "remaining_time": "17:30:43"} +{"current_steps": 897, "total_steps": 4118, "loss": 1.9166, "learning_rate": 0.0001, "epoch": 0.21782418649830015, "percentage": 21.78, "elapsed_time": "4:52:31", "remaining_time": "17:30:23"} +{"current_steps": 898, "total_steps": 4118, "loss": 1.7904, "learning_rate": 0.0001, "epoch": 0.21806702282661486, "percentage": 21.81, "elapsed_time": "4:52:50", "remaining_time": "17:30:04"} +{"current_steps": 899, "total_steps": 4118, "loss": 1.7884, "learning_rate": 0.0001, "epoch": 0.21830985915492956, "percentage": 21.83, "elapsed_time": "4:53:10", "remaining_time": "17:29:44"} +{"current_steps": 900, "total_steps": 4118, "loss": 1.751, "learning_rate": 0.0001, "epoch": 0.2185526954832443, "percentage": 21.86, "elapsed_time": "4:53:29", "remaining_time": "17:29:25"} +{"current_steps": 901, "total_steps": 4118, "loss": 1.721, "learning_rate": 0.0001, "epoch": 0.218795531811559, "percentage": 21.88, "elapsed_time": "4:53:49", "remaining_time": "17:29:05"} +{"current_steps": 902, "total_steps": 4118, "loss": 1.5349, "learning_rate": 0.0001, "epoch": 0.21903836813987373, "percentage": 21.9, "elapsed_time": "4:54:09", "remaining_time": "17:28:46"} +{"current_steps": 903, "total_steps": 4118, "loss": 1.7536, "learning_rate": 0.0001, "epoch": 0.21928120446818844, "percentage": 21.93, "elapsed_time": "4:54:28", "remaining_time": "17:28:26"} +{"current_steps": 904, "total_steps": 4118, "loss": 1.985, "learning_rate": 0.0001, "epoch": 0.21952404079650314, "percentage": 21.95, "elapsed_time": "4:54:48", "remaining_time": "17:28:06"} +{"current_steps": 905, "total_steps": 4118, "loss": 1.7134, "learning_rate": 0.0001, "epoch": 0.21976687712481788, "percentage": 21.98, "elapsed_time": "4:55:07", "remaining_time": "17:27:47"} +{"current_steps": 906, "total_steps": 4118, "loss": 1.7583, "learning_rate": 0.0001, "epoch": 0.22000971345313258, "percentage": 22.0, "elapsed_time": "4:55:27", "remaining_time": "17:27:27"} +{"current_steps": 907, "total_steps": 4118, "loss": 1.9367, "learning_rate": 0.0001, "epoch": 0.22025254978144732, "percentage": 22.03, "elapsed_time": "4:55:46", "remaining_time": "17:27:08"} +{"current_steps": 908, "total_steps": 4118, "loss": 1.9294, "learning_rate": 0.0001, "epoch": 0.22049538610976202, "percentage": 22.05, "elapsed_time": "4:56:06", "remaining_time": "17:26:48"} +{"current_steps": 909, "total_steps": 4118, "loss": 1.7627, "learning_rate": 0.0001, "epoch": 0.22073822243807673, "percentage": 22.07, "elapsed_time": "4:56:25", "remaining_time": "17:26:29"} +{"current_steps": 910, "total_steps": 4118, "loss": 1.7718, "learning_rate": 0.0001, "epoch": 0.22098105876639146, "percentage": 22.1, "elapsed_time": "4:56:45", "remaining_time": "17:26:09"} +{"current_steps": 911, "total_steps": 4118, "loss": 1.5919, "learning_rate": 0.0001, "epoch": 0.22122389509470616, "percentage": 22.12, "elapsed_time": "4:57:05", "remaining_time": "17:25:49"} +{"current_steps": 912, "total_steps": 4118, "loss": 1.7208, "learning_rate": 0.0001, "epoch": 0.2214667314230209, "percentage": 22.15, "elapsed_time": "4:57:24", "remaining_time": "17:25:30"} +{"current_steps": 913, "total_steps": 4118, "loss": 1.7613, "learning_rate": 0.0001, "epoch": 0.2217095677513356, "percentage": 22.17, "elapsed_time": "4:57:44", "remaining_time": "17:25:10"} +{"current_steps": 914, "total_steps": 4118, "loss": 1.6713, "learning_rate": 0.0001, "epoch": 0.2219524040796503, "percentage": 22.2, "elapsed_time": "4:58:03", "remaining_time": "17:24:51"} +{"current_steps": 915, "total_steps": 4118, "loss": 1.6099, "learning_rate": 0.0001, "epoch": 0.22219524040796504, "percentage": 22.22, "elapsed_time": "4:58:23", "remaining_time": "17:24:31"} +{"current_steps": 916, "total_steps": 4118, "loss": 1.7325, "learning_rate": 0.0001, "epoch": 0.22243807673627974, "percentage": 22.24, "elapsed_time": "4:58:42", "remaining_time": "17:24:11"} +{"current_steps": 917, "total_steps": 4118, "loss": 1.7434, "learning_rate": 0.0001, "epoch": 0.22268091306459448, "percentage": 22.27, "elapsed_time": "4:59:02", "remaining_time": "17:23:52"} +{"current_steps": 918, "total_steps": 4118, "loss": 1.6896, "learning_rate": 0.0001, "epoch": 0.22292374939290918, "percentage": 22.29, "elapsed_time": "4:59:22", "remaining_time": "17:23:32"} +{"current_steps": 919, "total_steps": 4118, "loss": 1.6624, "learning_rate": 0.0001, "epoch": 0.2231665857212239, "percentage": 22.32, "elapsed_time": "4:59:41", "remaining_time": "17:23:13"} +{"current_steps": 920, "total_steps": 4118, "loss": 1.7903, "learning_rate": 0.0001, "epoch": 0.22340942204953862, "percentage": 22.34, "elapsed_time": "5:00:01", "remaining_time": "17:22:53"} +{"current_steps": 921, "total_steps": 4118, "loss": 1.5946, "learning_rate": 0.0001, "epoch": 0.22365225837785332, "percentage": 22.37, "elapsed_time": "5:00:20", "remaining_time": "17:22:33"} +{"current_steps": 922, "total_steps": 4118, "loss": 1.7802, "learning_rate": 0.0001, "epoch": 0.22389509470616803, "percentage": 22.39, "elapsed_time": "5:00:40", "remaining_time": "17:22:14"} +{"current_steps": 923, "total_steps": 4118, "loss": 1.813, "learning_rate": 0.0001, "epoch": 0.22413793103448276, "percentage": 22.41, "elapsed_time": "5:00:59", "remaining_time": "17:21:54"} +{"current_steps": 924, "total_steps": 4118, "loss": 1.9609, "learning_rate": 0.0001, "epoch": 0.22438076736279747, "percentage": 22.44, "elapsed_time": "5:01:19", "remaining_time": "17:21:35"} +{"current_steps": 925, "total_steps": 4118, "loss": 1.9015, "learning_rate": 0.0001, "epoch": 0.2246236036911122, "percentage": 22.46, "elapsed_time": "5:01:39", "remaining_time": "17:21:15"} +{"current_steps": 926, "total_steps": 4118, "loss": 1.7965, "learning_rate": 0.0001, "epoch": 0.2248664400194269, "percentage": 22.49, "elapsed_time": "5:01:58", "remaining_time": "17:20:56"} +{"current_steps": 927, "total_steps": 4118, "loss": 2.0494, "learning_rate": 0.0001, "epoch": 0.2251092763477416, "percentage": 22.51, "elapsed_time": "5:02:18", "remaining_time": "17:20:36"} +{"current_steps": 928, "total_steps": 4118, "loss": 1.8213, "learning_rate": 0.0001, "epoch": 0.22535211267605634, "percentage": 22.54, "elapsed_time": "5:02:37", "remaining_time": "17:20:17"} +{"current_steps": 929, "total_steps": 4118, "loss": 1.6947, "learning_rate": 0.0001, "epoch": 0.22559494900437105, "percentage": 22.56, "elapsed_time": "5:02:57", "remaining_time": "17:19:57"} +{"current_steps": 930, "total_steps": 4118, "loss": 1.8647, "learning_rate": 0.0001, "epoch": 0.22583778533268578, "percentage": 22.58, "elapsed_time": "5:03:16", "remaining_time": "17:19:37"} +{"current_steps": 931, "total_steps": 4118, "loss": 1.898, "learning_rate": 0.0001, "epoch": 0.22608062166100049, "percentage": 22.61, "elapsed_time": "5:03:36", "remaining_time": "17:19:18"} +{"current_steps": 932, "total_steps": 4118, "loss": 1.8883, "learning_rate": 0.0001, "epoch": 0.2263234579893152, "percentage": 22.63, "elapsed_time": "5:03:55", "remaining_time": "17:18:58"} +{"current_steps": 933, "total_steps": 4118, "loss": 1.6933, "learning_rate": 0.0001, "epoch": 0.22656629431762992, "percentage": 22.66, "elapsed_time": "5:04:15", "remaining_time": "17:18:39"} +{"current_steps": 934, "total_steps": 4118, "loss": 1.7231, "learning_rate": 0.0001, "epoch": 0.22680913064594463, "percentage": 22.68, "elapsed_time": "5:04:35", "remaining_time": "17:18:19"} +{"current_steps": 935, "total_steps": 4118, "loss": 1.7015, "learning_rate": 0.0001, "epoch": 0.22705196697425936, "percentage": 22.71, "elapsed_time": "5:04:54", "remaining_time": "17:18:00"} +{"current_steps": 936, "total_steps": 4118, "loss": 1.8497, "learning_rate": 0.0001, "epoch": 0.22729480330257407, "percentage": 22.73, "elapsed_time": "5:05:14", "remaining_time": "17:17:40"} +{"current_steps": 937, "total_steps": 4118, "loss": 1.8382, "learning_rate": 0.0001, "epoch": 0.22753763963088877, "percentage": 22.75, "elapsed_time": "5:05:33", "remaining_time": "17:17:21"} +{"current_steps": 938, "total_steps": 4118, "loss": 1.798, "learning_rate": 0.0001, "epoch": 0.2277804759592035, "percentage": 22.78, "elapsed_time": "5:05:53", "remaining_time": "17:17:01"} +{"current_steps": 939, "total_steps": 4118, "loss": 1.9021, "learning_rate": 0.0001, "epoch": 0.2280233122875182, "percentage": 22.8, "elapsed_time": "5:06:12", "remaining_time": "17:16:41"} +{"current_steps": 940, "total_steps": 4118, "loss": 1.8965, "learning_rate": 0.0001, "epoch": 0.22826614861583294, "percentage": 22.83, "elapsed_time": "5:06:32", "remaining_time": "17:16:22"} +{"current_steps": 941, "total_steps": 4118, "loss": 1.5807, "learning_rate": 0.0001, "epoch": 0.22850898494414765, "percentage": 22.85, "elapsed_time": "5:06:52", "remaining_time": "17:16:02"} +{"current_steps": 942, "total_steps": 4118, "loss": 1.6925, "learning_rate": 0.0001, "epoch": 0.22875182127246235, "percentage": 22.88, "elapsed_time": "5:07:11", "remaining_time": "17:15:43"} +{"current_steps": 943, "total_steps": 4118, "loss": 1.6818, "learning_rate": 0.0001, "epoch": 0.22899465760077709, "percentage": 22.9, "elapsed_time": "5:07:31", "remaining_time": "17:15:23"} +{"current_steps": 944, "total_steps": 4118, "loss": 1.6615, "learning_rate": 0.0001, "epoch": 0.2292374939290918, "percentage": 22.92, "elapsed_time": "5:07:50", "remaining_time": "17:15:04"} +{"current_steps": 945, "total_steps": 4118, "loss": 1.7407, "learning_rate": 0.0001, "epoch": 0.2294803302574065, "percentage": 22.95, "elapsed_time": "5:08:10", "remaining_time": "17:14:44"} +{"current_steps": 946, "total_steps": 4118, "loss": 1.7865, "learning_rate": 0.0001, "epoch": 0.22972316658572123, "percentage": 22.97, "elapsed_time": "5:08:29", "remaining_time": "17:14:24"} +{"current_steps": 947, "total_steps": 4118, "loss": 1.6972, "learning_rate": 0.0001, "epoch": 0.22996600291403593, "percentage": 23.0, "elapsed_time": "5:08:49", "remaining_time": "17:14:05"} +{"current_steps": 948, "total_steps": 4118, "loss": 1.7756, "learning_rate": 0.0001, "epoch": 0.23020883924235067, "percentage": 23.02, "elapsed_time": "5:09:08", "remaining_time": "17:13:45"} +{"current_steps": 949, "total_steps": 4118, "loss": 1.8162, "learning_rate": 0.0001, "epoch": 0.23045167557066537, "percentage": 23.05, "elapsed_time": "5:09:28", "remaining_time": "17:13:26"} +{"current_steps": 950, "total_steps": 4118, "loss": 1.699, "learning_rate": 0.0001, "epoch": 0.23069451189898008, "percentage": 23.07, "elapsed_time": "5:09:48", "remaining_time": "17:13:06"} +{"current_steps": 951, "total_steps": 4118, "loss": 1.945, "learning_rate": 0.0001, "epoch": 0.2309373482272948, "percentage": 23.09, "elapsed_time": "5:10:07", "remaining_time": "17:12:46"} +{"current_steps": 952, "total_steps": 4118, "loss": 1.8404, "learning_rate": 0.0001, "epoch": 0.2311801845556095, "percentage": 23.12, "elapsed_time": "5:10:27", "remaining_time": "17:12:27"} +{"current_steps": 953, "total_steps": 4118, "loss": 1.8186, "learning_rate": 0.0001, "epoch": 0.23142302088392425, "percentage": 23.14, "elapsed_time": "5:10:46", "remaining_time": "17:12:07"} +{"current_steps": 954, "total_steps": 4118, "loss": 1.7055, "learning_rate": 0.0001, "epoch": 0.23166585721223895, "percentage": 23.17, "elapsed_time": "5:11:06", "remaining_time": "17:11:48"} +{"current_steps": 955, "total_steps": 4118, "loss": 1.9158, "learning_rate": 0.0001, "epoch": 0.23190869354055366, "percentage": 23.19, "elapsed_time": "5:11:25", "remaining_time": "17:11:28"} +{"current_steps": 956, "total_steps": 4118, "loss": 1.9105, "learning_rate": 0.0001, "epoch": 0.2321515298688684, "percentage": 23.22, "elapsed_time": "5:11:45", "remaining_time": "17:11:08"} +{"current_steps": 957, "total_steps": 4118, "loss": 1.7359, "learning_rate": 0.0001, "epoch": 0.2323943661971831, "percentage": 23.24, "elapsed_time": "5:12:04", "remaining_time": "17:10:49"} +{"current_steps": 958, "total_steps": 4118, "loss": 1.853, "learning_rate": 0.0001, "epoch": 0.23263720252549783, "percentage": 23.26, "elapsed_time": "5:12:24", "remaining_time": "17:10:29"} +{"current_steps": 959, "total_steps": 4118, "loss": 1.7095, "learning_rate": 0.0001, "epoch": 0.23288003885381253, "percentage": 23.29, "elapsed_time": "5:12:44", "remaining_time": "17:10:09"} +{"current_steps": 960, "total_steps": 4118, "loss": 1.6111, "learning_rate": 0.0001, "epoch": 0.23312287518212724, "percentage": 23.31, "elapsed_time": "5:13:03", "remaining_time": "17:09:50"} +{"current_steps": 961, "total_steps": 4118, "loss": 1.6835, "learning_rate": 0.0001, "epoch": 0.23336571151044197, "percentage": 23.34, "elapsed_time": "5:13:23", "remaining_time": "17:09:30"} +{"current_steps": 962, "total_steps": 4118, "loss": 1.792, "learning_rate": 0.0001, "epoch": 0.23360854783875667, "percentage": 23.36, "elapsed_time": "5:13:42", "remaining_time": "17:09:11"} +{"current_steps": 963, "total_steps": 4118, "loss": 1.6607, "learning_rate": 0.0001, "epoch": 0.2338513841670714, "percentage": 23.39, "elapsed_time": "5:14:02", "remaining_time": "17:08:51"} +{"current_steps": 964, "total_steps": 4118, "loss": 1.5958, "learning_rate": 0.0001, "epoch": 0.2340942204953861, "percentage": 23.41, "elapsed_time": "5:14:21", "remaining_time": "17:08:32"} +{"current_steps": 965, "total_steps": 4118, "loss": 1.701, "learning_rate": 0.0001, "epoch": 0.23433705682370082, "percentage": 23.43, "elapsed_time": "5:14:41", "remaining_time": "17:08:12"} +{"current_steps": 966, "total_steps": 4118, "loss": 1.7575, "learning_rate": 0.0001, "epoch": 0.23457989315201555, "percentage": 23.46, "elapsed_time": "5:15:01", "remaining_time": "17:07:52"} +{"current_steps": 967, "total_steps": 4118, "loss": 1.7283, "learning_rate": 0.0001, "epoch": 0.23482272948033026, "percentage": 23.48, "elapsed_time": "5:15:20", "remaining_time": "17:07:33"} +{"current_steps": 968, "total_steps": 4118, "loss": 1.8132, "learning_rate": 0.0001, "epoch": 0.23506556580864496, "percentage": 23.51, "elapsed_time": "5:15:40", "remaining_time": "17:07:13"} +{"current_steps": 969, "total_steps": 4118, "loss": 1.6876, "learning_rate": 0.0001, "epoch": 0.2353084021369597, "percentage": 23.53, "elapsed_time": "5:15:59", "remaining_time": "17:06:54"} +{"current_steps": 970, "total_steps": 4118, "loss": 1.6824, "learning_rate": 0.0001, "epoch": 0.2355512384652744, "percentage": 23.56, "elapsed_time": "5:16:19", "remaining_time": "17:06:34"} +{"current_steps": 971, "total_steps": 4118, "loss": 1.8378, "learning_rate": 0.0001, "epoch": 0.23579407479358913, "percentage": 23.58, "elapsed_time": "5:16:38", "remaining_time": "17:06:15"} +{"current_steps": 972, "total_steps": 4118, "loss": 1.8853, "learning_rate": 0.0001, "epoch": 0.23603691112190384, "percentage": 23.6, "elapsed_time": "5:16:58", "remaining_time": "17:05:55"} +{"current_steps": 973, "total_steps": 4118, "loss": 1.7937, "learning_rate": 0.0001, "epoch": 0.23627974745021854, "percentage": 23.63, "elapsed_time": "5:17:17", "remaining_time": "17:05:35"} +{"current_steps": 974, "total_steps": 4118, "loss": 1.781, "learning_rate": 0.0001, "epoch": 0.23652258377853327, "percentage": 23.65, "elapsed_time": "5:17:37", "remaining_time": "17:05:16"} +{"current_steps": 975, "total_steps": 4118, "loss": 1.7712, "learning_rate": 0.0001, "epoch": 0.23676542010684798, "percentage": 23.68, "elapsed_time": "5:17:57", "remaining_time": "17:04:56"} +{"current_steps": 976, "total_steps": 4118, "loss": 1.978, "learning_rate": 0.0001, "epoch": 0.2370082564351627, "percentage": 23.7, "elapsed_time": "5:18:16", "remaining_time": "17:04:37"} +{"current_steps": 977, "total_steps": 4118, "loss": 1.8114, "learning_rate": 0.0001, "epoch": 0.23725109276347742, "percentage": 23.73, "elapsed_time": "5:18:36", "remaining_time": "17:04:17"} +{"current_steps": 978, "total_steps": 4118, "loss": 1.8186, "learning_rate": 0.0001, "epoch": 0.23749392909179212, "percentage": 23.75, "elapsed_time": "5:18:55", "remaining_time": "17:03:57"} +{"current_steps": 979, "total_steps": 4118, "loss": 1.8372, "learning_rate": 0.0001, "epoch": 0.23773676542010685, "percentage": 23.77, "elapsed_time": "5:19:15", "remaining_time": "17:03:38"} +{"current_steps": 980, "total_steps": 4118, "loss": 1.6409, "learning_rate": 0.0001, "epoch": 0.23797960174842156, "percentage": 23.8, "elapsed_time": "5:19:34", "remaining_time": "17:03:18"} +{"current_steps": 981, "total_steps": 4118, "loss": 1.705, "learning_rate": 0.0001, "epoch": 0.2382224380767363, "percentage": 23.82, "elapsed_time": "5:19:54", "remaining_time": "17:02:59"} +{"current_steps": 982, "total_steps": 4118, "loss": 1.6964, "learning_rate": 0.0001, "epoch": 0.238465274405051, "percentage": 23.85, "elapsed_time": "5:20:13", "remaining_time": "17:02:39"} +{"current_steps": 983, "total_steps": 4118, "loss": 1.4242, "learning_rate": 0.0001, "epoch": 0.2387081107333657, "percentage": 23.87, "elapsed_time": "5:20:33", "remaining_time": "17:02:20"} +{"current_steps": 984, "total_steps": 4118, "loss": 1.7106, "learning_rate": 0.0001, "epoch": 0.23895094706168044, "percentage": 23.9, "elapsed_time": "5:20:53", "remaining_time": "17:02:00"} +{"current_steps": 985, "total_steps": 4118, "loss": 1.8304, "learning_rate": 0.0001, "epoch": 0.23919378338999514, "percentage": 23.92, "elapsed_time": "5:21:12", "remaining_time": "17:01:40"} +{"current_steps": 986, "total_steps": 4118, "loss": 1.7613, "learning_rate": 0.0001, "epoch": 0.23943661971830985, "percentage": 23.94, "elapsed_time": "5:21:32", "remaining_time": "17:01:21"} +{"current_steps": 987, "total_steps": 4118, "loss": 1.5809, "learning_rate": 0.0001, "epoch": 0.23967945604662458, "percentage": 23.97, "elapsed_time": "5:21:51", "remaining_time": "17:01:01"} +{"current_steps": 988, "total_steps": 4118, "loss": 1.7314, "learning_rate": 0.0001, "epoch": 0.23992229237493928, "percentage": 23.99, "elapsed_time": "5:22:11", "remaining_time": "17:00:41"} +{"current_steps": 989, "total_steps": 4118, "loss": 1.907, "learning_rate": 0.0001, "epoch": 0.24016512870325402, "percentage": 24.02, "elapsed_time": "5:22:30", "remaining_time": "17:00:22"} +{"current_steps": 990, "total_steps": 4118, "loss": 1.8731, "learning_rate": 0.0001, "epoch": 0.24040796503156872, "percentage": 24.04, "elapsed_time": "5:22:50", "remaining_time": "17:00:02"} +{"current_steps": 991, "total_steps": 4118, "loss": 1.9282, "learning_rate": 0.0001, "epoch": 0.24065080135988343, "percentage": 24.07, "elapsed_time": "5:23:10", "remaining_time": "16:59:43"} +{"current_steps": 992, "total_steps": 4118, "loss": 1.5361, "learning_rate": 0.0001, "epoch": 0.24089363768819816, "percentage": 24.09, "elapsed_time": "5:23:29", "remaining_time": "16:59:23"} +{"current_steps": 993, "total_steps": 4118, "loss": 1.7093, "learning_rate": 0.0001, "epoch": 0.24113647401651286, "percentage": 24.11, "elapsed_time": "5:23:49", "remaining_time": "16:59:04"} +{"current_steps": 994, "total_steps": 4118, "loss": 1.8118, "learning_rate": 0.0001, "epoch": 0.2413793103448276, "percentage": 24.14, "elapsed_time": "5:24:08", "remaining_time": "16:58:44"} +{"current_steps": 995, "total_steps": 4118, "loss": 1.851, "learning_rate": 0.0001, "epoch": 0.2416221466731423, "percentage": 24.16, "elapsed_time": "5:24:28", "remaining_time": "16:58:24"} +{"current_steps": 996, "total_steps": 4118, "loss": 1.6807, "learning_rate": 0.0001, "epoch": 0.241864983001457, "percentage": 24.19, "elapsed_time": "5:24:47", "remaining_time": "16:58:05"} +{"current_steps": 997, "total_steps": 4118, "loss": 1.7042, "learning_rate": 0.0001, "epoch": 0.24210781932977174, "percentage": 24.21, "elapsed_time": "5:25:07", "remaining_time": "16:57:45"} +{"current_steps": 998, "total_steps": 4118, "loss": 1.7792, "learning_rate": 0.0001, "epoch": 0.24235065565808644, "percentage": 24.24, "elapsed_time": "5:25:26", "remaining_time": "16:57:26"} +{"current_steps": 999, "total_steps": 4118, "loss": 1.7803, "learning_rate": 0.0001, "epoch": 0.24259349198640118, "percentage": 24.26, "elapsed_time": "5:25:46", "remaining_time": "16:57:06"} +{"current_steps": 1000, "total_steps": 4118, "loss": 1.8425, "learning_rate": 0.0001, "epoch": 0.24283632831471588, "percentage": 24.28, "elapsed_time": "5:26:06", "remaining_time": "16:56:46"} +{"current_steps": 1001, "total_steps": 4118, "loss": 1.7884, "learning_rate": 0.0001, "epoch": 0.2430791646430306, "percentage": 24.31, "elapsed_time": "5:26:27", "remaining_time": "16:56:34"} +{"current_steps": 1002, "total_steps": 4118, "loss": 1.6964, "learning_rate": 0.0001, "epoch": 0.24332200097134532, "percentage": 24.33, "elapsed_time": "5:26:47", "remaining_time": "16:56:15"} +{"current_steps": 1003, "total_steps": 4118, "loss": 1.8316, "learning_rate": 0.0001, "epoch": 0.24356483729966003, "percentage": 24.36, "elapsed_time": "5:27:07", "remaining_time": "16:55:55"} +{"current_steps": 1004, "total_steps": 4118, "loss": 1.6151, "learning_rate": 0.0001, "epoch": 0.24380767362797476, "percentage": 24.38, "elapsed_time": "5:27:26", "remaining_time": "16:55:36"} +{"current_steps": 1005, "total_steps": 4118, "loss": 1.8426, "learning_rate": 0.0001, "epoch": 0.24405050995628946, "percentage": 24.41, "elapsed_time": "5:27:46", "remaining_time": "16:55:16"} +{"current_steps": 1006, "total_steps": 4118, "loss": 1.7432, "learning_rate": 0.0001, "epoch": 0.24429334628460417, "percentage": 24.43, "elapsed_time": "5:28:05", "remaining_time": "16:54:56"} +{"current_steps": 1007, "total_steps": 4118, "loss": 1.8235, "learning_rate": 0.0001, "epoch": 0.2445361826129189, "percentage": 24.45, "elapsed_time": "5:28:25", "remaining_time": "16:54:37"} +{"current_steps": 1008, "total_steps": 4118, "loss": 1.787, "learning_rate": 0.0001, "epoch": 0.2447790189412336, "percentage": 24.48, "elapsed_time": "5:28:44", "remaining_time": "16:54:17"} +{"current_steps": 1009, "total_steps": 4118, "loss": 1.6861, "learning_rate": 0.0001, "epoch": 0.2450218552695483, "percentage": 24.5, "elapsed_time": "5:29:04", "remaining_time": "16:53:58"} +{"current_steps": 1010, "total_steps": 4118, "loss": 1.7854, "learning_rate": 0.0001, "epoch": 0.24526469159786304, "percentage": 24.53, "elapsed_time": "5:29:24", "remaining_time": "16:53:38"} +{"current_steps": 1011, "total_steps": 4118, "loss": 1.6152, "learning_rate": 0.0001, "epoch": 0.24550752792617775, "percentage": 24.55, "elapsed_time": "5:29:43", "remaining_time": "16:53:18"} +{"current_steps": 1012, "total_steps": 4118, "loss": 1.5798, "learning_rate": 0.0001, "epoch": 0.24575036425449248, "percentage": 24.58, "elapsed_time": "5:30:03", "remaining_time": "16:52:59"} +{"current_steps": 1013, "total_steps": 4118, "loss": 1.8873, "learning_rate": 0.0001, "epoch": 0.2459932005828072, "percentage": 24.6, "elapsed_time": "5:30:22", "remaining_time": "16:52:39"} +{"current_steps": 1014, "total_steps": 4118, "loss": 1.743, "learning_rate": 0.0001, "epoch": 0.2462360369111219, "percentage": 24.62, "elapsed_time": "5:30:42", "remaining_time": "16:52:20"} +{"current_steps": 1015, "total_steps": 4118, "loss": 1.8138, "learning_rate": 0.0001, "epoch": 0.24647887323943662, "percentage": 24.65, "elapsed_time": "5:31:01", "remaining_time": "16:52:00"} +{"current_steps": 1016, "total_steps": 4118, "loss": 1.8368, "learning_rate": 0.0001, "epoch": 0.24672170956775133, "percentage": 24.67, "elapsed_time": "5:31:21", "remaining_time": "16:51:41"} +{"current_steps": 1017, "total_steps": 4118, "loss": 1.6505, "learning_rate": 0.0001, "epoch": 0.24696454589606606, "percentage": 24.7, "elapsed_time": "5:31:41", "remaining_time": "16:51:21"} +{"current_steps": 1018, "total_steps": 4118, "loss": 1.7282, "learning_rate": 0.0001, "epoch": 0.24720738222438077, "percentage": 24.72, "elapsed_time": "5:32:00", "remaining_time": "16:51:01"} +{"current_steps": 1019, "total_steps": 4118, "loss": 1.7308, "learning_rate": 0.0001, "epoch": 0.24745021855269547, "percentage": 24.75, "elapsed_time": "5:32:20", "remaining_time": "16:50:42"} +{"current_steps": 1020, "total_steps": 4118, "loss": 1.6552, "learning_rate": 0.0001, "epoch": 0.2476930548810102, "percentage": 24.77, "elapsed_time": "5:32:39", "remaining_time": "16:50:22"} +{"current_steps": 1021, "total_steps": 4118, "loss": 1.6607, "learning_rate": 0.0001, "epoch": 0.2479358912093249, "percentage": 24.79, "elapsed_time": "5:32:59", "remaining_time": "16:50:03"} +{"current_steps": 1022, "total_steps": 4118, "loss": 1.6036, "learning_rate": 0.0001, "epoch": 0.24817872753763964, "percentage": 24.82, "elapsed_time": "5:33:18", "remaining_time": "16:49:43"} +{"current_steps": 1023, "total_steps": 4118, "loss": 1.7947, "learning_rate": 0.0001, "epoch": 0.24842156386595435, "percentage": 24.84, "elapsed_time": "5:33:38", "remaining_time": "16:49:24"} +{"current_steps": 1024, "total_steps": 4118, "loss": 1.9354, "learning_rate": 0.0001, "epoch": 0.24866440019426905, "percentage": 24.87, "elapsed_time": "5:33:58", "remaining_time": "16:49:04"} +{"current_steps": 1025, "total_steps": 4118, "loss": 1.6038, "learning_rate": 0.0001, "epoch": 0.24890723652258379, "percentage": 24.89, "elapsed_time": "5:34:17", "remaining_time": "16:48:45"} +{"current_steps": 1026, "total_steps": 4118, "loss": 1.8635, "learning_rate": 0.0001, "epoch": 0.2491500728508985, "percentage": 24.92, "elapsed_time": "5:34:37", "remaining_time": "16:48:25"} +{"current_steps": 1027, "total_steps": 4118, "loss": 1.6679, "learning_rate": 0.0001, "epoch": 0.24939290917921322, "percentage": 24.94, "elapsed_time": "5:34:56", "remaining_time": "16:48:05"} +{"current_steps": 1028, "total_steps": 4118, "loss": 1.6698, "learning_rate": 0.0001, "epoch": 0.24963574550752793, "percentage": 24.96, "elapsed_time": "5:35:16", "remaining_time": "16:47:46"} +{"current_steps": 1029, "total_steps": 4118, "loss": 1.901, "learning_rate": 0.0001, "epoch": 0.24987858183584263, "percentage": 24.99, "elapsed_time": "5:35:35", "remaining_time": "16:47:26"} +{"current_steps": 1030, "total_steps": 4118, "loss": 1.7396, "learning_rate": 0.0001, "epoch": 0.25012141816415734, "percentage": 25.01, "elapsed_time": "5:35:55", "remaining_time": "16:47:07"} +{"current_steps": 1031, "total_steps": 4118, "loss": 1.9029, "learning_rate": 0.0001, "epoch": 0.25036425449247207, "percentage": 25.04, "elapsed_time": "5:36:15", "remaining_time": "16:46:47"} +{"current_steps": 1032, "total_steps": 4118, "loss": 1.6951, "learning_rate": 0.0001, "epoch": 0.2506070908207868, "percentage": 25.06, "elapsed_time": "5:36:34", "remaining_time": "16:46:28"} +{"current_steps": 1033, "total_steps": 4118, "loss": 1.8209, "learning_rate": 0.0001, "epoch": 0.2508499271491015, "percentage": 25.08, "elapsed_time": "5:36:54", "remaining_time": "16:46:08"} +{"current_steps": 1034, "total_steps": 4118, "loss": 1.8646, "learning_rate": 0.0001, "epoch": 0.2510927634774162, "percentage": 25.11, "elapsed_time": "5:37:13", "remaining_time": "16:45:48"} +{"current_steps": 1035, "total_steps": 4118, "loss": 1.8346, "learning_rate": 0.0001, "epoch": 0.25133559980573095, "percentage": 25.13, "elapsed_time": "5:37:33", "remaining_time": "16:45:29"} +{"current_steps": 1036, "total_steps": 4118, "loss": 1.7712, "learning_rate": 0.0001, "epoch": 0.2515784361340457, "percentage": 25.16, "elapsed_time": "5:37:52", "remaining_time": "16:45:09"} +{"current_steps": 1037, "total_steps": 4118, "loss": 1.8712, "learning_rate": 0.0001, "epoch": 0.25182127246236036, "percentage": 25.18, "elapsed_time": "5:38:12", "remaining_time": "16:44:50"} +{"current_steps": 1038, "total_steps": 4118, "loss": 1.8333, "learning_rate": 0.0001, "epoch": 0.2520641087906751, "percentage": 25.21, "elapsed_time": "5:38:32", "remaining_time": "16:44:30"} +{"current_steps": 1039, "total_steps": 4118, "loss": 1.7055, "learning_rate": 0.0001, "epoch": 0.2523069451189898, "percentage": 25.23, "elapsed_time": "5:38:51", "remaining_time": "16:44:11"} +{"current_steps": 1040, "total_steps": 4118, "loss": 1.7399, "learning_rate": 0.0001, "epoch": 0.2525497814473045, "percentage": 25.25, "elapsed_time": "5:39:11", "remaining_time": "16:43:51"} +{"current_steps": 1041, "total_steps": 4118, "loss": 1.9032, "learning_rate": 0.0001, "epoch": 0.25279261777561923, "percentage": 25.28, "elapsed_time": "5:39:30", "remaining_time": "16:43:31"} +{"current_steps": 1042, "total_steps": 4118, "loss": 1.753, "learning_rate": 0.0001, "epoch": 0.25303545410393397, "percentage": 25.3, "elapsed_time": "5:39:50", "remaining_time": "16:43:12"} +{"current_steps": 1043, "total_steps": 4118, "loss": 1.6674, "learning_rate": 0.0001, "epoch": 0.25327829043224864, "percentage": 25.33, "elapsed_time": "5:40:09", "remaining_time": "16:42:52"} +{"current_steps": 1044, "total_steps": 4118, "loss": 1.6377, "learning_rate": 0.0001, "epoch": 0.2535211267605634, "percentage": 25.35, "elapsed_time": "5:40:29", "remaining_time": "16:42:33"} +{"current_steps": 1045, "total_steps": 4118, "loss": 1.6942, "learning_rate": 0.0001, "epoch": 0.2537639630888781, "percentage": 25.38, "elapsed_time": "5:40:48", "remaining_time": "16:42:13"} +{"current_steps": 1046, "total_steps": 4118, "loss": 1.6344, "learning_rate": 0.0001, "epoch": 0.2540067994171928, "percentage": 25.4, "elapsed_time": "5:41:08", "remaining_time": "16:41:53"} +{"current_steps": 1047, "total_steps": 4118, "loss": 1.7217, "learning_rate": 0.0001, "epoch": 0.2542496357455075, "percentage": 25.42, "elapsed_time": "5:41:28", "remaining_time": "16:41:34"} +{"current_steps": 1048, "total_steps": 4118, "loss": 1.8731, "learning_rate": 0.0001, "epoch": 0.25449247207382225, "percentage": 25.45, "elapsed_time": "5:41:47", "remaining_time": "16:41:14"} +{"current_steps": 1049, "total_steps": 4118, "loss": 1.8406, "learning_rate": 0.0001, "epoch": 0.254735308402137, "percentage": 25.47, "elapsed_time": "5:42:07", "remaining_time": "16:40:55"} +{"current_steps": 1050, "total_steps": 4118, "loss": 1.5891, "learning_rate": 0.0001, "epoch": 0.25497814473045166, "percentage": 25.5, "elapsed_time": "5:42:26", "remaining_time": "16:40:35"} +{"current_steps": 1051, "total_steps": 4118, "loss": 1.7559, "learning_rate": 0.0001, "epoch": 0.2552209810587664, "percentage": 25.52, "elapsed_time": "5:42:46", "remaining_time": "16:40:16"} +{"current_steps": 1052, "total_steps": 4118, "loss": 1.7964, "learning_rate": 0.0001, "epoch": 0.2554638173870811, "percentage": 25.55, "elapsed_time": "5:43:05", "remaining_time": "16:39:56"} +{"current_steps": 1053, "total_steps": 4118, "loss": 1.812, "learning_rate": 0.0001, "epoch": 0.2557066537153958, "percentage": 25.57, "elapsed_time": "5:43:25", "remaining_time": "16:39:37"} +{"current_steps": 1054, "total_steps": 4118, "loss": 1.7048, "learning_rate": 0.0001, "epoch": 0.25594949004371054, "percentage": 25.59, "elapsed_time": "5:43:45", "remaining_time": "16:39:17"} +{"current_steps": 1055, "total_steps": 4118, "loss": 1.5799, "learning_rate": 0.0001, "epoch": 0.25619232637202527, "percentage": 25.62, "elapsed_time": "5:44:04", "remaining_time": "16:38:58"} +{"current_steps": 1056, "total_steps": 4118, "loss": 1.8869, "learning_rate": 0.0001, "epoch": 0.25643516270033995, "percentage": 25.64, "elapsed_time": "5:44:24", "remaining_time": "16:38:38"} +{"current_steps": 1057, "total_steps": 4118, "loss": 1.9479, "learning_rate": 0.0001, "epoch": 0.2566779990286547, "percentage": 25.67, "elapsed_time": "5:44:43", "remaining_time": "16:38:18"} +{"current_steps": 1058, "total_steps": 4118, "loss": 1.7527, "learning_rate": 0.0001, "epoch": 0.2569208353569694, "percentage": 25.69, "elapsed_time": "5:45:03", "remaining_time": "16:37:59"} +{"current_steps": 1059, "total_steps": 4118, "loss": 1.6562, "learning_rate": 0.0001, "epoch": 0.25716367168528415, "percentage": 25.72, "elapsed_time": "5:45:23", "remaining_time": "16:37:39"} +{"current_steps": 1060, "total_steps": 4118, "loss": 1.6644, "learning_rate": 0.0001, "epoch": 0.2574065080135988, "percentage": 25.74, "elapsed_time": "5:45:42", "remaining_time": "16:37:20"} +{"current_steps": 1061, "total_steps": 4118, "loss": 1.6258, "learning_rate": 0.0001, "epoch": 0.25764934434191356, "percentage": 25.76, "elapsed_time": "5:46:02", "remaining_time": "16:37:00"} +{"current_steps": 1062, "total_steps": 4118, "loss": 1.7353, "learning_rate": 0.0001, "epoch": 0.2578921806702283, "percentage": 25.79, "elapsed_time": "5:46:21", "remaining_time": "16:36:41"} +{"current_steps": 1063, "total_steps": 4118, "loss": 1.738, "learning_rate": 0.0001, "epoch": 0.25813501699854297, "percentage": 25.81, "elapsed_time": "5:46:41", "remaining_time": "16:36:21"} +{"current_steps": 1064, "total_steps": 4118, "loss": 1.796, "learning_rate": 0.0001, "epoch": 0.2583778533268577, "percentage": 25.84, "elapsed_time": "5:47:00", "remaining_time": "16:36:02"} +{"current_steps": 1065, "total_steps": 4118, "loss": 1.5816, "learning_rate": 0.0001, "epoch": 0.25862068965517243, "percentage": 25.86, "elapsed_time": "5:47:20", "remaining_time": "16:35:42"} +{"current_steps": 1066, "total_steps": 4118, "loss": 2.0468, "learning_rate": 0.0001, "epoch": 0.2588635259834871, "percentage": 25.89, "elapsed_time": "5:47:39", "remaining_time": "16:35:22"} +{"current_steps": 1067, "total_steps": 4118, "loss": 1.6469, "learning_rate": 0.0001, "epoch": 0.25910636231180184, "percentage": 25.91, "elapsed_time": "5:47:59", "remaining_time": "16:35:03"} +{"current_steps": 1068, "total_steps": 4118, "loss": 1.6586, "learning_rate": 0.0001, "epoch": 0.2593491986401166, "percentage": 25.93, "elapsed_time": "5:48:19", "remaining_time": "16:34:43"} +{"current_steps": 1069, "total_steps": 4118, "loss": 1.814, "learning_rate": 0.0001, "epoch": 0.25959203496843125, "percentage": 25.96, "elapsed_time": "5:48:38", "remaining_time": "16:34:24"} +{"current_steps": 1070, "total_steps": 4118, "loss": 1.8207, "learning_rate": 0.0001, "epoch": 0.259834871296746, "percentage": 25.98, "elapsed_time": "5:48:58", "remaining_time": "16:34:04"} +{"current_steps": 1071, "total_steps": 4118, "loss": 1.7334, "learning_rate": 0.0001, "epoch": 0.2600777076250607, "percentage": 26.01, "elapsed_time": "5:49:17", "remaining_time": "16:33:45"} +{"current_steps": 1072, "total_steps": 4118, "loss": 1.8187, "learning_rate": 0.0001, "epoch": 0.26032054395337545, "percentage": 26.03, "elapsed_time": "5:49:37", "remaining_time": "16:33:25"} +{"current_steps": 1073, "total_steps": 4118, "loss": 1.5345, "learning_rate": 0.0001, "epoch": 0.2605633802816901, "percentage": 26.06, "elapsed_time": "5:49:57", "remaining_time": "16:33:06"} +{"current_steps": 1074, "total_steps": 4118, "loss": 1.9218, "learning_rate": 0.0001, "epoch": 0.26080621661000486, "percentage": 26.08, "elapsed_time": "5:50:16", "remaining_time": "16:32:46"} +{"current_steps": 1075, "total_steps": 4118, "loss": 1.7812, "learning_rate": 0.0001, "epoch": 0.2610490529383196, "percentage": 26.1, "elapsed_time": "5:50:36", "remaining_time": "16:32:27"} +{"current_steps": 1076, "total_steps": 4118, "loss": 1.5994, "learning_rate": 0.0001, "epoch": 0.26129188926663427, "percentage": 26.13, "elapsed_time": "5:50:55", "remaining_time": "16:32:07"} +{"current_steps": 1077, "total_steps": 4118, "loss": 1.8105, "learning_rate": 0.0001, "epoch": 0.261534725594949, "percentage": 26.15, "elapsed_time": "5:51:15", "remaining_time": "16:31:47"} +{"current_steps": 1078, "total_steps": 4118, "loss": 1.8232, "learning_rate": 0.0001, "epoch": 0.26177756192326374, "percentage": 26.18, "elapsed_time": "5:51:34", "remaining_time": "16:31:28"} +{"current_steps": 1079, "total_steps": 4118, "loss": 1.8029, "learning_rate": 0.0001, "epoch": 0.2620203982515784, "percentage": 26.2, "elapsed_time": "5:51:54", "remaining_time": "16:31:08"} +{"current_steps": 1080, "total_steps": 4118, "loss": 1.9495, "learning_rate": 0.0001, "epoch": 0.26226323457989315, "percentage": 26.23, "elapsed_time": "5:52:13", "remaining_time": "16:30:49"} +{"current_steps": 1081, "total_steps": 4118, "loss": 1.7417, "learning_rate": 0.0001, "epoch": 0.2625060709082079, "percentage": 26.25, "elapsed_time": "5:52:33", "remaining_time": "16:30:29"} +{"current_steps": 1082, "total_steps": 4118, "loss": 1.7526, "learning_rate": 0.0001, "epoch": 0.2627489072365226, "percentage": 26.27, "elapsed_time": "5:52:53", "remaining_time": "16:30:10"} +{"current_steps": 1083, "total_steps": 4118, "loss": 1.8755, "learning_rate": 0.0001, "epoch": 0.2629917435648373, "percentage": 26.3, "elapsed_time": "5:53:12", "remaining_time": "16:29:50"} +{"current_steps": 1084, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.263234579893152, "percentage": 26.32, "elapsed_time": "5:53:32", "remaining_time": "16:29:30"} +{"current_steps": 1085, "total_steps": 4118, "loss": 1.8442, "learning_rate": 0.0001, "epoch": 0.26347741622146675, "percentage": 26.35, "elapsed_time": "5:53:51", "remaining_time": "16:29:11"} +{"current_steps": 1086, "total_steps": 4118, "loss": 1.7769, "learning_rate": 0.0001, "epoch": 0.26372025254978143, "percentage": 26.37, "elapsed_time": "5:54:11", "remaining_time": "16:28:51"} +{"current_steps": 1087, "total_steps": 4118, "loss": 1.6673, "learning_rate": 0.0001, "epoch": 0.26396308887809616, "percentage": 26.4, "elapsed_time": "5:54:30", "remaining_time": "16:28:32"} +{"current_steps": 1088, "total_steps": 4118, "loss": 1.9274, "learning_rate": 0.0001, "epoch": 0.2642059252064109, "percentage": 26.42, "elapsed_time": "5:54:50", "remaining_time": "16:28:12"} +{"current_steps": 1089, "total_steps": 4118, "loss": 1.8435, "learning_rate": 0.0001, "epoch": 0.2644487615347256, "percentage": 26.44, "elapsed_time": "5:55:10", "remaining_time": "16:27:53"} +{"current_steps": 1090, "total_steps": 4118, "loss": 1.97, "learning_rate": 0.0001, "epoch": 0.2646915978630403, "percentage": 26.47, "elapsed_time": "5:55:29", "remaining_time": "16:27:33"} +{"current_steps": 1091, "total_steps": 4118, "loss": 1.8116, "learning_rate": 0.0001, "epoch": 0.26493443419135504, "percentage": 26.49, "elapsed_time": "5:55:49", "remaining_time": "16:27:13"} +{"current_steps": 1092, "total_steps": 4118, "loss": 1.5828, "learning_rate": 0.0001, "epoch": 0.2651772705196697, "percentage": 26.52, "elapsed_time": "5:56:08", "remaining_time": "16:26:54"} +{"current_steps": 1093, "total_steps": 4118, "loss": 1.8127, "learning_rate": 0.0001, "epoch": 0.26542010684798445, "percentage": 26.54, "elapsed_time": "5:56:28", "remaining_time": "16:26:34"} +{"current_steps": 1094, "total_steps": 4118, "loss": 1.8799, "learning_rate": 0.0001, "epoch": 0.2656629431762992, "percentage": 26.57, "elapsed_time": "5:56:47", "remaining_time": "16:26:15"} +{"current_steps": 1095, "total_steps": 4118, "loss": 1.6312, "learning_rate": 0.0001, "epoch": 0.2659057795046139, "percentage": 26.59, "elapsed_time": "5:57:07", "remaining_time": "16:25:55"} +{"current_steps": 1096, "total_steps": 4118, "loss": 1.6453, "learning_rate": 0.0001, "epoch": 0.2661486158329286, "percentage": 26.61, "elapsed_time": "5:57:27", "remaining_time": "16:25:35"} +{"current_steps": 1097, "total_steps": 4118, "loss": 1.8436, "learning_rate": 0.0001, "epoch": 0.2663914521612433, "percentage": 26.64, "elapsed_time": "5:57:46", "remaining_time": "16:25:16"} +{"current_steps": 1098, "total_steps": 4118, "loss": 1.5988, "learning_rate": 0.0001, "epoch": 0.26663428848955806, "percentage": 26.66, "elapsed_time": "5:58:06", "remaining_time": "16:24:56"} +{"current_steps": 1099, "total_steps": 4118, "loss": 1.5106, "learning_rate": 0.0001, "epoch": 0.26687712481787274, "percentage": 26.69, "elapsed_time": "5:58:25", "remaining_time": "16:24:37"} +{"current_steps": 1100, "total_steps": 4118, "loss": 1.7809, "learning_rate": 0.0001, "epoch": 0.26711996114618747, "percentage": 26.71, "elapsed_time": "5:58:45", "remaining_time": "16:24:17"} +{"current_steps": 1101, "total_steps": 4118, "loss": 1.7002, "learning_rate": 0.0001, "epoch": 0.2673627974745022, "percentage": 26.74, "elapsed_time": "5:59:04", "remaining_time": "16:23:57"} +{"current_steps": 1102, "total_steps": 4118, "loss": 1.8422, "learning_rate": 0.0001, "epoch": 0.2676056338028169, "percentage": 26.76, "elapsed_time": "5:59:24", "remaining_time": "16:23:38"} +{"current_steps": 1103, "total_steps": 4118, "loss": 1.7556, "learning_rate": 0.0001, "epoch": 0.2678484701311316, "percentage": 26.78, "elapsed_time": "5:59:43", "remaining_time": "16:23:18"} +{"current_steps": 1104, "total_steps": 4118, "loss": 1.7899, "learning_rate": 0.0001, "epoch": 0.26809130645944634, "percentage": 26.81, "elapsed_time": "6:00:03", "remaining_time": "16:22:59"} +{"current_steps": 1105, "total_steps": 4118, "loss": 1.7662, "learning_rate": 0.0001, "epoch": 0.2683341427877611, "percentage": 26.83, "elapsed_time": "6:00:23", "remaining_time": "16:22:39"} +{"current_steps": 1106, "total_steps": 4118, "loss": 1.6897, "learning_rate": 0.0001, "epoch": 0.26857697911607575, "percentage": 26.86, "elapsed_time": "6:00:42", "remaining_time": "16:22:19"} +{"current_steps": 1107, "total_steps": 4118, "loss": 1.8122, "learning_rate": 0.0001, "epoch": 0.2688198154443905, "percentage": 26.88, "elapsed_time": "6:01:02", "remaining_time": "16:22:00"} +{"current_steps": 1108, "total_steps": 4118, "loss": 1.5619, "learning_rate": 0.0001, "epoch": 0.2690626517727052, "percentage": 26.91, "elapsed_time": "6:01:21", "remaining_time": "16:21:40"} +{"current_steps": 1109, "total_steps": 4118, "loss": 1.871, "learning_rate": 0.0001, "epoch": 0.2693054881010199, "percentage": 26.93, "elapsed_time": "6:01:41", "remaining_time": "16:21:21"} +{"current_steps": 1110, "total_steps": 4118, "loss": 1.8251, "learning_rate": 0.0001, "epoch": 0.26954832442933463, "percentage": 26.95, "elapsed_time": "6:02:00", "remaining_time": "16:21:01"} +{"current_steps": 1111, "total_steps": 4118, "loss": 1.7744, "learning_rate": 0.0001, "epoch": 0.26979116075764936, "percentage": 26.98, "elapsed_time": "6:02:20", "remaining_time": "16:20:42"} +{"current_steps": 1112, "total_steps": 4118, "loss": 1.6958, "learning_rate": 0.0001, "epoch": 0.27003399708596404, "percentage": 27.0, "elapsed_time": "6:02:40", "remaining_time": "16:20:22"} +{"current_steps": 1113, "total_steps": 4118, "loss": 1.7116, "learning_rate": 0.0001, "epoch": 0.27027683341427877, "percentage": 27.03, "elapsed_time": "6:02:59", "remaining_time": "16:20:02"} +{"current_steps": 1114, "total_steps": 4118, "loss": 1.7647, "learning_rate": 0.0001, "epoch": 0.2705196697425935, "percentage": 27.05, "elapsed_time": "6:03:19", "remaining_time": "16:19:43"} +{"current_steps": 1115, "total_steps": 4118, "loss": 1.724, "learning_rate": 0.0001, "epoch": 0.2707625060709082, "percentage": 27.08, "elapsed_time": "6:03:38", "remaining_time": "16:19:23"} +{"current_steps": 1116, "total_steps": 4118, "loss": 1.8873, "learning_rate": 0.0001, "epoch": 0.2710053423992229, "percentage": 27.1, "elapsed_time": "6:03:58", "remaining_time": "16:19:04"} +{"current_steps": 1117, "total_steps": 4118, "loss": 1.6416, "learning_rate": 0.0001, "epoch": 0.27124817872753765, "percentage": 27.12, "elapsed_time": "6:04:17", "remaining_time": "16:18:44"} +{"current_steps": 1118, "total_steps": 4118, "loss": 1.8069, "learning_rate": 0.0001, "epoch": 0.2714910150558524, "percentage": 27.15, "elapsed_time": "6:04:37", "remaining_time": "16:18:24"} +{"current_steps": 1119, "total_steps": 4118, "loss": 1.7016, "learning_rate": 0.0001, "epoch": 0.27173385138416706, "percentage": 27.17, "elapsed_time": "6:04:56", "remaining_time": "16:18:05"} +{"current_steps": 1120, "total_steps": 4118, "loss": 1.5827, "learning_rate": 0.0001, "epoch": 0.2719766877124818, "percentage": 27.2, "elapsed_time": "6:05:16", "remaining_time": "16:17:45"} +{"current_steps": 1121, "total_steps": 4118, "loss": 1.8047, "learning_rate": 0.0001, "epoch": 0.2722195240407965, "percentage": 27.22, "elapsed_time": "6:05:36", "remaining_time": "16:17:26"} +{"current_steps": 1122, "total_steps": 4118, "loss": 1.7379, "learning_rate": 0.0001, "epoch": 0.2724623603691112, "percentage": 27.25, "elapsed_time": "6:05:55", "remaining_time": "16:17:06"} +{"current_steps": 1123, "total_steps": 4118, "loss": 1.9112, "learning_rate": 0.0001, "epoch": 0.27270519669742593, "percentage": 27.27, "elapsed_time": "6:06:15", "remaining_time": "16:16:47"} +{"current_steps": 1124, "total_steps": 4118, "loss": 1.7956, "learning_rate": 0.0001, "epoch": 0.27294803302574067, "percentage": 27.29, "elapsed_time": "6:06:34", "remaining_time": "16:16:27"} +{"current_steps": 1125, "total_steps": 4118, "loss": 1.6251, "learning_rate": 0.0001, "epoch": 0.27319086935405534, "percentage": 27.32, "elapsed_time": "6:06:54", "remaining_time": "16:16:07"} +{"current_steps": 1126, "total_steps": 4118, "loss": 1.9377, "learning_rate": 0.0001, "epoch": 0.2734337056823701, "percentage": 27.34, "elapsed_time": "6:07:13", "remaining_time": "16:15:48"} +{"current_steps": 1127, "total_steps": 4118, "loss": 1.6295, "learning_rate": 0.0001, "epoch": 0.2736765420106848, "percentage": 27.37, "elapsed_time": "6:07:33", "remaining_time": "16:15:28"} +{"current_steps": 1128, "total_steps": 4118, "loss": 1.8094, "learning_rate": 0.0001, "epoch": 0.27391937833899954, "percentage": 27.39, "elapsed_time": "6:07:52", "remaining_time": "16:15:09"} +{"current_steps": 1129, "total_steps": 4118, "loss": 1.6865, "learning_rate": 0.0001, "epoch": 0.2741622146673142, "percentage": 27.42, "elapsed_time": "6:08:12", "remaining_time": "16:14:49"} +{"current_steps": 1130, "total_steps": 4118, "loss": 1.7295, "learning_rate": 0.0001, "epoch": 0.27440505099562895, "percentage": 27.44, "elapsed_time": "6:08:32", "remaining_time": "16:14:29"} +{"current_steps": 1131, "total_steps": 4118, "loss": 1.7305, "learning_rate": 0.0001, "epoch": 0.2746478873239437, "percentage": 27.46, "elapsed_time": "6:08:51", "remaining_time": "16:14:10"} +{"current_steps": 1132, "total_steps": 4118, "loss": 1.6761, "learning_rate": 0.0001, "epoch": 0.27489072365225836, "percentage": 27.49, "elapsed_time": "6:09:11", "remaining_time": "16:13:50"} +{"current_steps": 1133, "total_steps": 4118, "loss": 1.9184, "learning_rate": 0.0001, "epoch": 0.2751335599805731, "percentage": 27.51, "elapsed_time": "6:09:30", "remaining_time": "16:13:31"} +{"current_steps": 1134, "total_steps": 4118, "loss": 1.7171, "learning_rate": 0.0001, "epoch": 0.2753763963088878, "percentage": 27.54, "elapsed_time": "6:09:50", "remaining_time": "16:13:11"} +{"current_steps": 1135, "total_steps": 4118, "loss": 1.9584, "learning_rate": 0.0001, "epoch": 0.2756192326372025, "percentage": 27.56, "elapsed_time": "6:10:09", "remaining_time": "16:12:52"} +{"current_steps": 1136, "total_steps": 4118, "loss": 1.7676, "learning_rate": 0.0001, "epoch": 0.27586206896551724, "percentage": 27.59, "elapsed_time": "6:10:29", "remaining_time": "16:12:32"} +{"current_steps": 1137, "total_steps": 4118, "loss": 1.7546, "learning_rate": 0.0001, "epoch": 0.27610490529383197, "percentage": 27.61, "elapsed_time": "6:10:49", "remaining_time": "16:12:12"} +{"current_steps": 1138, "total_steps": 4118, "loss": 1.923, "learning_rate": 0.0001, "epoch": 0.27634774162214665, "percentage": 27.63, "elapsed_time": "6:11:08", "remaining_time": "16:11:53"} +{"current_steps": 1139, "total_steps": 4118, "loss": 1.7745, "learning_rate": 0.0001, "epoch": 0.2765905779504614, "percentage": 27.66, "elapsed_time": "6:11:28", "remaining_time": "16:11:33"} +{"current_steps": 1140, "total_steps": 4118, "loss": 1.8606, "learning_rate": 0.0001, "epoch": 0.2768334142787761, "percentage": 27.68, "elapsed_time": "6:11:47", "remaining_time": "16:11:14"} +{"current_steps": 1141, "total_steps": 4118, "loss": 1.7321, "learning_rate": 0.0001, "epoch": 0.27707625060709085, "percentage": 27.71, "elapsed_time": "6:12:07", "remaining_time": "16:10:54"} +{"current_steps": 1142, "total_steps": 4118, "loss": 1.877, "learning_rate": 0.0001, "epoch": 0.2773190869354055, "percentage": 27.73, "elapsed_time": "6:12:26", "remaining_time": "16:10:35"} +{"current_steps": 1143, "total_steps": 4118, "loss": 1.7511, "learning_rate": 0.0001, "epoch": 0.27756192326372026, "percentage": 27.76, "elapsed_time": "6:12:46", "remaining_time": "16:10:15"} +{"current_steps": 1144, "total_steps": 4118, "loss": 1.772, "learning_rate": 0.0001, "epoch": 0.277804759592035, "percentage": 27.78, "elapsed_time": "6:13:06", "remaining_time": "16:09:55"} +{"current_steps": 1145, "total_steps": 4118, "loss": 1.5659, "learning_rate": 0.0001, "epoch": 0.27804759592034967, "percentage": 27.8, "elapsed_time": "6:13:25", "remaining_time": "16:09:36"} +{"current_steps": 1146, "total_steps": 4118, "loss": 1.7244, "learning_rate": 0.0001, "epoch": 0.2782904322486644, "percentage": 27.83, "elapsed_time": "6:13:45", "remaining_time": "16:09:16"} +{"current_steps": 1147, "total_steps": 4118, "loss": 1.796, "learning_rate": 0.0001, "epoch": 0.27853326857697913, "percentage": 27.85, "elapsed_time": "6:14:04", "remaining_time": "16:08:57"} +{"current_steps": 1148, "total_steps": 4118, "loss": 1.8155, "learning_rate": 0.0001, "epoch": 0.2787761049052938, "percentage": 27.88, "elapsed_time": "6:14:24", "remaining_time": "16:08:37"} +{"current_steps": 1149, "total_steps": 4118, "loss": 1.7212, "learning_rate": 0.0001, "epoch": 0.27901894123360854, "percentage": 27.9, "elapsed_time": "6:14:43", "remaining_time": "16:08:17"} +{"current_steps": 1150, "total_steps": 4118, "loss": 1.6942, "learning_rate": 0.0001, "epoch": 0.2792617775619233, "percentage": 27.93, "elapsed_time": "6:15:03", "remaining_time": "16:07:58"} +{"current_steps": 1151, "total_steps": 4118, "loss": 1.823, "learning_rate": 0.0001, "epoch": 0.279504613890238, "percentage": 27.95, "elapsed_time": "6:15:22", "remaining_time": "16:07:38"} +{"current_steps": 1152, "total_steps": 4118, "loss": 1.6519, "learning_rate": 0.0001, "epoch": 0.2797474502185527, "percentage": 27.97, "elapsed_time": "6:15:42", "remaining_time": "16:07:18"} +{"current_steps": 1153, "total_steps": 4118, "loss": 1.84, "learning_rate": 0.0001, "epoch": 0.2799902865468674, "percentage": 28.0, "elapsed_time": "6:16:02", "remaining_time": "16:06:59"} +{"current_steps": 1154, "total_steps": 4118, "loss": 1.695, "learning_rate": 0.0001, "epoch": 0.28023312287518215, "percentage": 28.02, "elapsed_time": "6:16:21", "remaining_time": "16:06:39"} +{"current_steps": 1155, "total_steps": 4118, "loss": 1.4541, "learning_rate": 0.0001, "epoch": 0.2804759592034968, "percentage": 28.05, "elapsed_time": "6:16:41", "remaining_time": "16:06:20"} +{"current_steps": 1156, "total_steps": 4118, "loss": 1.8255, "learning_rate": 0.0001, "epoch": 0.28071879553181156, "percentage": 28.07, "elapsed_time": "6:17:00", "remaining_time": "16:06:00"} +{"current_steps": 1157, "total_steps": 4118, "loss": 1.9525, "learning_rate": 0.0001, "epoch": 0.2809616318601263, "percentage": 28.1, "elapsed_time": "6:17:20", "remaining_time": "16:05:41"} +{"current_steps": 1158, "total_steps": 4118, "loss": 1.7754, "learning_rate": 0.0001, "epoch": 0.28120446818844097, "percentage": 28.12, "elapsed_time": "6:17:39", "remaining_time": "16:05:21"} +{"current_steps": 1159, "total_steps": 4118, "loss": 1.4668, "learning_rate": 0.0001, "epoch": 0.2814473045167557, "percentage": 28.14, "elapsed_time": "6:17:59", "remaining_time": "16:05:01"} +{"current_steps": 1160, "total_steps": 4118, "loss": 1.6221, "learning_rate": 0.0001, "epoch": 0.28169014084507044, "percentage": 28.17, "elapsed_time": "6:18:18", "remaining_time": "16:04:42"} +{"current_steps": 1161, "total_steps": 4118, "loss": 1.5958, "learning_rate": 0.0001, "epoch": 0.2819329771733851, "percentage": 28.19, "elapsed_time": "6:18:38", "remaining_time": "16:04:22"} +{"current_steps": 1162, "total_steps": 4118, "loss": 1.8089, "learning_rate": 0.0001, "epoch": 0.28217581350169985, "percentage": 28.22, "elapsed_time": "6:18:58", "remaining_time": "16:04:03"} +{"current_steps": 1163, "total_steps": 4118, "loss": 1.6301, "learning_rate": 0.0001, "epoch": 0.2824186498300146, "percentage": 28.24, "elapsed_time": "6:19:17", "remaining_time": "16:03:43"} +{"current_steps": 1164, "total_steps": 4118, "loss": 1.8193, "learning_rate": 0.0001, "epoch": 0.2826614861583293, "percentage": 28.27, "elapsed_time": "6:19:37", "remaining_time": "16:03:23"} +{"current_steps": 1165, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.282904322486644, "percentage": 28.29, "elapsed_time": "6:19:56", "remaining_time": "16:03:04"} +{"current_steps": 1166, "total_steps": 4118, "loss": 1.8017, "learning_rate": 0.0001, "epoch": 0.2831471588149587, "percentage": 28.31, "elapsed_time": "6:20:16", "remaining_time": "16:02:44"} +{"current_steps": 1167, "total_steps": 4118, "loss": 1.9064, "learning_rate": 0.0001, "epoch": 0.28338999514327345, "percentage": 28.34, "elapsed_time": "6:20:35", "remaining_time": "16:02:25"} +{"current_steps": 1168, "total_steps": 4118, "loss": 1.7043, "learning_rate": 0.0001, "epoch": 0.28363283147158813, "percentage": 28.36, "elapsed_time": "6:20:55", "remaining_time": "16:02:05"} +{"current_steps": 1169, "total_steps": 4118, "loss": 1.7804, "learning_rate": 0.0001, "epoch": 0.28387566779990286, "percentage": 28.39, "elapsed_time": "6:21:14", "remaining_time": "16:01:45"} +{"current_steps": 1170, "total_steps": 4118, "loss": 1.7713, "learning_rate": 0.0001, "epoch": 0.2841185041282176, "percentage": 28.41, "elapsed_time": "6:21:34", "remaining_time": "16:01:26"} +{"current_steps": 1171, "total_steps": 4118, "loss": 1.7273, "learning_rate": 0.0001, "epoch": 0.2843613404565323, "percentage": 28.44, "elapsed_time": "6:21:54", "remaining_time": "16:01:06"} +{"current_steps": 1172, "total_steps": 4118, "loss": 1.4238, "learning_rate": 0.0001, "epoch": 0.284604176784847, "percentage": 28.46, "elapsed_time": "6:22:13", "remaining_time": "16:00:47"} +{"current_steps": 1173, "total_steps": 4118, "loss": 1.7404, "learning_rate": 0.0001, "epoch": 0.28484701311316174, "percentage": 28.48, "elapsed_time": "6:22:33", "remaining_time": "16:00:27"} +{"current_steps": 1174, "total_steps": 4118, "loss": 1.7718, "learning_rate": 0.0001, "epoch": 0.2850898494414764, "percentage": 28.51, "elapsed_time": "6:22:52", "remaining_time": "16:00:07"} +{"current_steps": 1175, "total_steps": 4118, "loss": 1.6161, "learning_rate": 0.0001, "epoch": 0.28533268576979115, "percentage": 28.53, "elapsed_time": "6:23:12", "remaining_time": "15:59:48"} +{"current_steps": 1176, "total_steps": 4118, "loss": 1.7229, "learning_rate": 0.0001, "epoch": 0.2855755220981059, "percentage": 28.56, "elapsed_time": "6:23:31", "remaining_time": "15:59:28"} +{"current_steps": 1177, "total_steps": 4118, "loss": 1.8268, "learning_rate": 0.0001, "epoch": 0.2858183584264206, "percentage": 28.58, "elapsed_time": "6:23:51", "remaining_time": "15:59:09"} +{"current_steps": 1178, "total_steps": 4118, "loss": 1.8252, "learning_rate": 0.0001, "epoch": 0.2860611947547353, "percentage": 28.61, "elapsed_time": "6:24:10", "remaining_time": "15:58:49"} +{"current_steps": 1179, "total_steps": 4118, "loss": 1.8873, "learning_rate": 0.0001, "epoch": 0.28630403108305, "percentage": 28.63, "elapsed_time": "6:24:30", "remaining_time": "15:58:29"} +{"current_steps": 1180, "total_steps": 4118, "loss": 1.8121, "learning_rate": 0.0001, "epoch": 0.28654686741136476, "percentage": 28.65, "elapsed_time": "6:24:50", "remaining_time": "15:58:10"} +{"current_steps": 1181, "total_steps": 4118, "loss": 1.804, "learning_rate": 0.0001, "epoch": 0.28678970373967944, "percentage": 28.68, "elapsed_time": "6:25:09", "remaining_time": "15:57:50"} +{"current_steps": 1182, "total_steps": 4118, "loss": 1.8986, "learning_rate": 0.0001, "epoch": 0.28703254006799417, "percentage": 28.7, "elapsed_time": "6:25:29", "remaining_time": "15:57:30"} +{"current_steps": 1183, "total_steps": 4118, "loss": 1.8693, "learning_rate": 0.0001, "epoch": 0.2872753763963089, "percentage": 28.73, "elapsed_time": "6:25:48", "remaining_time": "15:57:11"} +{"current_steps": 1184, "total_steps": 4118, "loss": 1.7756, "learning_rate": 0.0001, "epoch": 0.2875182127246236, "percentage": 28.75, "elapsed_time": "6:26:08", "remaining_time": "15:56:51"} +{"current_steps": 1185, "total_steps": 4118, "loss": 1.7511, "learning_rate": 0.0001, "epoch": 0.2877610490529383, "percentage": 28.78, "elapsed_time": "6:26:27", "remaining_time": "15:56:32"} +{"current_steps": 1186, "total_steps": 4118, "loss": 1.9858, "learning_rate": 0.0001, "epoch": 0.28800388538125304, "percentage": 28.8, "elapsed_time": "6:26:47", "remaining_time": "15:56:12"} +{"current_steps": 1187, "total_steps": 4118, "loss": 1.8784, "learning_rate": 0.0001, "epoch": 0.2882467217095678, "percentage": 28.82, "elapsed_time": "6:27:06", "remaining_time": "15:55:52"} +{"current_steps": 1188, "total_steps": 4118, "loss": 1.6092, "learning_rate": 0.0001, "epoch": 0.28848955803788245, "percentage": 28.85, "elapsed_time": "6:27:26", "remaining_time": "15:55:33"} +{"current_steps": 1189, "total_steps": 4118, "loss": 1.7471, "learning_rate": 0.0001, "epoch": 0.2887323943661972, "percentage": 28.87, "elapsed_time": "6:27:45", "remaining_time": "15:55:13"} +{"current_steps": 1190, "total_steps": 4118, "loss": 1.694, "learning_rate": 0.0001, "epoch": 0.2889752306945119, "percentage": 28.9, "elapsed_time": "6:28:05", "remaining_time": "15:54:54"} +{"current_steps": 1191, "total_steps": 4118, "loss": 1.7736, "learning_rate": 0.0001, "epoch": 0.2892180670228266, "percentage": 28.92, "elapsed_time": "6:28:25", "remaining_time": "15:54:34"} +{"current_steps": 1192, "total_steps": 4118, "loss": 1.8875, "learning_rate": 0.0001, "epoch": 0.28946090335114133, "percentage": 28.95, "elapsed_time": "6:28:44", "remaining_time": "15:54:14"} +{"current_steps": 1193, "total_steps": 4118, "loss": 1.771, "learning_rate": 0.0001, "epoch": 0.28970373967945606, "percentage": 28.97, "elapsed_time": "6:29:04", "remaining_time": "15:53:55"} +{"current_steps": 1194, "total_steps": 4118, "loss": 1.9663, "learning_rate": 0.0001, "epoch": 0.28994657600777074, "percentage": 28.99, "elapsed_time": "6:29:23", "remaining_time": "15:53:35"} +{"current_steps": 1195, "total_steps": 4118, "loss": 1.803, "learning_rate": 0.0001, "epoch": 0.2901894123360855, "percentage": 29.02, "elapsed_time": "6:29:43", "remaining_time": "15:53:16"} +{"current_steps": 1196, "total_steps": 4118, "loss": 1.6879, "learning_rate": 0.0001, "epoch": 0.2904322486644002, "percentage": 29.04, "elapsed_time": "6:30:02", "remaining_time": "15:52:56"} +{"current_steps": 1197, "total_steps": 4118, "loss": 1.5151, "learning_rate": 0.0001, "epoch": 0.2906750849927149, "percentage": 29.07, "elapsed_time": "6:30:22", "remaining_time": "15:52:36"} +{"current_steps": 1198, "total_steps": 4118, "loss": 1.7852, "learning_rate": 0.0001, "epoch": 0.2909179213210296, "percentage": 29.09, "elapsed_time": "6:30:41", "remaining_time": "15:52:17"} +{"current_steps": 1199, "total_steps": 4118, "loss": 1.6781, "learning_rate": 0.0001, "epoch": 0.29116075764934435, "percentage": 29.12, "elapsed_time": "6:31:01", "remaining_time": "15:51:57"} +{"current_steps": 1200, "total_steps": 4118, "loss": 1.8683, "learning_rate": 0.0001, "epoch": 0.2914035939776591, "percentage": 29.14, "elapsed_time": "6:31:21", "remaining_time": "15:51:38"} +{"current_steps": 1201, "total_steps": 4118, "loss": 1.5614, "learning_rate": 0.0001, "epoch": 0.29164643030597376, "percentage": 29.16, "elapsed_time": "6:31:40", "remaining_time": "15:51:18"} +{"current_steps": 1202, "total_steps": 4118, "loss": 1.7026, "learning_rate": 0.0001, "epoch": 0.2918892666342885, "percentage": 29.19, "elapsed_time": "6:32:00", "remaining_time": "15:50:58"} +{"current_steps": 1203, "total_steps": 4118, "loss": 1.9143, "learning_rate": 0.0001, "epoch": 0.2921321029626032, "percentage": 29.21, "elapsed_time": "6:32:19", "remaining_time": "15:50:39"} +{"current_steps": 1204, "total_steps": 4118, "loss": 1.6224, "learning_rate": 0.0001, "epoch": 0.2923749392909179, "percentage": 29.24, "elapsed_time": "6:32:39", "remaining_time": "15:50:19"} +{"current_steps": 1205, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.29261777561923263, "percentage": 29.26, "elapsed_time": "6:32:58", "remaining_time": "15:50:00"} +{"current_steps": 1206, "total_steps": 4118, "loss": 1.6741, "learning_rate": 0.0001, "epoch": 0.29286061194754737, "percentage": 29.29, "elapsed_time": "6:33:18", "remaining_time": "15:49:40"} +{"current_steps": 1207, "total_steps": 4118, "loss": 1.7123, "learning_rate": 0.0001, "epoch": 0.29310344827586204, "percentage": 29.31, "elapsed_time": "6:33:37", "remaining_time": "15:49:21"} +{"current_steps": 1208, "total_steps": 4118, "loss": 1.8572, "learning_rate": 0.0001, "epoch": 0.2933462846041768, "percentage": 29.33, "elapsed_time": "6:33:57", "remaining_time": "15:49:01"} +{"current_steps": 1209, "total_steps": 4118, "loss": 1.7138, "learning_rate": 0.0001, "epoch": 0.2935891209324915, "percentage": 29.36, "elapsed_time": "6:34:17", "remaining_time": "15:48:41"} +{"current_steps": 1210, "total_steps": 4118, "loss": 1.6654, "learning_rate": 0.0001, "epoch": 0.29383195726080624, "percentage": 29.38, "elapsed_time": "6:34:36", "remaining_time": "15:48:22"} +{"current_steps": 1211, "total_steps": 4118, "loss": 1.9074, "learning_rate": 0.0001, "epoch": 0.2940747935891209, "percentage": 29.41, "elapsed_time": "6:34:56", "remaining_time": "15:48:02"} +{"current_steps": 1212, "total_steps": 4118, "loss": 1.6404, "learning_rate": 0.0001, "epoch": 0.29431762991743565, "percentage": 29.43, "elapsed_time": "6:35:15", "remaining_time": "15:47:43"} +{"current_steps": 1213, "total_steps": 4118, "loss": 1.7395, "learning_rate": 0.0001, "epoch": 0.2945604662457504, "percentage": 29.46, "elapsed_time": "6:35:35", "remaining_time": "15:47:23"} +{"current_steps": 1214, "total_steps": 4118, "loss": 1.8, "learning_rate": 0.0001, "epoch": 0.29480330257406506, "percentage": 29.48, "elapsed_time": "6:35:54", "remaining_time": "15:47:04"} +{"current_steps": 1215, "total_steps": 4118, "loss": 1.802, "learning_rate": 0.0001, "epoch": 0.2950461389023798, "percentage": 29.5, "elapsed_time": "6:36:14", "remaining_time": "15:46:44"} +{"current_steps": 1216, "total_steps": 4118, "loss": 1.727, "learning_rate": 0.0001, "epoch": 0.29528897523069453, "percentage": 29.53, "elapsed_time": "6:36:34", "remaining_time": "15:46:24"} +{"current_steps": 1217, "total_steps": 4118, "loss": 1.6385, "learning_rate": 0.0001, "epoch": 0.2955318115590092, "percentage": 29.55, "elapsed_time": "6:36:53", "remaining_time": "15:46:05"} +{"current_steps": 1218, "total_steps": 4118, "loss": 1.6915, "learning_rate": 0.0001, "epoch": 0.29577464788732394, "percentage": 29.58, "elapsed_time": "6:37:13", "remaining_time": "15:45:45"} +{"current_steps": 1219, "total_steps": 4118, "loss": 1.4945, "learning_rate": 0.0001, "epoch": 0.29601748421563867, "percentage": 29.6, "elapsed_time": "6:37:32", "remaining_time": "15:45:26"} +{"current_steps": 1220, "total_steps": 4118, "loss": 1.6165, "learning_rate": 0.0001, "epoch": 0.29626032054395335, "percentage": 29.63, "elapsed_time": "6:37:52", "remaining_time": "15:45:06"} +{"current_steps": 1221, "total_steps": 4118, "loss": 1.7205, "learning_rate": 0.0001, "epoch": 0.2965031568722681, "percentage": 29.65, "elapsed_time": "6:38:11", "remaining_time": "15:44:46"} +{"current_steps": 1222, "total_steps": 4118, "loss": 1.7241, "learning_rate": 0.0001, "epoch": 0.2967459932005828, "percentage": 29.67, "elapsed_time": "6:38:31", "remaining_time": "15:44:27"} +{"current_steps": 1223, "total_steps": 4118, "loss": 1.7513, "learning_rate": 0.0001, "epoch": 0.29698882952889755, "percentage": 29.7, "elapsed_time": "6:38:51", "remaining_time": "15:44:07"} +{"current_steps": 1224, "total_steps": 4118, "loss": 1.9384, "learning_rate": 0.0001, "epoch": 0.2972316658572122, "percentage": 29.72, "elapsed_time": "6:39:10", "remaining_time": "15:43:48"} +{"current_steps": 1225, "total_steps": 4118, "loss": 1.807, "learning_rate": 0.0001, "epoch": 0.29747450218552696, "percentage": 29.75, "elapsed_time": "6:39:30", "remaining_time": "15:43:28"} +{"current_steps": 1226, "total_steps": 4118, "loss": 2.0577, "learning_rate": 0.0001, "epoch": 0.2977173385138417, "percentage": 29.77, "elapsed_time": "6:39:49", "remaining_time": "15:43:08"} +{"current_steps": 1227, "total_steps": 4118, "loss": 1.9314, "learning_rate": 0.0001, "epoch": 0.29796017484215637, "percentage": 29.8, "elapsed_time": "6:40:09", "remaining_time": "15:42:49"} +{"current_steps": 1228, "total_steps": 4118, "loss": 1.6208, "learning_rate": 0.0001, "epoch": 0.2982030111704711, "percentage": 29.82, "elapsed_time": "6:40:28", "remaining_time": "15:42:29"} +{"current_steps": 1229, "total_steps": 4118, "loss": 1.8942, "learning_rate": 0.0001, "epoch": 0.29844584749878583, "percentage": 29.84, "elapsed_time": "6:40:48", "remaining_time": "15:42:10"} +{"current_steps": 1230, "total_steps": 4118, "loss": 1.6891, "learning_rate": 0.0001, "epoch": 0.2986886838271005, "percentage": 29.87, "elapsed_time": "6:41:07", "remaining_time": "15:41:50"} +{"current_steps": 1231, "total_steps": 4118, "loss": 1.7958, "learning_rate": 0.0001, "epoch": 0.29893152015541524, "percentage": 29.89, "elapsed_time": "6:41:27", "remaining_time": "15:41:31"} +{"current_steps": 1232, "total_steps": 4118, "loss": 1.6556, "learning_rate": 0.0001, "epoch": 0.29917435648373, "percentage": 29.92, "elapsed_time": "6:41:47", "remaining_time": "15:41:11"} +{"current_steps": 1233, "total_steps": 4118, "loss": 1.6874, "learning_rate": 0.0001, "epoch": 0.2994171928120447, "percentage": 29.94, "elapsed_time": "6:42:06", "remaining_time": "15:40:51"} +{"current_steps": 1234, "total_steps": 4118, "loss": 1.7894, "learning_rate": 0.0001, "epoch": 0.2996600291403594, "percentage": 29.97, "elapsed_time": "6:42:26", "remaining_time": "15:40:32"} +{"current_steps": 1235, "total_steps": 4118, "loss": 1.8181, "learning_rate": 0.0001, "epoch": 0.2999028654686741, "percentage": 29.99, "elapsed_time": "6:42:45", "remaining_time": "15:40:12"} +{"current_steps": 1236, "total_steps": 4118, "loss": 1.8422, "learning_rate": 0.0001, "epoch": 0.30014570179698885, "percentage": 30.01, "elapsed_time": "6:43:05", "remaining_time": "15:39:53"} +{"current_steps": 1237, "total_steps": 4118, "loss": 1.9534, "learning_rate": 0.0001, "epoch": 0.30038853812530353, "percentage": 30.04, "elapsed_time": "6:43:24", "remaining_time": "15:39:33"} +{"current_steps": 1238, "total_steps": 4118, "loss": 1.6591, "learning_rate": 0.0001, "epoch": 0.30063137445361826, "percentage": 30.06, "elapsed_time": "6:43:44", "remaining_time": "15:39:14"} +{"current_steps": 1239, "total_steps": 4118, "loss": 1.7531, "learning_rate": 0.0001, "epoch": 0.300874210781933, "percentage": 30.09, "elapsed_time": "6:44:03", "remaining_time": "15:38:54"} +{"current_steps": 1240, "total_steps": 4118, "loss": 1.8698, "learning_rate": 0.0001, "epoch": 0.30111704711024767, "percentage": 30.11, "elapsed_time": "6:44:23", "remaining_time": "15:38:34"} +{"current_steps": 1241, "total_steps": 4118, "loss": 1.7221, "learning_rate": 0.0001, "epoch": 0.3013598834385624, "percentage": 30.14, "elapsed_time": "6:44:43", "remaining_time": "15:38:15"} +{"current_steps": 1242, "total_steps": 4118, "loss": 1.7505, "learning_rate": 0.0001, "epoch": 0.30160271976687714, "percentage": 30.16, "elapsed_time": "6:45:02", "remaining_time": "15:37:55"} +{"current_steps": 1243, "total_steps": 4118, "loss": 1.5929, "learning_rate": 0.0001, "epoch": 0.3018455560951918, "percentage": 30.18, "elapsed_time": "6:45:22", "remaining_time": "15:37:36"} +{"current_steps": 1244, "total_steps": 4118, "loss": 1.6299, "learning_rate": 0.0001, "epoch": 0.30208839242350655, "percentage": 30.21, "elapsed_time": "6:45:41", "remaining_time": "15:37:16"} +{"current_steps": 1245, "total_steps": 4118, "loss": 1.8215, "learning_rate": 0.0001, "epoch": 0.3023312287518213, "percentage": 30.23, "elapsed_time": "6:46:01", "remaining_time": "15:36:56"} +{"current_steps": 1246, "total_steps": 4118, "loss": 1.7842, "learning_rate": 0.0001, "epoch": 0.302574065080136, "percentage": 30.26, "elapsed_time": "6:46:20", "remaining_time": "15:36:37"} +{"current_steps": 1247, "total_steps": 4118, "loss": 1.7556, "learning_rate": 0.0001, "epoch": 0.3028169014084507, "percentage": 30.28, "elapsed_time": "6:46:40", "remaining_time": "15:36:17"} +{"current_steps": 1248, "total_steps": 4118, "loss": 1.6768, "learning_rate": 0.0001, "epoch": 0.3030597377367654, "percentage": 30.31, "elapsed_time": "6:47:00", "remaining_time": "15:35:58"} +{"current_steps": 1249, "total_steps": 4118, "loss": 1.5455, "learning_rate": 0.0001, "epoch": 0.30330257406508015, "percentage": 30.33, "elapsed_time": "6:47:19", "remaining_time": "15:35:38"} +{"current_steps": 1250, "total_steps": 4118, "loss": 1.7934, "learning_rate": 0.0001, "epoch": 0.30354541039339483, "percentage": 30.35, "elapsed_time": "6:47:39", "remaining_time": "15:35:19"} +{"current_steps": 1251, "total_steps": 4118, "loss": 1.8274, "learning_rate": 0.0001, "epoch": 0.30378824672170957, "percentage": 30.38, "elapsed_time": "6:47:58", "remaining_time": "15:34:59"} +{"current_steps": 1252, "total_steps": 4118, "loss": 1.7685, "learning_rate": 0.0001, "epoch": 0.3040310830500243, "percentage": 30.4, "elapsed_time": "6:48:18", "remaining_time": "15:34:39"} +{"current_steps": 1253, "total_steps": 4118, "loss": 1.7371, "learning_rate": 0.0001, "epoch": 0.304273919378339, "percentage": 30.43, "elapsed_time": "6:48:37", "remaining_time": "15:34:20"} +{"current_steps": 1254, "total_steps": 4118, "loss": 1.9647, "learning_rate": 0.0001, "epoch": 0.3045167557066537, "percentage": 30.45, "elapsed_time": "6:48:57", "remaining_time": "15:34:00"} +{"current_steps": 1255, "total_steps": 4118, "loss": 1.7154, "learning_rate": 0.0001, "epoch": 0.30475959203496844, "percentage": 30.48, "elapsed_time": "6:49:16", "remaining_time": "15:33:41"} +{"current_steps": 1256, "total_steps": 4118, "loss": 1.7981, "learning_rate": 0.0001, "epoch": 0.3050024283632832, "percentage": 30.5, "elapsed_time": "6:49:36", "remaining_time": "15:33:21"} +{"current_steps": 1257, "total_steps": 4118, "loss": 1.7843, "learning_rate": 0.0001, "epoch": 0.30524526469159785, "percentage": 30.52, "elapsed_time": "6:49:56", "remaining_time": "15:33:02"} +{"current_steps": 1258, "total_steps": 4118, "loss": 1.6505, "learning_rate": 0.0001, "epoch": 0.3054881010199126, "percentage": 30.55, "elapsed_time": "6:50:15", "remaining_time": "15:32:42"} +{"current_steps": 1259, "total_steps": 4118, "loss": 1.8015, "learning_rate": 0.0001, "epoch": 0.3057309373482273, "percentage": 30.57, "elapsed_time": "6:50:35", "remaining_time": "15:32:22"} +{"current_steps": 1260, "total_steps": 4118, "loss": 1.7208, "learning_rate": 0.0001, "epoch": 0.305973773676542, "percentage": 30.6, "elapsed_time": "6:50:54", "remaining_time": "15:32:03"} +{"current_steps": 1261, "total_steps": 4118, "loss": 1.7361, "learning_rate": 0.0001, "epoch": 0.3062166100048567, "percentage": 30.62, "elapsed_time": "6:51:14", "remaining_time": "15:31:43"} +{"current_steps": 1262, "total_steps": 4118, "loss": 1.6318, "learning_rate": 0.0001, "epoch": 0.30645944633317146, "percentage": 30.65, "elapsed_time": "6:51:33", "remaining_time": "15:31:24"} +{"current_steps": 1263, "total_steps": 4118, "loss": 1.7704, "learning_rate": 0.0001, "epoch": 0.30670228266148614, "percentage": 30.67, "elapsed_time": "6:51:53", "remaining_time": "15:31:04"} +{"current_steps": 1264, "total_steps": 4118, "loss": 1.8761, "learning_rate": 0.0001, "epoch": 0.30694511898980087, "percentage": 30.69, "elapsed_time": "6:52:13", "remaining_time": "15:30:45"} +{"current_steps": 1265, "total_steps": 4118, "loss": 1.9261, "learning_rate": 0.0001, "epoch": 0.3071879553181156, "percentage": 30.72, "elapsed_time": "6:52:32", "remaining_time": "15:30:25"} +{"current_steps": 1266, "total_steps": 4118, "loss": 1.6129, "learning_rate": 0.0001, "epoch": 0.3074307916464303, "percentage": 30.74, "elapsed_time": "6:52:52", "remaining_time": "15:30:06"} +{"current_steps": 1267, "total_steps": 4118, "loss": 1.5778, "learning_rate": 0.0001, "epoch": 0.307673627974745, "percentage": 30.77, "elapsed_time": "6:53:11", "remaining_time": "15:29:46"} +{"current_steps": 1268, "total_steps": 4118, "loss": 1.5962, "learning_rate": 0.0001, "epoch": 0.30791646430305974, "percentage": 30.79, "elapsed_time": "6:53:31", "remaining_time": "15:29:27"} +{"current_steps": 1269, "total_steps": 4118, "loss": 1.7078, "learning_rate": 0.0001, "epoch": 0.3081593006313745, "percentage": 30.82, "elapsed_time": "6:53:51", "remaining_time": "15:29:07"} +{"current_steps": 1270, "total_steps": 4118, "loss": 1.9236, "learning_rate": 0.0001, "epoch": 0.30840213695968915, "percentage": 30.84, "elapsed_time": "6:54:10", "remaining_time": "15:28:47"} +{"current_steps": 1271, "total_steps": 4118, "loss": 1.7013, "learning_rate": 0.0001, "epoch": 0.3086449732880039, "percentage": 30.86, "elapsed_time": "6:54:30", "remaining_time": "15:28:28"} +{"current_steps": 1272, "total_steps": 4118, "loss": 1.6352, "learning_rate": 0.0001, "epoch": 0.3088878096163186, "percentage": 30.89, "elapsed_time": "6:54:49", "remaining_time": "15:28:08"} +{"current_steps": 1273, "total_steps": 4118, "loss": 1.7848, "learning_rate": 0.0001, "epoch": 0.3091306459446333, "percentage": 30.91, "elapsed_time": "6:55:09", "remaining_time": "15:27:49"} +{"current_steps": 1274, "total_steps": 4118, "loss": 1.751, "learning_rate": 0.0001, "epoch": 0.30937348227294803, "percentage": 30.94, "elapsed_time": "6:55:28", "remaining_time": "15:27:29"} +{"current_steps": 1275, "total_steps": 4118, "loss": 1.8041, "learning_rate": 0.0001, "epoch": 0.30961631860126276, "percentage": 30.96, "elapsed_time": "6:55:48", "remaining_time": "15:27:10"} +{"current_steps": 1276, "total_steps": 4118, "loss": 1.5234, "learning_rate": 0.0001, "epoch": 0.30985915492957744, "percentage": 30.99, "elapsed_time": "6:56:07", "remaining_time": "15:26:50"} +{"current_steps": 1277, "total_steps": 4118, "loss": 1.5503, "learning_rate": 0.0001, "epoch": 0.3101019912578922, "percentage": 31.01, "elapsed_time": "6:56:27", "remaining_time": "15:26:30"} +{"current_steps": 1278, "total_steps": 4118, "loss": 1.7385, "learning_rate": 0.0001, "epoch": 0.3103448275862069, "percentage": 31.03, "elapsed_time": "6:56:47", "remaining_time": "15:26:11"} +{"current_steps": 1279, "total_steps": 4118, "loss": 1.6208, "learning_rate": 0.0001, "epoch": 0.31058766391452164, "percentage": 31.06, "elapsed_time": "6:57:06", "remaining_time": "15:25:51"} +{"current_steps": 1280, "total_steps": 4118, "loss": 1.6952, "learning_rate": 0.0001, "epoch": 0.3108305002428363, "percentage": 31.08, "elapsed_time": "6:57:26", "remaining_time": "15:25:32"} +{"current_steps": 1281, "total_steps": 4118, "loss": 1.7144, "learning_rate": 0.0001, "epoch": 0.31107333657115105, "percentage": 31.11, "elapsed_time": "6:57:45", "remaining_time": "15:25:12"} +{"current_steps": 1282, "total_steps": 4118, "loss": 1.9335, "learning_rate": 0.0001, "epoch": 0.3113161728994658, "percentage": 31.13, "elapsed_time": "6:58:05", "remaining_time": "15:24:52"} +{"current_steps": 1283, "total_steps": 4118, "loss": 1.7136, "learning_rate": 0.0001, "epoch": 0.31155900922778046, "percentage": 31.16, "elapsed_time": "6:58:24", "remaining_time": "15:24:33"} +{"current_steps": 1284, "total_steps": 4118, "loss": 1.7904, "learning_rate": 0.0001, "epoch": 0.3118018455560952, "percentage": 31.18, "elapsed_time": "6:58:44", "remaining_time": "15:24:13"} +{"current_steps": 1285, "total_steps": 4118, "loss": 1.6354, "learning_rate": 0.0001, "epoch": 0.3120446818844099, "percentage": 31.2, "elapsed_time": "6:59:03", "remaining_time": "15:23:54"} +{"current_steps": 1286, "total_steps": 4118, "loss": 1.6353, "learning_rate": 0.0001, "epoch": 0.3122875182127246, "percentage": 31.23, "elapsed_time": "6:59:23", "remaining_time": "15:23:34"} +{"current_steps": 1287, "total_steps": 4118, "loss": 1.722, "learning_rate": 0.0001, "epoch": 0.31253035454103933, "percentage": 31.25, "elapsed_time": "6:59:43", "remaining_time": "15:23:14"} +{"current_steps": 1288, "total_steps": 4118, "loss": 1.8397, "learning_rate": 0.0001, "epoch": 0.31277319086935407, "percentage": 31.28, "elapsed_time": "7:00:02", "remaining_time": "15:22:55"} +{"current_steps": 1289, "total_steps": 4118, "loss": 1.7621, "learning_rate": 0.0001, "epoch": 0.31301602719766874, "percentage": 31.3, "elapsed_time": "7:00:22", "remaining_time": "15:22:35"} +{"current_steps": 1290, "total_steps": 4118, "loss": 1.7247, "learning_rate": 0.0001, "epoch": 0.3132588635259835, "percentage": 31.33, "elapsed_time": "7:00:41", "remaining_time": "15:22:16"} +{"current_steps": 1291, "total_steps": 4118, "loss": 1.8245, "learning_rate": 0.0001, "epoch": 0.3135016998542982, "percentage": 31.35, "elapsed_time": "7:01:01", "remaining_time": "15:21:56"} +{"current_steps": 1292, "total_steps": 4118, "loss": 1.7691, "learning_rate": 0.0001, "epoch": 0.31374453618261294, "percentage": 31.37, "elapsed_time": "7:01:20", "remaining_time": "15:21:36"} +{"current_steps": 1293, "total_steps": 4118, "loss": 1.6992, "learning_rate": 0.0001, "epoch": 0.3139873725109276, "percentage": 31.4, "elapsed_time": "7:01:40", "remaining_time": "15:21:17"} +{"current_steps": 1294, "total_steps": 4118, "loss": 1.7324, "learning_rate": 0.0001, "epoch": 0.31423020883924235, "percentage": 31.42, "elapsed_time": "7:01:59", "remaining_time": "15:20:57"} +{"current_steps": 1295, "total_steps": 4118, "loss": 1.7134, "learning_rate": 0.0001, "epoch": 0.3144730451675571, "percentage": 31.45, "elapsed_time": "7:02:19", "remaining_time": "15:20:38"} +{"current_steps": 1296, "total_steps": 4118, "loss": 1.808, "learning_rate": 0.0001, "epoch": 0.31471588149587176, "percentage": 31.47, "elapsed_time": "7:02:39", "remaining_time": "15:20:18"} +{"current_steps": 1297, "total_steps": 4118, "loss": 1.8522, "learning_rate": 0.0001, "epoch": 0.3149587178241865, "percentage": 31.5, "elapsed_time": "7:02:58", "remaining_time": "15:19:58"} +{"current_steps": 1298, "total_steps": 4118, "loss": 1.867, "learning_rate": 0.0001, "epoch": 0.31520155415250123, "percentage": 31.52, "elapsed_time": "7:03:18", "remaining_time": "15:19:39"} +{"current_steps": 1299, "total_steps": 4118, "loss": 1.3686, "learning_rate": 0.0001, "epoch": 0.3154443904808159, "percentage": 31.54, "elapsed_time": "7:03:37", "remaining_time": "15:19:19"} +{"current_steps": 1300, "total_steps": 4118, "loss": 1.7227, "learning_rate": 0.0001, "epoch": 0.31568722680913064, "percentage": 31.57, "elapsed_time": "7:03:57", "remaining_time": "15:19:00"} +{"current_steps": 1301, "total_steps": 4118, "loss": 1.987, "learning_rate": 0.0001, "epoch": 0.31593006313744537, "percentage": 31.59, "elapsed_time": "7:04:16", "remaining_time": "15:18:40"} +{"current_steps": 1302, "total_steps": 4118, "loss": 1.6471, "learning_rate": 0.0001, "epoch": 0.3161728994657601, "percentage": 31.62, "elapsed_time": "7:04:36", "remaining_time": "15:18:21"} +{"current_steps": 1303, "total_steps": 4118, "loss": 1.7393, "learning_rate": 0.0001, "epoch": 0.3164157357940748, "percentage": 31.64, "elapsed_time": "7:04:55", "remaining_time": "15:18:01"} +{"current_steps": 1304, "total_steps": 4118, "loss": 1.8296, "learning_rate": 0.0001, "epoch": 0.3166585721223895, "percentage": 31.67, "elapsed_time": "7:05:15", "remaining_time": "15:17:41"} +{"current_steps": 1305, "total_steps": 4118, "loss": 1.9846, "learning_rate": 0.0001, "epoch": 0.31690140845070425, "percentage": 31.69, "elapsed_time": "7:05:35", "remaining_time": "15:17:22"} +{"current_steps": 1306, "total_steps": 4118, "loss": 1.7285, "learning_rate": 0.0001, "epoch": 0.3171442447790189, "percentage": 31.71, "elapsed_time": "7:05:54", "remaining_time": "15:17:02"} +{"current_steps": 1307, "total_steps": 4118, "loss": 1.6642, "learning_rate": 0.0001, "epoch": 0.31738708110733366, "percentage": 31.74, "elapsed_time": "7:06:14", "remaining_time": "15:16:42"} +{"current_steps": 1308, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.3176299174356484, "percentage": 31.76, "elapsed_time": "7:06:33", "remaining_time": "15:16:23"} +{"current_steps": 1309, "total_steps": 4118, "loss": 2.1072, "learning_rate": 0.0001, "epoch": 0.31787275376396307, "percentage": 31.79, "elapsed_time": "7:06:53", "remaining_time": "15:16:03"} +{"current_steps": 1310, "total_steps": 4118, "loss": 1.7513, "learning_rate": 0.0001, "epoch": 0.3181155900922778, "percentage": 31.81, "elapsed_time": "7:07:12", "remaining_time": "15:15:44"} +{"current_steps": 1311, "total_steps": 4118, "loss": 1.7266, "learning_rate": 0.0001, "epoch": 0.31835842642059253, "percentage": 31.84, "elapsed_time": "7:07:32", "remaining_time": "15:15:24"} +{"current_steps": 1312, "total_steps": 4118, "loss": 1.8714, "learning_rate": 0.0001, "epoch": 0.3186012627489072, "percentage": 31.86, "elapsed_time": "7:07:51", "remaining_time": "15:15:05"} +{"current_steps": 1313, "total_steps": 4118, "loss": 1.7934, "learning_rate": 0.0001, "epoch": 0.31884409907722194, "percentage": 31.88, "elapsed_time": "7:08:11", "remaining_time": "15:14:45"} +{"current_steps": 1314, "total_steps": 4118, "loss": 1.6594, "learning_rate": 0.0001, "epoch": 0.3190869354055367, "percentage": 31.91, "elapsed_time": "7:08:31", "remaining_time": "15:14:25"} +{"current_steps": 1315, "total_steps": 4118, "loss": 1.7697, "learning_rate": 0.0001, "epoch": 0.3193297717338514, "percentage": 31.93, "elapsed_time": "7:08:50", "remaining_time": "15:14:06"} +{"current_steps": 1316, "total_steps": 4118, "loss": 1.7132, "learning_rate": 0.0001, "epoch": 0.3195726080621661, "percentage": 31.96, "elapsed_time": "7:09:10", "remaining_time": "15:13:46"} +{"current_steps": 1317, "total_steps": 4118, "loss": 1.7829, "learning_rate": 0.0001, "epoch": 0.3198154443904808, "percentage": 31.98, "elapsed_time": "7:09:29", "remaining_time": "15:13:27"} +{"current_steps": 1318, "total_steps": 4118, "loss": 1.7032, "learning_rate": 0.0001, "epoch": 0.32005828071879555, "percentage": 32.01, "elapsed_time": "7:09:49", "remaining_time": "15:13:07"} +{"current_steps": 1319, "total_steps": 4118, "loss": 1.7281, "learning_rate": 0.0001, "epoch": 0.32030111704711023, "percentage": 32.03, "elapsed_time": "7:10:08", "remaining_time": "15:12:48"} +{"current_steps": 1320, "total_steps": 4118, "loss": 1.7655, "learning_rate": 0.0001, "epoch": 0.32054395337542496, "percentage": 32.05, "elapsed_time": "7:10:28", "remaining_time": "15:12:28"} +{"current_steps": 1321, "total_steps": 4118, "loss": 1.6195, "learning_rate": 0.0001, "epoch": 0.3207867897037397, "percentage": 32.08, "elapsed_time": "7:10:48", "remaining_time": "15:12:09"} +{"current_steps": 1322, "total_steps": 4118, "loss": 1.9077, "learning_rate": 0.0001, "epoch": 0.32102962603205437, "percentage": 32.1, "elapsed_time": "7:11:07", "remaining_time": "15:11:49"} +{"current_steps": 1323, "total_steps": 4118, "loss": 1.9127, "learning_rate": 0.0001, "epoch": 0.3212724623603691, "percentage": 32.13, "elapsed_time": "7:11:27", "remaining_time": "15:11:29"} +{"current_steps": 1324, "total_steps": 4118, "loss": 1.714, "learning_rate": 0.0001, "epoch": 0.32151529868868384, "percentage": 32.15, "elapsed_time": "7:11:46", "remaining_time": "15:11:10"} +{"current_steps": 1325, "total_steps": 4118, "loss": 1.6529, "learning_rate": 0.0001, "epoch": 0.32175813501699857, "percentage": 32.18, "elapsed_time": "7:12:06", "remaining_time": "15:10:50"} +{"current_steps": 1326, "total_steps": 4118, "loss": 1.6758, "learning_rate": 0.0001, "epoch": 0.32200097134531325, "percentage": 32.2, "elapsed_time": "7:12:25", "remaining_time": "15:10:31"} +{"current_steps": 1327, "total_steps": 4118, "loss": 1.8368, "learning_rate": 0.0001, "epoch": 0.322243807673628, "percentage": 32.22, "elapsed_time": "7:12:45", "remaining_time": "15:10:11"} +{"current_steps": 1328, "total_steps": 4118, "loss": 1.607, "learning_rate": 0.0001, "epoch": 0.3224866440019427, "percentage": 32.25, "elapsed_time": "7:13:05", "remaining_time": "15:09:52"} +{"current_steps": 1329, "total_steps": 4118, "loss": 1.8198, "learning_rate": 0.0001, "epoch": 0.3227294803302574, "percentage": 32.27, "elapsed_time": "7:13:24", "remaining_time": "15:09:32"} +{"current_steps": 1330, "total_steps": 4118, "loss": 1.8013, "learning_rate": 0.0001, "epoch": 0.3229723166585721, "percentage": 32.3, "elapsed_time": "7:13:44", "remaining_time": "15:09:12"} +{"current_steps": 1331, "total_steps": 4118, "loss": 1.6369, "learning_rate": 0.0001, "epoch": 0.32321515298688686, "percentage": 32.32, "elapsed_time": "7:14:03", "remaining_time": "15:08:53"} +{"current_steps": 1332, "total_steps": 4118, "loss": 1.6789, "learning_rate": 0.0001, "epoch": 0.32345798931520153, "percentage": 32.35, "elapsed_time": "7:14:23", "remaining_time": "15:08:33"} +{"current_steps": 1333, "total_steps": 4118, "loss": 1.6595, "learning_rate": 0.0001, "epoch": 0.32370082564351627, "percentage": 32.37, "elapsed_time": "7:14:42", "remaining_time": "15:08:14"} +{"current_steps": 1334, "total_steps": 4118, "loss": 1.8651, "learning_rate": 0.0001, "epoch": 0.323943661971831, "percentage": 32.39, "elapsed_time": "7:15:02", "remaining_time": "15:07:54"} +{"current_steps": 1335, "total_steps": 4118, "loss": 1.5881, "learning_rate": 0.0001, "epoch": 0.3241864983001457, "percentage": 32.42, "elapsed_time": "7:15:22", "remaining_time": "15:07:35"} +{"current_steps": 1336, "total_steps": 4118, "loss": 1.83, "learning_rate": 0.0001, "epoch": 0.3244293346284604, "percentage": 32.44, "elapsed_time": "7:15:41", "remaining_time": "15:07:15"} +{"current_steps": 1337, "total_steps": 4118, "loss": 1.723, "learning_rate": 0.0001, "epoch": 0.32467217095677514, "percentage": 32.47, "elapsed_time": "7:16:01", "remaining_time": "15:06:55"} +{"current_steps": 1338, "total_steps": 4118, "loss": 1.7319, "learning_rate": 0.0001, "epoch": 0.3249150072850899, "percentage": 32.49, "elapsed_time": "7:16:20", "remaining_time": "15:06:36"} +{"current_steps": 1339, "total_steps": 4118, "loss": 1.7123, "learning_rate": 0.0001, "epoch": 0.32515784361340455, "percentage": 32.52, "elapsed_time": "7:16:40", "remaining_time": "15:06:16"} +{"current_steps": 1340, "total_steps": 4118, "loss": 1.5663, "learning_rate": 0.0001, "epoch": 0.3254006799417193, "percentage": 32.54, "elapsed_time": "7:16:59", "remaining_time": "15:05:57"} +{"current_steps": 1341, "total_steps": 4118, "loss": 1.7518, "learning_rate": 0.0001, "epoch": 0.325643516270034, "percentage": 32.56, "elapsed_time": "7:17:19", "remaining_time": "15:05:37"} +{"current_steps": 1342, "total_steps": 4118, "loss": 1.6901, "learning_rate": 0.0001, "epoch": 0.3258863525983487, "percentage": 32.59, "elapsed_time": "7:17:38", "remaining_time": "15:05:18"} +{"current_steps": 1343, "total_steps": 4118, "loss": 1.7392, "learning_rate": 0.0001, "epoch": 0.3261291889266634, "percentage": 32.61, "elapsed_time": "7:17:58", "remaining_time": "15:04:58"} +{"current_steps": 1344, "total_steps": 4118, "loss": 1.7333, "learning_rate": 0.0001, "epoch": 0.32637202525497816, "percentage": 32.64, "elapsed_time": "7:18:18", "remaining_time": "15:04:39"} +{"current_steps": 1345, "total_steps": 4118, "loss": 1.7947, "learning_rate": 0.0001, "epoch": 0.32661486158329284, "percentage": 32.66, "elapsed_time": "7:18:37", "remaining_time": "15:04:19"} +{"current_steps": 1346, "total_steps": 4118, "loss": 1.7063, "learning_rate": 0.0001, "epoch": 0.32685769791160757, "percentage": 32.69, "elapsed_time": "7:18:57", "remaining_time": "15:03:59"} +{"current_steps": 1347, "total_steps": 4118, "loss": 1.7134, "learning_rate": 0.0001, "epoch": 0.3271005342399223, "percentage": 32.71, "elapsed_time": "7:19:16", "remaining_time": "15:03:40"} +{"current_steps": 1348, "total_steps": 4118, "loss": 1.6655, "learning_rate": 0.0001, "epoch": 0.32734337056823704, "percentage": 32.73, "elapsed_time": "7:19:36", "remaining_time": "15:03:20"} +{"current_steps": 1349, "total_steps": 4118, "loss": 1.6852, "learning_rate": 0.0001, "epoch": 0.3275862068965517, "percentage": 32.76, "elapsed_time": "7:19:55", "remaining_time": "15:03:01"} +{"current_steps": 1350, "total_steps": 4118, "loss": 1.6622, "learning_rate": 0.0001, "epoch": 0.32782904322486645, "percentage": 32.78, "elapsed_time": "7:20:15", "remaining_time": "15:02:41"} +{"current_steps": 1351, "total_steps": 4118, "loss": 1.7942, "learning_rate": 0.0001, "epoch": 0.3280718795531812, "percentage": 32.81, "elapsed_time": "7:20:35", "remaining_time": "15:02:22"} +{"current_steps": 1352, "total_steps": 4118, "loss": 1.9348, "learning_rate": 0.0001, "epoch": 0.32831471588149586, "percentage": 32.83, "elapsed_time": "7:20:54", "remaining_time": "15:02:02"} +{"current_steps": 1353, "total_steps": 4118, "loss": 1.5684, "learning_rate": 0.0001, "epoch": 0.3285575522098106, "percentage": 32.86, "elapsed_time": "7:21:14", "remaining_time": "15:01:42"} +{"current_steps": 1354, "total_steps": 4118, "loss": 1.7556, "learning_rate": 0.0001, "epoch": 0.3288003885381253, "percentage": 32.88, "elapsed_time": "7:21:33", "remaining_time": "15:01:23"} +{"current_steps": 1355, "total_steps": 4118, "loss": 1.7276, "learning_rate": 0.0001, "epoch": 0.32904322486644, "percentage": 32.9, "elapsed_time": "7:21:53", "remaining_time": "15:01:03"} +{"current_steps": 1356, "total_steps": 4118, "loss": 1.6874, "learning_rate": 0.0001, "epoch": 0.32928606119475473, "percentage": 32.93, "elapsed_time": "7:22:12", "remaining_time": "15:00:44"} +{"current_steps": 1357, "total_steps": 4118, "loss": 1.5555, "learning_rate": 0.0001, "epoch": 0.32952889752306946, "percentage": 32.95, "elapsed_time": "7:22:32", "remaining_time": "15:00:24"} +{"current_steps": 1358, "total_steps": 4118, "loss": 1.7162, "learning_rate": 0.0001, "epoch": 0.32977173385138414, "percentage": 32.98, "elapsed_time": "7:22:52", "remaining_time": "15:00:04"} +{"current_steps": 1359, "total_steps": 4118, "loss": 1.8486, "learning_rate": 0.0001, "epoch": 0.3300145701796989, "percentage": 33.0, "elapsed_time": "7:23:11", "remaining_time": "14:59:45"} +{"current_steps": 1360, "total_steps": 4118, "loss": 1.8309, "learning_rate": 0.0001, "epoch": 0.3302574065080136, "percentage": 33.03, "elapsed_time": "7:23:31", "remaining_time": "14:59:25"} +{"current_steps": 1361, "total_steps": 4118, "loss": 1.8577, "learning_rate": 0.0001, "epoch": 0.33050024283632834, "percentage": 33.05, "elapsed_time": "7:23:50", "remaining_time": "14:59:06"} +{"current_steps": 1362, "total_steps": 4118, "loss": 1.8305, "learning_rate": 0.0001, "epoch": 0.330743079164643, "percentage": 33.07, "elapsed_time": "7:24:10", "remaining_time": "14:58:46"} +{"current_steps": 1363, "total_steps": 4118, "loss": 1.8949, "learning_rate": 0.0001, "epoch": 0.33098591549295775, "percentage": 33.1, "elapsed_time": "7:24:29", "remaining_time": "14:58:27"} +{"current_steps": 1364, "total_steps": 4118, "loss": 1.6676, "learning_rate": 0.0001, "epoch": 0.3312287518212725, "percentage": 33.12, "elapsed_time": "7:24:49", "remaining_time": "14:58:07"} +{"current_steps": 1365, "total_steps": 4118, "loss": 2.0026, "learning_rate": 0.0001, "epoch": 0.33147158814958716, "percentage": 33.15, "elapsed_time": "7:25:08", "remaining_time": "14:57:47"} +{"current_steps": 1366, "total_steps": 4118, "loss": 1.7442, "learning_rate": 0.0001, "epoch": 0.3317144244779019, "percentage": 33.17, "elapsed_time": "7:25:28", "remaining_time": "14:57:28"} +{"current_steps": 1367, "total_steps": 4118, "loss": 1.7291, "learning_rate": 0.0001, "epoch": 0.3319572608062166, "percentage": 33.2, "elapsed_time": "7:25:48", "remaining_time": "14:57:08"} +{"current_steps": 1368, "total_steps": 4118, "loss": 1.9471, "learning_rate": 0.0001, "epoch": 0.3322000971345313, "percentage": 33.22, "elapsed_time": "7:26:07", "remaining_time": "14:56:49"} +{"current_steps": 1369, "total_steps": 4118, "loss": 1.7641, "learning_rate": 0.0001, "epoch": 0.33244293346284604, "percentage": 33.24, "elapsed_time": "7:26:27", "remaining_time": "14:56:29"} +{"current_steps": 1370, "total_steps": 4118, "loss": 1.7018, "learning_rate": 0.0001, "epoch": 0.33268576979116077, "percentage": 33.27, "elapsed_time": "7:26:46", "remaining_time": "14:56:10"} +{"current_steps": 1371, "total_steps": 4118, "loss": 1.7815, "learning_rate": 0.0001, "epoch": 0.3329286061194755, "percentage": 33.29, "elapsed_time": "7:27:06", "remaining_time": "14:55:50"} +{"current_steps": 1372, "total_steps": 4118, "loss": 1.6535, "learning_rate": 0.0001, "epoch": 0.3331714424477902, "percentage": 33.32, "elapsed_time": "7:27:25", "remaining_time": "14:55:31"} +{"current_steps": 1373, "total_steps": 4118, "loss": 1.7773, "learning_rate": 0.0001, "epoch": 0.3334142787761049, "percentage": 33.34, "elapsed_time": "7:27:45", "remaining_time": "14:55:11"} +{"current_steps": 1374, "total_steps": 4118, "loss": 1.8394, "learning_rate": 0.0001, "epoch": 0.33365711510441964, "percentage": 33.37, "elapsed_time": "7:28:05", "remaining_time": "14:54:51"} +{"current_steps": 1375, "total_steps": 4118, "loss": 1.6055, "learning_rate": 0.0001, "epoch": 0.3338999514327343, "percentage": 33.39, "elapsed_time": "7:28:24", "remaining_time": "14:54:32"} +{"current_steps": 1376, "total_steps": 4118, "loss": 1.7582, "learning_rate": 0.0001, "epoch": 0.33414278776104905, "percentage": 33.41, "elapsed_time": "7:28:44", "remaining_time": "14:54:12"} +{"current_steps": 1377, "total_steps": 4118, "loss": 1.6924, "learning_rate": 0.0001, "epoch": 0.3343856240893638, "percentage": 33.44, "elapsed_time": "7:29:03", "remaining_time": "14:53:53"} +{"current_steps": 1378, "total_steps": 4118, "loss": 1.7945, "learning_rate": 0.0001, "epoch": 0.33462846041767846, "percentage": 33.46, "elapsed_time": "7:29:23", "remaining_time": "14:53:33"} +{"current_steps": 1379, "total_steps": 4118, "loss": 1.6885, "learning_rate": 0.0001, "epoch": 0.3348712967459932, "percentage": 33.49, "elapsed_time": "7:29:42", "remaining_time": "14:53:14"} +{"current_steps": 1380, "total_steps": 4118, "loss": 1.8576, "learning_rate": 0.0001, "epoch": 0.33511413307430793, "percentage": 33.51, "elapsed_time": "7:30:02", "remaining_time": "14:52:54"} +{"current_steps": 1381, "total_steps": 4118, "loss": 1.7675, "learning_rate": 0.0001, "epoch": 0.3353569694026226, "percentage": 33.54, "elapsed_time": "7:30:22", "remaining_time": "14:52:34"} +{"current_steps": 1382, "total_steps": 4118, "loss": 1.8276, "learning_rate": 0.0001, "epoch": 0.33559980573093734, "percentage": 33.56, "elapsed_time": "7:30:41", "remaining_time": "14:52:15"} +{"current_steps": 1383, "total_steps": 4118, "loss": 1.6666, "learning_rate": 0.0001, "epoch": 0.3358426420592521, "percentage": 33.58, "elapsed_time": "7:31:01", "remaining_time": "14:51:55"} +{"current_steps": 1384, "total_steps": 4118, "loss": 1.7057, "learning_rate": 0.0001, "epoch": 0.3360854783875668, "percentage": 33.61, "elapsed_time": "7:31:20", "remaining_time": "14:51:36"} +{"current_steps": 1385, "total_steps": 4118, "loss": 1.739, "learning_rate": 0.0001, "epoch": 0.3363283147158815, "percentage": 33.63, "elapsed_time": "7:31:40", "remaining_time": "14:51:16"} +{"current_steps": 1386, "total_steps": 4118, "loss": 1.7335, "learning_rate": 0.0001, "epoch": 0.3365711510441962, "percentage": 33.66, "elapsed_time": "7:31:59", "remaining_time": "14:50:57"} +{"current_steps": 1387, "total_steps": 4118, "loss": 1.6737, "learning_rate": 0.0001, "epoch": 0.33681398737251095, "percentage": 33.68, "elapsed_time": "7:32:19", "remaining_time": "14:50:37"} +{"current_steps": 1388, "total_steps": 4118, "loss": 1.6533, "learning_rate": 0.0001, "epoch": 0.3370568237008256, "percentage": 33.71, "elapsed_time": "7:32:39", "remaining_time": "14:50:18"} +{"current_steps": 1389, "total_steps": 4118, "loss": 1.8463, "learning_rate": 0.0001, "epoch": 0.33729966002914036, "percentage": 33.73, "elapsed_time": "7:32:58", "remaining_time": "14:49:58"} +{"current_steps": 1390, "total_steps": 4118, "loss": 1.6839, "learning_rate": 0.0001, "epoch": 0.3375424963574551, "percentage": 33.75, "elapsed_time": "7:33:18", "remaining_time": "14:49:38"} +{"current_steps": 1391, "total_steps": 4118, "loss": 1.7578, "learning_rate": 0.0001, "epoch": 0.33778533268576977, "percentage": 33.78, "elapsed_time": "7:33:37", "remaining_time": "14:49:19"} +{"current_steps": 1392, "total_steps": 4118, "loss": 1.6666, "learning_rate": 0.0001, "epoch": 0.3380281690140845, "percentage": 33.8, "elapsed_time": "7:33:57", "remaining_time": "14:48:59"} +{"current_steps": 1393, "total_steps": 4118, "loss": 1.7946, "learning_rate": 0.0001, "epoch": 0.33827100534239923, "percentage": 33.83, "elapsed_time": "7:34:16", "remaining_time": "14:48:40"} +{"current_steps": 1394, "total_steps": 4118, "loss": 1.7914, "learning_rate": 0.0001, "epoch": 0.33851384167071397, "percentage": 33.85, "elapsed_time": "7:34:36", "remaining_time": "14:48:20"} +{"current_steps": 1395, "total_steps": 4118, "loss": 1.7307, "learning_rate": 0.0001, "epoch": 0.33875667799902864, "percentage": 33.88, "elapsed_time": "7:34:55", "remaining_time": "14:48:00"} +{"current_steps": 1396, "total_steps": 4118, "loss": 1.5334, "learning_rate": 0.0001, "epoch": 0.3389995143273434, "percentage": 33.9, "elapsed_time": "7:35:15", "remaining_time": "14:47:41"} +{"current_steps": 1397, "total_steps": 4118, "loss": 1.721, "learning_rate": 0.0001, "epoch": 0.3392423506556581, "percentage": 33.92, "elapsed_time": "7:35:35", "remaining_time": "14:47:21"} +{"current_steps": 1398, "total_steps": 4118, "loss": 1.8987, "learning_rate": 0.0001, "epoch": 0.3394851869839728, "percentage": 33.95, "elapsed_time": "7:35:54", "remaining_time": "14:47:02"} +{"current_steps": 1399, "total_steps": 4118, "loss": 1.6867, "learning_rate": 0.0001, "epoch": 0.3397280233122875, "percentage": 33.97, "elapsed_time": "7:36:14", "remaining_time": "14:46:42"} +{"current_steps": 1400, "total_steps": 4118, "loss": 1.5711, "learning_rate": 0.0001, "epoch": 0.33997085964060225, "percentage": 34.0, "elapsed_time": "7:36:33", "remaining_time": "14:46:23"} +{"current_steps": 1401, "total_steps": 4118, "loss": 1.6545, "learning_rate": 0.0001, "epoch": 0.34021369596891693, "percentage": 34.02, "elapsed_time": "7:36:53", "remaining_time": "14:46:03"} +{"current_steps": 1402, "total_steps": 4118, "loss": 1.7908, "learning_rate": 0.0001, "epoch": 0.34045653229723166, "percentage": 34.05, "elapsed_time": "7:37:12", "remaining_time": "14:45:43"} +{"current_steps": 1403, "total_steps": 4118, "loss": 1.8032, "learning_rate": 0.0001, "epoch": 0.3406993686255464, "percentage": 34.07, "elapsed_time": "7:37:32", "remaining_time": "14:45:24"} +{"current_steps": 1404, "total_steps": 4118, "loss": 1.6785, "learning_rate": 0.0001, "epoch": 0.34094220495386107, "percentage": 34.09, "elapsed_time": "7:37:52", "remaining_time": "14:45:04"} +{"current_steps": 1405, "total_steps": 4118, "loss": 1.829, "learning_rate": 0.0001, "epoch": 0.3411850412821758, "percentage": 34.12, "elapsed_time": "7:38:11", "remaining_time": "14:44:45"} +{"current_steps": 1406, "total_steps": 4118, "loss": 1.6599, "learning_rate": 0.0001, "epoch": 0.34142787761049054, "percentage": 34.14, "elapsed_time": "7:38:31", "remaining_time": "14:44:25"} +{"current_steps": 1407, "total_steps": 4118, "loss": 1.8224, "learning_rate": 0.0001, "epoch": 0.34167071393880527, "percentage": 34.17, "elapsed_time": "7:38:50", "remaining_time": "14:44:06"} +{"current_steps": 1408, "total_steps": 4118, "loss": 1.5839, "learning_rate": 0.0001, "epoch": 0.34191355026711995, "percentage": 34.19, "elapsed_time": "7:39:10", "remaining_time": "14:43:46"} +{"current_steps": 1409, "total_steps": 4118, "loss": 1.5821, "learning_rate": 0.0001, "epoch": 0.3421563865954347, "percentage": 34.22, "elapsed_time": "7:39:29", "remaining_time": "14:43:27"} +{"current_steps": 1410, "total_steps": 4118, "loss": 1.7975, "learning_rate": 0.0001, "epoch": 0.3423992229237494, "percentage": 34.24, "elapsed_time": "7:39:49", "remaining_time": "14:43:07"} +{"current_steps": 1411, "total_steps": 4118, "loss": 1.8656, "learning_rate": 0.0001, "epoch": 0.3426420592520641, "percentage": 34.26, "elapsed_time": "7:40:08", "remaining_time": "14:42:47"} +{"current_steps": 1412, "total_steps": 4118, "loss": 1.7551, "learning_rate": 0.0001, "epoch": 0.3428848955803788, "percentage": 34.29, "elapsed_time": "7:40:28", "remaining_time": "14:42:28"} +{"current_steps": 1413, "total_steps": 4118, "loss": 1.8325, "learning_rate": 0.0001, "epoch": 0.34312773190869356, "percentage": 34.31, "elapsed_time": "7:40:48", "remaining_time": "14:42:08"} +{"current_steps": 1414, "total_steps": 4118, "loss": 1.8216, "learning_rate": 0.0001, "epoch": 0.34337056823700823, "percentage": 34.34, "elapsed_time": "7:41:07", "remaining_time": "14:41:48"} +{"current_steps": 1415, "total_steps": 4118, "loss": 1.7552, "learning_rate": 0.0001, "epoch": 0.34361340456532297, "percentage": 34.36, "elapsed_time": "7:41:27", "remaining_time": "14:41:29"} +{"current_steps": 1416, "total_steps": 4118, "loss": 1.7423, "learning_rate": 0.0001, "epoch": 0.3438562408936377, "percentage": 34.39, "elapsed_time": "7:41:46", "remaining_time": "14:41:09"} +{"current_steps": 1417, "total_steps": 4118, "loss": 1.7278, "learning_rate": 0.0001, "epoch": 0.3440990772219524, "percentage": 34.41, "elapsed_time": "7:42:06", "remaining_time": "14:40:50"} +{"current_steps": 1418, "total_steps": 4118, "loss": 1.7598, "learning_rate": 0.0001, "epoch": 0.3443419135502671, "percentage": 34.43, "elapsed_time": "7:42:25", "remaining_time": "14:40:30"} +{"current_steps": 1419, "total_steps": 4118, "loss": 1.7413, "learning_rate": 0.0001, "epoch": 0.34458474987858184, "percentage": 34.46, "elapsed_time": "7:42:45", "remaining_time": "14:40:11"} +{"current_steps": 1420, "total_steps": 4118, "loss": 1.7814, "learning_rate": 0.0001, "epoch": 0.3448275862068966, "percentage": 34.48, "elapsed_time": "7:43:05", "remaining_time": "14:39:51"} +{"current_steps": 1421, "total_steps": 4118, "loss": 1.4549, "learning_rate": 0.0001, "epoch": 0.34507042253521125, "percentage": 34.51, "elapsed_time": "7:43:24", "remaining_time": "14:39:32"} +{"current_steps": 1422, "total_steps": 4118, "loss": 1.787, "learning_rate": 0.0001, "epoch": 0.345313258863526, "percentage": 34.53, "elapsed_time": "7:43:44", "remaining_time": "14:39:12"} +{"current_steps": 1423, "total_steps": 4118, "loss": 1.8616, "learning_rate": 0.0001, "epoch": 0.3455560951918407, "percentage": 34.56, "elapsed_time": "7:44:03", "remaining_time": "14:38:52"} +{"current_steps": 1424, "total_steps": 4118, "loss": 1.7587, "learning_rate": 0.0001, "epoch": 0.3457989315201554, "percentage": 34.58, "elapsed_time": "7:44:23", "remaining_time": "14:38:33"} +{"current_steps": 1425, "total_steps": 4118, "loss": 1.8761, "learning_rate": 0.0001, "epoch": 0.3460417678484701, "percentage": 34.6, "elapsed_time": "7:44:42", "remaining_time": "14:38:13"} +{"current_steps": 1426, "total_steps": 4118, "loss": 1.7521, "learning_rate": 0.0001, "epoch": 0.34628460417678486, "percentage": 34.63, "elapsed_time": "7:45:02", "remaining_time": "14:37:54"} +{"current_steps": 1427, "total_steps": 4118, "loss": 1.6338, "learning_rate": 0.0001, "epoch": 0.34652744050509954, "percentage": 34.65, "elapsed_time": "7:45:21", "remaining_time": "14:37:34"} +{"current_steps": 1428, "total_steps": 4118, "loss": 1.7341, "learning_rate": 0.0001, "epoch": 0.34677027683341427, "percentage": 34.68, "elapsed_time": "7:45:41", "remaining_time": "14:37:14"} +{"current_steps": 1429, "total_steps": 4118, "loss": 1.5161, "learning_rate": 0.0001, "epoch": 0.347013113161729, "percentage": 34.7, "elapsed_time": "7:46:01", "remaining_time": "14:36:55"} +{"current_steps": 1430, "total_steps": 4118, "loss": 1.7198, "learning_rate": 0.0001, "epoch": 0.34725594949004374, "percentage": 34.73, "elapsed_time": "7:46:20", "remaining_time": "14:36:35"} +{"current_steps": 1431, "total_steps": 4118, "loss": 1.7464, "learning_rate": 0.0001, "epoch": 0.3474987858183584, "percentage": 34.75, "elapsed_time": "7:46:40", "remaining_time": "14:36:16"} +{"current_steps": 1432, "total_steps": 4118, "loss": 1.7131, "learning_rate": 0.0001, "epoch": 0.34774162214667315, "percentage": 34.77, "elapsed_time": "7:46:59", "remaining_time": "14:35:56"} +{"current_steps": 1433, "total_steps": 4118, "loss": 1.6204, "learning_rate": 0.0001, "epoch": 0.3479844584749879, "percentage": 34.8, "elapsed_time": "7:47:19", "remaining_time": "14:35:37"} +{"current_steps": 1434, "total_steps": 4118, "loss": 1.747, "learning_rate": 0.0001, "epoch": 0.34822729480330256, "percentage": 34.82, "elapsed_time": "7:47:38", "remaining_time": "14:35:17"} +{"current_steps": 1435, "total_steps": 4118, "loss": 1.5961, "learning_rate": 0.0001, "epoch": 0.3484701311316173, "percentage": 34.85, "elapsed_time": "7:47:58", "remaining_time": "14:34:58"} +{"current_steps": 1436, "total_steps": 4118, "loss": 1.7393, "learning_rate": 0.0001, "epoch": 0.348712967459932, "percentage": 34.87, "elapsed_time": "7:48:18", "remaining_time": "14:34:38"} +{"current_steps": 1437, "total_steps": 4118, "loss": 1.6588, "learning_rate": 0.0001, "epoch": 0.3489558037882467, "percentage": 34.9, "elapsed_time": "7:48:37", "remaining_time": "14:34:18"} +{"current_steps": 1438, "total_steps": 4118, "loss": 1.7547, "learning_rate": 0.0001, "epoch": 0.34919864011656143, "percentage": 34.92, "elapsed_time": "7:48:57", "remaining_time": "14:33:59"} +{"current_steps": 1439, "total_steps": 4118, "loss": 1.5937, "learning_rate": 0.0001, "epoch": 0.34944147644487616, "percentage": 34.94, "elapsed_time": "7:49:16", "remaining_time": "14:33:39"} +{"current_steps": 1440, "total_steps": 4118, "loss": 1.7873, "learning_rate": 0.0001, "epoch": 0.34968431277319084, "percentage": 34.97, "elapsed_time": "7:49:36", "remaining_time": "14:33:20"} +{"current_steps": 1441, "total_steps": 4118, "loss": 1.6534, "learning_rate": 0.0001, "epoch": 0.3499271491015056, "percentage": 34.99, "elapsed_time": "7:49:55", "remaining_time": "14:33:00"} +{"current_steps": 1442, "total_steps": 4118, "loss": 1.6058, "learning_rate": 0.0001, "epoch": 0.3501699854298203, "percentage": 35.02, "elapsed_time": "7:50:15", "remaining_time": "14:32:40"} +{"current_steps": 1443, "total_steps": 4118, "loss": 1.747, "learning_rate": 0.0001, "epoch": 0.35041282175813504, "percentage": 35.04, "elapsed_time": "7:50:35", "remaining_time": "14:32:21"} +{"current_steps": 1444, "total_steps": 4118, "loss": 1.7866, "learning_rate": 0.0001, "epoch": 0.3506556580864497, "percentage": 35.07, "elapsed_time": "7:50:54", "remaining_time": "14:32:01"} +{"current_steps": 1445, "total_steps": 4118, "loss": 1.7252, "learning_rate": 0.0001, "epoch": 0.35089849441476445, "percentage": 35.09, "elapsed_time": "7:51:14", "remaining_time": "14:31:42"} +{"current_steps": 1446, "total_steps": 4118, "loss": 1.8232, "learning_rate": 0.0001, "epoch": 0.3511413307430792, "percentage": 35.11, "elapsed_time": "7:51:33", "remaining_time": "14:31:22"} +{"current_steps": 1447, "total_steps": 4118, "loss": 1.6155, "learning_rate": 0.0001, "epoch": 0.35138416707139386, "percentage": 35.14, "elapsed_time": "7:51:53", "remaining_time": "14:31:03"} +{"current_steps": 1448, "total_steps": 4118, "loss": 1.7338, "learning_rate": 0.0001, "epoch": 0.3516270033997086, "percentage": 35.16, "elapsed_time": "7:52:12", "remaining_time": "14:30:43"} +{"current_steps": 1449, "total_steps": 4118, "loss": 1.6935, "learning_rate": 0.0001, "epoch": 0.3518698397280233, "percentage": 35.19, "elapsed_time": "7:52:32", "remaining_time": "14:30:23"} +{"current_steps": 1450, "total_steps": 4118, "loss": 1.7004, "learning_rate": 0.0001, "epoch": 0.352112676056338, "percentage": 35.21, "elapsed_time": "7:52:51", "remaining_time": "14:30:04"} +{"current_steps": 1451, "total_steps": 4118, "loss": 1.6715, "learning_rate": 0.0001, "epoch": 0.35235551238465274, "percentage": 35.24, "elapsed_time": "7:53:11", "remaining_time": "14:29:44"} +{"current_steps": 1452, "total_steps": 4118, "loss": 1.7969, "learning_rate": 0.0001, "epoch": 0.35259834871296747, "percentage": 35.26, "elapsed_time": "7:53:31", "remaining_time": "14:29:25"} +{"current_steps": 1453, "total_steps": 4118, "loss": 1.7855, "learning_rate": 0.0001, "epoch": 0.3528411850412822, "percentage": 35.28, "elapsed_time": "7:53:50", "remaining_time": "14:29:05"} +{"current_steps": 1454, "total_steps": 4118, "loss": 1.7579, "learning_rate": 0.0001, "epoch": 0.3530840213695969, "percentage": 35.31, "elapsed_time": "7:54:10", "remaining_time": "14:28:46"} +{"current_steps": 1455, "total_steps": 4118, "loss": 1.8847, "learning_rate": 0.0001, "epoch": 0.3533268576979116, "percentage": 35.33, "elapsed_time": "7:54:29", "remaining_time": "14:28:26"} +{"current_steps": 1456, "total_steps": 4118, "loss": 1.7812, "learning_rate": 0.0001, "epoch": 0.35356969402622634, "percentage": 35.36, "elapsed_time": "7:54:49", "remaining_time": "14:28:07"} +{"current_steps": 1457, "total_steps": 4118, "loss": 1.7563, "learning_rate": 0.0001, "epoch": 0.353812530354541, "percentage": 35.38, "elapsed_time": "7:55:08", "remaining_time": "14:27:47"} +{"current_steps": 1458, "total_steps": 4118, "loss": 1.8606, "learning_rate": 0.0001, "epoch": 0.35405536668285575, "percentage": 35.41, "elapsed_time": "7:55:28", "remaining_time": "14:27:27"} +{"current_steps": 1459, "total_steps": 4118, "loss": 1.7209, "learning_rate": 0.0001, "epoch": 0.3542982030111705, "percentage": 35.43, "elapsed_time": "7:55:48", "remaining_time": "14:27:08"} +{"current_steps": 1460, "total_steps": 4118, "loss": 1.7145, "learning_rate": 0.0001, "epoch": 0.35454103933948516, "percentage": 35.45, "elapsed_time": "7:56:07", "remaining_time": "14:26:48"} +{"current_steps": 1461, "total_steps": 4118, "loss": 1.6841, "learning_rate": 0.0001, "epoch": 0.3547838756677999, "percentage": 35.48, "elapsed_time": "7:56:27", "remaining_time": "14:26:29"} +{"current_steps": 1462, "total_steps": 4118, "loss": 1.6755, "learning_rate": 0.0001, "epoch": 0.35502671199611463, "percentage": 35.5, "elapsed_time": "7:56:46", "remaining_time": "14:26:09"} +{"current_steps": 1463, "total_steps": 4118, "loss": 1.8127, "learning_rate": 0.0001, "epoch": 0.3552695483244293, "percentage": 35.53, "elapsed_time": "7:57:06", "remaining_time": "14:25:49"} +{"current_steps": 1464, "total_steps": 4118, "loss": 1.6745, "learning_rate": 0.0001, "epoch": 0.35551238465274404, "percentage": 35.55, "elapsed_time": "7:57:25", "remaining_time": "14:25:30"} +{"current_steps": 1465, "total_steps": 4118, "loss": 1.734, "learning_rate": 0.0001, "epoch": 0.3557552209810588, "percentage": 35.58, "elapsed_time": "7:57:45", "remaining_time": "14:25:10"} +{"current_steps": 1466, "total_steps": 4118, "loss": 1.7253, "learning_rate": 0.0001, "epoch": 0.3559980573093735, "percentage": 35.6, "elapsed_time": "7:58:05", "remaining_time": "14:24:51"} +{"current_steps": 1467, "total_steps": 4118, "loss": 1.7129, "learning_rate": 0.0001, "epoch": 0.3562408936376882, "percentage": 35.62, "elapsed_time": "7:58:24", "remaining_time": "14:24:31"} +{"current_steps": 1468, "total_steps": 4118, "loss": 1.8531, "learning_rate": 0.0001, "epoch": 0.3564837299660029, "percentage": 35.65, "elapsed_time": "7:58:44", "remaining_time": "14:24:12"} +{"current_steps": 1469, "total_steps": 4118, "loss": 1.6025, "learning_rate": 0.0001, "epoch": 0.35672656629431765, "percentage": 35.67, "elapsed_time": "7:59:03", "remaining_time": "14:23:52"} +{"current_steps": 1470, "total_steps": 4118, "loss": 1.5579, "learning_rate": 0.0001, "epoch": 0.3569694026226323, "percentage": 35.7, "elapsed_time": "7:59:23", "remaining_time": "14:23:33"} +{"current_steps": 1471, "total_steps": 4118, "loss": 1.7462, "learning_rate": 0.0001, "epoch": 0.35721223895094706, "percentage": 35.72, "elapsed_time": "7:59:42", "remaining_time": "14:23:13"} +{"current_steps": 1472, "total_steps": 4118, "loss": 1.8617, "learning_rate": 0.0001, "epoch": 0.3574550752792618, "percentage": 35.75, "elapsed_time": "8:00:02", "remaining_time": "14:22:53"} +{"current_steps": 1473, "total_steps": 4118, "loss": 1.9014, "learning_rate": 0.0001, "epoch": 0.35769791160757647, "percentage": 35.77, "elapsed_time": "8:00:21", "remaining_time": "14:22:34"} +{"current_steps": 1474, "total_steps": 4118, "loss": 1.6166, "learning_rate": 0.0001, "epoch": 0.3579407479358912, "percentage": 35.79, "elapsed_time": "8:00:41", "remaining_time": "14:22:14"} +{"current_steps": 1475, "total_steps": 4118, "loss": 1.7119, "learning_rate": 0.0001, "epoch": 0.35818358426420593, "percentage": 35.82, "elapsed_time": "8:01:01", "remaining_time": "14:21:55"} +{"current_steps": 1476, "total_steps": 4118, "loss": 1.733, "learning_rate": 0.0001, "epoch": 0.35842642059252067, "percentage": 35.84, "elapsed_time": "8:01:20", "remaining_time": "14:21:35"} +{"current_steps": 1477, "total_steps": 4118, "loss": 1.6624, "learning_rate": 0.0001, "epoch": 0.35866925692083534, "percentage": 35.87, "elapsed_time": "8:01:40", "remaining_time": "14:21:15"} +{"current_steps": 1478, "total_steps": 4118, "loss": 1.7183, "learning_rate": 0.0001, "epoch": 0.3589120932491501, "percentage": 35.89, "elapsed_time": "8:01:59", "remaining_time": "14:20:56"} +{"current_steps": 1479, "total_steps": 4118, "loss": 1.7133, "learning_rate": 0.0001, "epoch": 0.3591549295774648, "percentage": 35.92, "elapsed_time": "8:02:19", "remaining_time": "14:20:36"} +{"current_steps": 1480, "total_steps": 4118, "loss": 1.7084, "learning_rate": 0.0001, "epoch": 0.3593977659057795, "percentage": 35.94, "elapsed_time": "8:02:38", "remaining_time": "14:20:17"} +{"current_steps": 1481, "total_steps": 4118, "loss": 1.803, "learning_rate": 0.0001, "epoch": 0.3596406022340942, "percentage": 35.96, "elapsed_time": "8:02:58", "remaining_time": "14:19:57"} +{"current_steps": 1482, "total_steps": 4118, "loss": 1.8746, "learning_rate": 0.0001, "epoch": 0.35988343856240895, "percentage": 35.99, "elapsed_time": "8:03:17", "remaining_time": "14:19:38"} +{"current_steps": 1483, "total_steps": 4118, "loss": 1.8768, "learning_rate": 0.0001, "epoch": 0.36012627489072363, "percentage": 36.01, "elapsed_time": "8:03:37", "remaining_time": "14:19:18"} +{"current_steps": 1484, "total_steps": 4118, "loss": 1.7638, "learning_rate": 0.0001, "epoch": 0.36036911121903836, "percentage": 36.04, "elapsed_time": "8:03:57", "remaining_time": "14:18:58"} +{"current_steps": 1485, "total_steps": 4118, "loss": 1.6266, "learning_rate": 0.0001, "epoch": 0.3606119475473531, "percentage": 36.06, "elapsed_time": "8:04:16", "remaining_time": "14:18:39"} +{"current_steps": 1486, "total_steps": 4118, "loss": 1.879, "learning_rate": 0.0001, "epoch": 0.3608547838756678, "percentage": 36.09, "elapsed_time": "8:04:36", "remaining_time": "14:18:19"} +{"current_steps": 1487, "total_steps": 4118, "loss": 1.7839, "learning_rate": 0.0001, "epoch": 0.3610976202039825, "percentage": 36.11, "elapsed_time": "8:04:55", "remaining_time": "14:18:00"} +{"current_steps": 1488, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.36134045653229724, "percentage": 36.13, "elapsed_time": "8:05:15", "remaining_time": "14:17:40"} +{"current_steps": 1489, "total_steps": 4118, "loss": 1.8118, "learning_rate": 0.0001, "epoch": 0.36158329286061197, "percentage": 36.16, "elapsed_time": "8:05:34", "remaining_time": "14:17:21"} +{"current_steps": 1490, "total_steps": 4118, "loss": 1.7894, "learning_rate": 0.0001, "epoch": 0.36182612918892665, "percentage": 36.18, "elapsed_time": "8:05:54", "remaining_time": "14:17:01"} +{"current_steps": 1491, "total_steps": 4118, "loss": 1.8412, "learning_rate": 0.0001, "epoch": 0.3620689655172414, "percentage": 36.21, "elapsed_time": "8:06:14", "remaining_time": "14:16:41"} +{"current_steps": 1492, "total_steps": 4118, "loss": 1.6719, "learning_rate": 0.0001, "epoch": 0.3623118018455561, "percentage": 36.23, "elapsed_time": "8:06:33", "remaining_time": "14:16:22"} +{"current_steps": 1493, "total_steps": 4118, "loss": 1.6218, "learning_rate": 0.0001, "epoch": 0.3625546381738708, "percentage": 36.26, "elapsed_time": "8:06:53", "remaining_time": "14:16:02"} +{"current_steps": 1494, "total_steps": 4118, "loss": 1.7746, "learning_rate": 0.0001, "epoch": 0.3627974745021855, "percentage": 36.28, "elapsed_time": "8:07:12", "remaining_time": "14:15:43"} +{"current_steps": 1495, "total_steps": 4118, "loss": 1.6846, "learning_rate": 0.0001, "epoch": 0.36304031083050026, "percentage": 36.3, "elapsed_time": "8:07:32", "remaining_time": "14:15:23"} +{"current_steps": 1496, "total_steps": 4118, "loss": 1.6731, "learning_rate": 0.0001, "epoch": 0.36328314715881493, "percentage": 36.33, "elapsed_time": "8:07:51", "remaining_time": "14:15:04"} +{"current_steps": 1497, "total_steps": 4118, "loss": 1.7758, "learning_rate": 0.0001, "epoch": 0.36352598348712967, "percentage": 36.35, "elapsed_time": "8:08:11", "remaining_time": "14:14:44"} +{"current_steps": 1498, "total_steps": 4118, "loss": 1.6922, "learning_rate": 0.0001, "epoch": 0.3637688198154444, "percentage": 36.38, "elapsed_time": "8:08:31", "remaining_time": "14:14:24"} +{"current_steps": 1499, "total_steps": 4118, "loss": 1.7136, "learning_rate": 0.0001, "epoch": 0.36401165614375913, "percentage": 36.4, "elapsed_time": "8:08:50", "remaining_time": "14:14:05"} +{"current_steps": 1500, "total_steps": 4118, "loss": 1.5974, "learning_rate": 0.0001, "epoch": 0.3642544924720738, "percentage": 36.43, "elapsed_time": "8:09:10", "remaining_time": "14:13:45"} +{"current_steps": 1501, "total_steps": 4118, "loss": 1.8825, "learning_rate": 0.0001, "epoch": 0.36449732880038854, "percentage": 36.45, "elapsed_time": "8:09:32", "remaining_time": "14:13:30"} +{"current_steps": 1502, "total_steps": 4118, "loss": 1.7589, "learning_rate": 0.0001, "epoch": 0.3647401651287033, "percentage": 36.47, "elapsed_time": "8:09:51", "remaining_time": "14:13:10"} +{"current_steps": 1503, "total_steps": 4118, "loss": 1.6338, "learning_rate": 0.0001, "epoch": 0.36498300145701795, "percentage": 36.5, "elapsed_time": "8:10:11", "remaining_time": "14:12:51"} +{"current_steps": 1504, "total_steps": 4118, "loss": 1.6995, "learning_rate": 0.0001, "epoch": 0.3652258377853327, "percentage": 36.52, "elapsed_time": "8:10:30", "remaining_time": "14:12:31"} +{"current_steps": 1505, "total_steps": 4118, "loss": 1.5861, "learning_rate": 0.0001, "epoch": 0.3654686741136474, "percentage": 36.55, "elapsed_time": "8:10:50", "remaining_time": "14:12:12"} +{"current_steps": 1506, "total_steps": 4118, "loss": 1.7706, "learning_rate": 0.0001, "epoch": 0.3657115104419621, "percentage": 36.57, "elapsed_time": "8:11:09", "remaining_time": "14:11:52"} +{"current_steps": 1507, "total_steps": 4118, "loss": 1.7096, "learning_rate": 0.0001, "epoch": 0.36595434677027683, "percentage": 36.6, "elapsed_time": "8:11:29", "remaining_time": "14:11:32"} +{"current_steps": 1508, "total_steps": 4118, "loss": 1.8688, "learning_rate": 0.0001, "epoch": 0.36619718309859156, "percentage": 36.62, "elapsed_time": "8:11:49", "remaining_time": "14:11:13"} +{"current_steps": 1509, "total_steps": 4118, "loss": 1.6937, "learning_rate": 0.0001, "epoch": 0.36644001942690624, "percentage": 36.64, "elapsed_time": "8:12:08", "remaining_time": "14:10:53"} +{"current_steps": 1510, "total_steps": 4118, "loss": 1.5803, "learning_rate": 0.0001, "epoch": 0.36668285575522097, "percentage": 36.67, "elapsed_time": "8:12:28", "remaining_time": "14:10:34"} +{"current_steps": 1511, "total_steps": 4118, "loss": 1.8716, "learning_rate": 0.0001, "epoch": 0.3669256920835357, "percentage": 36.69, "elapsed_time": "8:12:47", "remaining_time": "14:10:14"} +{"current_steps": 1512, "total_steps": 4118, "loss": 1.5866, "learning_rate": 0.0001, "epoch": 0.36716852841185044, "percentage": 36.72, "elapsed_time": "8:13:07", "remaining_time": "14:09:55"} +{"current_steps": 1513, "total_steps": 4118, "loss": 1.7519, "learning_rate": 0.0001, "epoch": 0.3674113647401651, "percentage": 36.74, "elapsed_time": "8:13:26", "remaining_time": "14:09:35"} +{"current_steps": 1514, "total_steps": 4118, "loss": 1.8111, "learning_rate": 0.0001, "epoch": 0.36765420106847985, "percentage": 36.77, "elapsed_time": "8:13:46", "remaining_time": "14:09:15"} +{"current_steps": 1515, "total_steps": 4118, "loss": 1.5164, "learning_rate": 0.0001, "epoch": 0.3678970373967946, "percentage": 36.79, "elapsed_time": "8:14:06", "remaining_time": "14:08:56"} +{"current_steps": 1516, "total_steps": 4118, "loss": 1.77, "learning_rate": 0.0001, "epoch": 0.36813987372510926, "percentage": 36.81, "elapsed_time": "8:14:25", "remaining_time": "14:08:36"} +{"current_steps": 1517, "total_steps": 4118, "loss": 1.5537, "learning_rate": 0.0001, "epoch": 0.368382710053424, "percentage": 36.84, "elapsed_time": "8:14:45", "remaining_time": "14:08:17"} +{"current_steps": 1518, "total_steps": 4118, "loss": 1.6727, "learning_rate": 0.0001, "epoch": 0.3686255463817387, "percentage": 36.86, "elapsed_time": "8:15:04", "remaining_time": "14:07:57"} +{"current_steps": 1519, "total_steps": 4118, "loss": 1.6523, "learning_rate": 0.0001, "epoch": 0.3688683827100534, "percentage": 36.89, "elapsed_time": "8:15:24", "remaining_time": "14:07:38"} +{"current_steps": 1520, "total_steps": 4118, "loss": 1.8644, "learning_rate": 0.0001, "epoch": 0.36911121903836813, "percentage": 36.91, "elapsed_time": "8:15:43", "remaining_time": "14:07:18"} +{"current_steps": 1521, "total_steps": 4118, "loss": 1.836, "learning_rate": 0.0001, "epoch": 0.36935405536668287, "percentage": 36.94, "elapsed_time": "8:16:03", "remaining_time": "14:06:58"} +{"current_steps": 1522, "total_steps": 4118, "loss": 1.773, "learning_rate": 0.0001, "epoch": 0.3695968916949976, "percentage": 36.96, "elapsed_time": "8:16:22", "remaining_time": "14:06:39"} +{"current_steps": 1523, "total_steps": 4118, "loss": 1.538, "learning_rate": 0.0001, "epoch": 0.3698397280233123, "percentage": 36.98, "elapsed_time": "8:16:42", "remaining_time": "14:06:19"} +{"current_steps": 1524, "total_steps": 4118, "loss": 1.773, "learning_rate": 0.0001, "epoch": 0.370082564351627, "percentage": 37.01, "elapsed_time": "8:17:02", "remaining_time": "14:06:00"} +{"current_steps": 1525, "total_steps": 4118, "loss": 1.7824, "learning_rate": 0.0001, "epoch": 0.37032540067994174, "percentage": 37.03, "elapsed_time": "8:17:21", "remaining_time": "14:05:40"} +{"current_steps": 1526, "total_steps": 4118, "loss": 1.7849, "learning_rate": 0.0001, "epoch": 0.3705682370082564, "percentage": 37.06, "elapsed_time": "8:17:41", "remaining_time": "14:05:21"} +{"current_steps": 1527, "total_steps": 4118, "loss": 1.8518, "learning_rate": 0.0001, "epoch": 0.37081107333657115, "percentage": 37.08, "elapsed_time": "8:18:00", "remaining_time": "14:05:01"} +{"current_steps": 1528, "total_steps": 4118, "loss": 1.7684, "learning_rate": 0.0001, "epoch": 0.3710539096648859, "percentage": 37.11, "elapsed_time": "8:18:20", "remaining_time": "14:04:41"} +{"current_steps": 1529, "total_steps": 4118, "loss": 1.6261, "learning_rate": 0.0001, "epoch": 0.37129674599320056, "percentage": 37.13, "elapsed_time": "8:18:39", "remaining_time": "14:04:22"} +{"current_steps": 1530, "total_steps": 4118, "loss": 1.6744, "learning_rate": 0.0001, "epoch": 0.3715395823215153, "percentage": 37.15, "elapsed_time": "8:18:59", "remaining_time": "14:04:02"} +{"current_steps": 1531, "total_steps": 4118, "loss": 1.8216, "learning_rate": 0.0001, "epoch": 0.37178241864983, "percentage": 37.18, "elapsed_time": "8:19:19", "remaining_time": "14:03:43"} +{"current_steps": 1532, "total_steps": 4118, "loss": 1.753, "learning_rate": 0.0001, "epoch": 0.3720252549781447, "percentage": 37.2, "elapsed_time": "8:19:38", "remaining_time": "14:03:23"} +{"current_steps": 1533, "total_steps": 4118, "loss": 1.7262, "learning_rate": 0.0001, "epoch": 0.37226809130645944, "percentage": 37.23, "elapsed_time": "8:19:58", "remaining_time": "14:03:03"} +{"current_steps": 1534, "total_steps": 4118, "loss": 1.7375, "learning_rate": 0.0001, "epoch": 0.37251092763477417, "percentage": 37.25, "elapsed_time": "8:20:17", "remaining_time": "14:02:44"} +{"current_steps": 1535, "total_steps": 4118, "loss": 1.753, "learning_rate": 0.0001, "epoch": 0.3727537639630889, "percentage": 37.28, "elapsed_time": "8:20:37", "remaining_time": "14:02:24"} +{"current_steps": 1536, "total_steps": 4118, "loss": 1.6866, "learning_rate": 0.0001, "epoch": 0.3729966002914036, "percentage": 37.3, "elapsed_time": "8:20:56", "remaining_time": "14:02:05"} +{"current_steps": 1537, "total_steps": 4118, "loss": 1.707, "learning_rate": 0.0001, "epoch": 0.3732394366197183, "percentage": 37.32, "elapsed_time": "8:21:16", "remaining_time": "14:01:45"} +{"current_steps": 1538, "total_steps": 4118, "loss": 1.6895, "learning_rate": 0.0001, "epoch": 0.37348227294803304, "percentage": 37.35, "elapsed_time": "8:21:35", "remaining_time": "14:01:26"} +{"current_steps": 1539, "total_steps": 4118, "loss": 1.6917, "learning_rate": 0.0001, "epoch": 0.3737251092763477, "percentage": 37.37, "elapsed_time": "8:21:55", "remaining_time": "14:01:06"} +{"current_steps": 1540, "total_steps": 4118, "loss": 1.8295, "learning_rate": 0.0001, "epoch": 0.37396794560466246, "percentage": 37.4, "elapsed_time": "8:22:15", "remaining_time": "14:00:46"} +{"current_steps": 1541, "total_steps": 4118, "loss": 1.8789, "learning_rate": 0.0001, "epoch": 0.3742107819329772, "percentage": 37.42, "elapsed_time": "8:22:34", "remaining_time": "14:00:27"} +{"current_steps": 1542, "total_steps": 4118, "loss": 1.73, "learning_rate": 0.0001, "epoch": 0.37445361826129187, "percentage": 37.45, "elapsed_time": "8:22:54", "remaining_time": "14:00:07"} +{"current_steps": 1543, "total_steps": 4118, "loss": 1.7994, "learning_rate": 0.0001, "epoch": 0.3746964545896066, "percentage": 37.47, "elapsed_time": "8:23:13", "remaining_time": "13:59:48"} +{"current_steps": 1544, "total_steps": 4118, "loss": 1.7445, "learning_rate": 0.0001, "epoch": 0.37493929091792133, "percentage": 37.49, "elapsed_time": "8:23:33", "remaining_time": "13:59:28"} +{"current_steps": 1545, "total_steps": 4118, "loss": 1.7352, "learning_rate": 0.0001, "epoch": 0.37518212724623606, "percentage": 37.52, "elapsed_time": "8:23:52", "remaining_time": "13:59:09"} +{"current_steps": 1546, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.37542496357455074, "percentage": 37.54, "elapsed_time": "8:24:12", "remaining_time": "13:58:49"} +{"current_steps": 1547, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.3756677999028655, "percentage": 37.57, "elapsed_time": "8:24:32", "remaining_time": "13:58:29"} +{"current_steps": 1548, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.3759106362311802, "percentage": 37.59, "elapsed_time": "8:24:51", "remaining_time": "13:58:10"} +{"current_steps": 1549, "total_steps": 4118, "loss": 1.8452, "learning_rate": 0.0001, "epoch": 0.3761534725594949, "percentage": 37.62, "elapsed_time": "8:25:11", "remaining_time": "13:57:50"} +{"current_steps": 1550, "total_steps": 4118, "loss": 1.656, "learning_rate": 0.0001, "epoch": 0.3763963088878096, "percentage": 37.64, "elapsed_time": "8:25:30", "remaining_time": "13:57:31"} +{"current_steps": 1551, "total_steps": 4118, "loss": 1.6719, "learning_rate": 0.0001, "epoch": 0.37663914521612435, "percentage": 37.66, "elapsed_time": "8:25:50", "remaining_time": "13:57:11"} +{"current_steps": 1552, "total_steps": 4118, "loss": 1.6747, "learning_rate": 0.0001, "epoch": 0.376881981544439, "percentage": 37.69, "elapsed_time": "8:26:09", "remaining_time": "13:56:52"} +{"current_steps": 1553, "total_steps": 4118, "loss": 1.6866, "learning_rate": 0.0001, "epoch": 0.37712481787275376, "percentage": 37.71, "elapsed_time": "8:26:29", "remaining_time": "13:56:32"} +{"current_steps": 1554, "total_steps": 4118, "loss": 1.6637, "learning_rate": 0.0001, "epoch": 0.3773676542010685, "percentage": 37.74, "elapsed_time": "8:26:48", "remaining_time": "13:56:12"} +{"current_steps": 1555, "total_steps": 4118, "loss": 1.7122, "learning_rate": 0.0001, "epoch": 0.37761049052938317, "percentage": 37.76, "elapsed_time": "8:27:08", "remaining_time": "13:55:53"} +{"current_steps": 1556, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.3778533268576979, "percentage": 37.79, "elapsed_time": "8:27:28", "remaining_time": "13:55:33"} +{"current_steps": 1557, "total_steps": 4118, "loss": 1.7024, "learning_rate": 0.0001, "epoch": 0.37809616318601263, "percentage": 37.81, "elapsed_time": "8:27:47", "remaining_time": "13:55:14"} +{"current_steps": 1558, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.37833899951432737, "percentage": 37.83, "elapsed_time": "8:28:07", "remaining_time": "13:54:54"} +{"current_steps": 1559, "total_steps": 4118, "loss": 1.7327, "learning_rate": 0.0001, "epoch": 0.37858183584264204, "percentage": 37.86, "elapsed_time": "8:28:26", "remaining_time": "13:54:34"} +{"current_steps": 1560, "total_steps": 4118, "loss": 1.7779, "learning_rate": 0.0001, "epoch": 0.3788246721709568, "percentage": 37.88, "elapsed_time": "8:28:46", "remaining_time": "13:54:15"} +{"current_steps": 1561, "total_steps": 4118, "loss": 1.7955, "learning_rate": 0.0001, "epoch": 0.3790675084992715, "percentage": 37.91, "elapsed_time": "8:29:05", "remaining_time": "13:53:55"} +{"current_steps": 1562, "total_steps": 4118, "loss": 1.8316, "learning_rate": 0.0001, "epoch": 0.3793103448275862, "percentage": 37.93, "elapsed_time": "8:29:25", "remaining_time": "13:53:36"} +{"current_steps": 1563, "total_steps": 4118, "loss": 1.7992, "learning_rate": 0.0001, "epoch": 0.3795531811559009, "percentage": 37.96, "elapsed_time": "8:29:45", "remaining_time": "13:53:16"} +{"current_steps": 1564, "total_steps": 4118, "loss": 1.7119, "learning_rate": 0.0001, "epoch": 0.37979601748421565, "percentage": 37.98, "elapsed_time": "8:30:04", "remaining_time": "13:52:57"} +{"current_steps": 1565, "total_steps": 4118, "loss": 1.722, "learning_rate": 0.0001, "epoch": 0.38003885381253033, "percentage": 38.0, "elapsed_time": "8:30:24", "remaining_time": "13:52:37"} +{"current_steps": 1566, "total_steps": 4118, "loss": 1.8611, "learning_rate": 0.0001, "epoch": 0.38028169014084506, "percentage": 38.03, "elapsed_time": "8:30:43", "remaining_time": "13:52:17"} +{"current_steps": 1567, "total_steps": 4118, "loss": 1.7909, "learning_rate": 0.0001, "epoch": 0.3805245264691598, "percentage": 38.05, "elapsed_time": "8:31:03", "remaining_time": "13:51:58"} +{"current_steps": 1568, "total_steps": 4118, "loss": 1.8951, "learning_rate": 0.0001, "epoch": 0.38076736279747453, "percentage": 38.08, "elapsed_time": "8:31:22", "remaining_time": "13:51:38"} +{"current_steps": 1569, "total_steps": 4118, "loss": 1.7499, "learning_rate": 0.0001, "epoch": 0.3810101991257892, "percentage": 38.1, "elapsed_time": "8:31:42", "remaining_time": "13:51:19"} +{"current_steps": 1570, "total_steps": 4118, "loss": 1.5791, "learning_rate": 0.0001, "epoch": 0.38125303545410394, "percentage": 38.13, "elapsed_time": "8:32:02", "remaining_time": "13:50:59"} +{"current_steps": 1571, "total_steps": 4118, "loss": 1.8572, "learning_rate": 0.0001, "epoch": 0.38149587178241867, "percentage": 38.15, "elapsed_time": "8:32:21", "remaining_time": "13:50:40"} +{"current_steps": 1572, "total_steps": 4118, "loss": 1.752, "learning_rate": 0.0001, "epoch": 0.38173870811073335, "percentage": 38.17, "elapsed_time": "8:32:41", "remaining_time": "13:50:20"} +{"current_steps": 1573, "total_steps": 4118, "loss": 1.6348, "learning_rate": 0.0001, "epoch": 0.3819815444390481, "percentage": 38.2, "elapsed_time": "8:33:00", "remaining_time": "13:50:01"} +{"current_steps": 1574, "total_steps": 4118, "loss": 1.5685, "learning_rate": 0.0001, "epoch": 0.3822243807673628, "percentage": 38.22, "elapsed_time": "8:33:20", "remaining_time": "13:49:41"} +{"current_steps": 1575, "total_steps": 4118, "loss": 1.707, "learning_rate": 0.0001, "epoch": 0.3824672170956775, "percentage": 38.25, "elapsed_time": "8:33:39", "remaining_time": "13:49:21"} +{"current_steps": 1576, "total_steps": 4118, "loss": 1.8378, "learning_rate": 0.0001, "epoch": 0.3827100534239922, "percentage": 38.27, "elapsed_time": "8:33:59", "remaining_time": "13:49:02"} +{"current_steps": 1577, "total_steps": 4118, "loss": 1.8539, "learning_rate": 0.0001, "epoch": 0.38295288975230696, "percentage": 38.3, "elapsed_time": "8:34:18", "remaining_time": "13:48:42"} +{"current_steps": 1578, "total_steps": 4118, "loss": 1.728, "learning_rate": 0.0001, "epoch": 0.38319572608062163, "percentage": 38.32, "elapsed_time": "8:34:38", "remaining_time": "13:48:23"} +{"current_steps": 1579, "total_steps": 4118, "loss": 1.7228, "learning_rate": 0.0001, "epoch": 0.38343856240893637, "percentage": 38.34, "elapsed_time": "8:34:58", "remaining_time": "13:48:03"} +{"current_steps": 1580, "total_steps": 4118, "loss": 1.7816, "learning_rate": 0.0001, "epoch": 0.3836813987372511, "percentage": 38.37, "elapsed_time": "8:35:17", "remaining_time": "13:47:43"} +{"current_steps": 1581, "total_steps": 4118, "loss": 1.7463, "learning_rate": 0.0001, "epoch": 0.38392423506556583, "percentage": 38.39, "elapsed_time": "8:35:37", "remaining_time": "13:47:24"} +{"current_steps": 1582, "total_steps": 4118, "loss": 1.879, "learning_rate": 0.0001, "epoch": 0.3841670713938805, "percentage": 38.42, "elapsed_time": "8:35:56", "remaining_time": "13:47:04"} +{"current_steps": 1583, "total_steps": 4118, "loss": 1.7136, "learning_rate": 0.0001, "epoch": 0.38440990772219524, "percentage": 38.44, "elapsed_time": "8:36:16", "remaining_time": "13:46:45"} +{"current_steps": 1584, "total_steps": 4118, "loss": 1.758, "learning_rate": 0.0001, "epoch": 0.38465274405051, "percentage": 38.47, "elapsed_time": "8:36:35", "remaining_time": "13:46:25"} +{"current_steps": 1585, "total_steps": 4118, "loss": 1.8021, "learning_rate": 0.0001, "epoch": 0.38489558037882465, "percentage": 38.49, "elapsed_time": "8:36:55", "remaining_time": "13:46:05"} +{"current_steps": 1586, "total_steps": 4118, "loss": 1.7591, "learning_rate": 0.0001, "epoch": 0.3851384167071394, "percentage": 38.51, "elapsed_time": "8:37:14", "remaining_time": "13:45:46"} +{"current_steps": 1587, "total_steps": 4118, "loss": 1.6797, "learning_rate": 0.0001, "epoch": 0.3853812530354541, "percentage": 38.54, "elapsed_time": "8:37:34", "remaining_time": "13:45:26"} +{"current_steps": 1588, "total_steps": 4118, "loss": 1.5639, "learning_rate": 0.0001, "epoch": 0.3856240893637688, "percentage": 38.56, "elapsed_time": "8:37:54", "remaining_time": "13:45:07"} +{"current_steps": 1589, "total_steps": 4118, "loss": 1.8708, "learning_rate": 0.0001, "epoch": 0.38586692569208353, "percentage": 38.59, "elapsed_time": "8:38:13", "remaining_time": "13:44:47"} +{"current_steps": 1590, "total_steps": 4118, "loss": 1.8732, "learning_rate": 0.0001, "epoch": 0.38610976202039826, "percentage": 38.61, "elapsed_time": "8:38:33", "remaining_time": "13:44:27"} +{"current_steps": 1591, "total_steps": 4118, "loss": 1.5429, "learning_rate": 0.0001, "epoch": 0.386352598348713, "percentage": 38.64, "elapsed_time": "8:38:52", "remaining_time": "13:44:08"} +{"current_steps": 1592, "total_steps": 4118, "loss": 1.7854, "learning_rate": 0.0001, "epoch": 0.38659543467702767, "percentage": 38.66, "elapsed_time": "8:39:12", "remaining_time": "13:43:48"} +{"current_steps": 1593, "total_steps": 4118, "loss": 1.6847, "learning_rate": 0.0001, "epoch": 0.3868382710053424, "percentage": 38.68, "elapsed_time": "8:39:31", "remaining_time": "13:43:29"} +{"current_steps": 1594, "total_steps": 4118, "loss": 1.7912, "learning_rate": 0.0001, "epoch": 0.38708110733365714, "percentage": 38.71, "elapsed_time": "8:39:51", "remaining_time": "13:43:09"} +{"current_steps": 1595, "total_steps": 4118, "loss": 1.7494, "learning_rate": 0.0001, "epoch": 0.3873239436619718, "percentage": 38.73, "elapsed_time": "8:40:10", "remaining_time": "13:42:49"} +{"current_steps": 1596, "total_steps": 4118, "loss": 1.7426, "learning_rate": 0.0001, "epoch": 0.38756677999028655, "percentage": 38.76, "elapsed_time": "8:40:30", "remaining_time": "13:42:30"} +{"current_steps": 1597, "total_steps": 4118, "loss": 1.734, "learning_rate": 0.0001, "epoch": 0.3878096163186013, "percentage": 38.78, "elapsed_time": "8:40:49", "remaining_time": "13:42:10"} +{"current_steps": 1598, "total_steps": 4118, "loss": 1.8984, "learning_rate": 0.0001, "epoch": 0.38805245264691596, "percentage": 38.81, "elapsed_time": "8:41:09", "remaining_time": "13:41:51"} +{"current_steps": 1599, "total_steps": 4118, "loss": 1.7587, "learning_rate": 0.0001, "epoch": 0.3882952889752307, "percentage": 38.83, "elapsed_time": "8:41:29", "remaining_time": "13:41:31"} +{"current_steps": 1600, "total_steps": 4118, "loss": 1.6392, "learning_rate": 0.0001, "epoch": 0.3885381253035454, "percentage": 38.85, "elapsed_time": "8:41:48", "remaining_time": "13:41:12"} +{"current_steps": 1601, "total_steps": 4118, "loss": 1.8059, "learning_rate": 0.0001, "epoch": 0.3887809616318601, "percentage": 38.88, "elapsed_time": "8:42:08", "remaining_time": "13:40:52"} +{"current_steps": 1602, "total_steps": 4118, "loss": 1.7381, "learning_rate": 0.0001, "epoch": 0.38902379796017483, "percentage": 38.9, "elapsed_time": "8:42:27", "remaining_time": "13:40:32"} +{"current_steps": 1603, "total_steps": 4118, "loss": 1.7246, "learning_rate": 0.0001, "epoch": 0.38926663428848957, "percentage": 38.93, "elapsed_time": "8:42:47", "remaining_time": "13:40:13"} +{"current_steps": 1604, "total_steps": 4118, "loss": 1.5838, "learning_rate": 0.0001, "epoch": 0.3895094706168043, "percentage": 38.95, "elapsed_time": "8:43:06", "remaining_time": "13:39:53"} +{"current_steps": 1605, "total_steps": 4118, "loss": 1.7817, "learning_rate": 0.0001, "epoch": 0.389752306945119, "percentage": 38.98, "elapsed_time": "8:43:26", "remaining_time": "13:39:34"} +{"current_steps": 1606, "total_steps": 4118, "loss": 1.6548, "learning_rate": 0.0001, "epoch": 0.3899951432734337, "percentage": 39.0, "elapsed_time": "8:43:46", "remaining_time": "13:39:14"} +{"current_steps": 1607, "total_steps": 4118, "loss": 1.6972, "learning_rate": 0.0001, "epoch": 0.39023797960174844, "percentage": 39.02, "elapsed_time": "8:44:05", "remaining_time": "13:38:54"} +{"current_steps": 1608, "total_steps": 4118, "loss": 1.7412, "learning_rate": 0.0001, "epoch": 0.3904808159300631, "percentage": 39.05, "elapsed_time": "8:44:25", "remaining_time": "13:38:35"} +{"current_steps": 1609, "total_steps": 4118, "loss": 1.898, "learning_rate": 0.0001, "epoch": 0.39072365225837785, "percentage": 39.07, "elapsed_time": "8:44:44", "remaining_time": "13:38:15"} +{"current_steps": 1610, "total_steps": 4118, "loss": 1.6693, "learning_rate": 0.0001, "epoch": 0.3909664885866926, "percentage": 39.1, "elapsed_time": "8:45:04", "remaining_time": "13:37:56"} +{"current_steps": 1611, "total_steps": 4118, "loss": 1.7513, "learning_rate": 0.0001, "epoch": 0.39120932491500726, "percentage": 39.12, "elapsed_time": "8:45:23", "remaining_time": "13:37:36"} +{"current_steps": 1612, "total_steps": 4118, "loss": 1.6988, "learning_rate": 0.0001, "epoch": 0.391452161243322, "percentage": 39.15, "elapsed_time": "8:45:43", "remaining_time": "13:37:17"} +{"current_steps": 1613, "total_steps": 4118, "loss": 1.7906, "learning_rate": 0.0001, "epoch": 0.3916949975716367, "percentage": 39.17, "elapsed_time": "8:46:02", "remaining_time": "13:36:57"} +{"current_steps": 1614, "total_steps": 4118, "loss": 1.7254, "learning_rate": 0.0001, "epoch": 0.39193783389995146, "percentage": 39.19, "elapsed_time": "8:46:22", "remaining_time": "13:36:38"} +{"current_steps": 1615, "total_steps": 4118, "loss": 1.8484, "learning_rate": 0.0001, "epoch": 0.39218067022826614, "percentage": 39.22, "elapsed_time": "8:46:42", "remaining_time": "13:36:18"} +{"current_steps": 1616, "total_steps": 4118, "loss": 1.6468, "learning_rate": 0.0001, "epoch": 0.39242350655658087, "percentage": 39.24, "elapsed_time": "8:47:01", "remaining_time": "13:35:58"} +{"current_steps": 1617, "total_steps": 4118, "loss": 1.7078, "learning_rate": 0.0001, "epoch": 0.3926663428848956, "percentage": 39.27, "elapsed_time": "8:47:21", "remaining_time": "13:35:39"} +{"current_steps": 1618, "total_steps": 4118, "loss": 1.6587, "learning_rate": 0.0001, "epoch": 0.3929091792132103, "percentage": 39.29, "elapsed_time": "8:47:40", "remaining_time": "13:35:19"} +{"current_steps": 1619, "total_steps": 4118, "loss": 1.8704, "learning_rate": 0.0001, "epoch": 0.393152015541525, "percentage": 39.32, "elapsed_time": "8:48:00", "remaining_time": "13:35:00"} +{"current_steps": 1620, "total_steps": 4118, "loss": 1.7474, "learning_rate": 0.0001, "epoch": 0.39339485186983975, "percentage": 39.34, "elapsed_time": "8:48:19", "remaining_time": "13:34:40"} +{"current_steps": 1621, "total_steps": 4118, "loss": 1.7799, "learning_rate": 0.0001, "epoch": 0.3936376881981544, "percentage": 39.36, "elapsed_time": "8:48:39", "remaining_time": "13:34:21"} +{"current_steps": 1622, "total_steps": 4118, "loss": 1.7176, "learning_rate": 0.0001, "epoch": 0.39388052452646916, "percentage": 39.39, "elapsed_time": "8:48:59", "remaining_time": "13:34:01"} +{"current_steps": 1623, "total_steps": 4118, "loss": 1.7601, "learning_rate": 0.0001, "epoch": 0.3941233608547839, "percentage": 39.41, "elapsed_time": "8:49:18", "remaining_time": "13:33:41"} +{"current_steps": 1624, "total_steps": 4118, "loss": 1.6211, "learning_rate": 0.0001, "epoch": 0.39436619718309857, "percentage": 39.44, "elapsed_time": "8:49:38", "remaining_time": "13:33:22"} +{"current_steps": 1625, "total_steps": 4118, "loss": 1.9806, "learning_rate": 0.0001, "epoch": 0.3946090335114133, "percentage": 39.46, "elapsed_time": "8:49:57", "remaining_time": "13:33:02"} +{"current_steps": 1626, "total_steps": 4118, "loss": 1.6925, "learning_rate": 0.0001, "epoch": 0.39485186983972803, "percentage": 39.49, "elapsed_time": "8:50:17", "remaining_time": "13:32:43"} +{"current_steps": 1627, "total_steps": 4118, "loss": 1.7742, "learning_rate": 0.0001, "epoch": 0.39509470616804276, "percentage": 39.51, "elapsed_time": "8:50:36", "remaining_time": "13:32:23"} +{"current_steps": 1628, "total_steps": 4118, "loss": 1.6909, "learning_rate": 0.0001, "epoch": 0.39533754249635744, "percentage": 39.53, "elapsed_time": "8:50:56", "remaining_time": "13:32:03"} +{"current_steps": 1629, "total_steps": 4118, "loss": 1.6695, "learning_rate": 0.0001, "epoch": 0.3955803788246722, "percentage": 39.56, "elapsed_time": "8:51:16", "remaining_time": "13:31:44"} +{"current_steps": 1630, "total_steps": 4118, "loss": 1.7664, "learning_rate": 0.0001, "epoch": 0.3958232151529869, "percentage": 39.58, "elapsed_time": "8:51:35", "remaining_time": "13:31:24"} +{"current_steps": 1631, "total_steps": 4118, "loss": 1.611, "learning_rate": 0.0001, "epoch": 0.3960660514813016, "percentage": 39.61, "elapsed_time": "8:51:55", "remaining_time": "13:31:05"} +{"current_steps": 1632, "total_steps": 4118, "loss": 1.6211, "learning_rate": 0.0001, "epoch": 0.3963088878096163, "percentage": 39.63, "elapsed_time": "8:52:14", "remaining_time": "13:30:45"} +{"current_steps": 1633, "total_steps": 4118, "loss": 1.744, "learning_rate": 0.0001, "epoch": 0.39655172413793105, "percentage": 39.66, "elapsed_time": "8:52:34", "remaining_time": "13:30:26"} +{"current_steps": 1634, "total_steps": 4118, "loss": 1.7867, "learning_rate": 0.0001, "epoch": 0.3967945604662457, "percentage": 39.68, "elapsed_time": "8:52:53", "remaining_time": "13:30:06"} +{"current_steps": 1635, "total_steps": 4118, "loss": 1.7829, "learning_rate": 0.0001, "epoch": 0.39703739679456046, "percentage": 39.7, "elapsed_time": "8:53:13", "remaining_time": "13:29:46"} +{"current_steps": 1636, "total_steps": 4118, "loss": 1.8101, "learning_rate": 0.0001, "epoch": 0.3972802331228752, "percentage": 39.73, "elapsed_time": "8:53:33", "remaining_time": "13:29:27"} +{"current_steps": 1637, "total_steps": 4118, "loss": 1.9489, "learning_rate": 0.0001, "epoch": 0.3975230694511899, "percentage": 39.75, "elapsed_time": "8:53:52", "remaining_time": "13:29:07"} +{"current_steps": 1638, "total_steps": 4118, "loss": 1.7749, "learning_rate": 0.0001, "epoch": 0.3977659057795046, "percentage": 39.78, "elapsed_time": "8:54:12", "remaining_time": "13:28:48"} +{"current_steps": 1639, "total_steps": 4118, "loss": 1.7272, "learning_rate": 0.0001, "epoch": 0.39800874210781934, "percentage": 39.8, "elapsed_time": "8:54:31", "remaining_time": "13:28:28"} +{"current_steps": 1640, "total_steps": 4118, "loss": 1.7213, "learning_rate": 0.0001, "epoch": 0.39825157843613407, "percentage": 39.83, "elapsed_time": "8:54:51", "remaining_time": "13:28:09"} +{"current_steps": 1641, "total_steps": 4118, "loss": 1.7066, "learning_rate": 0.0001, "epoch": 0.39849441476444875, "percentage": 39.85, "elapsed_time": "8:55:10", "remaining_time": "13:27:49"} +{"current_steps": 1642, "total_steps": 4118, "loss": 1.7214, "learning_rate": 0.0001, "epoch": 0.3987372510927635, "percentage": 39.87, "elapsed_time": "8:55:30", "remaining_time": "13:27:29"} +{"current_steps": 1643, "total_steps": 4118, "loss": 1.7119, "learning_rate": 0.0001, "epoch": 0.3989800874210782, "percentage": 39.9, "elapsed_time": "8:55:49", "remaining_time": "13:27:10"} +{"current_steps": 1644, "total_steps": 4118, "loss": 1.6867, "learning_rate": 0.0001, "epoch": 0.3992229237493929, "percentage": 39.92, "elapsed_time": "8:56:09", "remaining_time": "13:26:50"} +{"current_steps": 1645, "total_steps": 4118, "loss": 1.8045, "learning_rate": 0.0001, "epoch": 0.3994657600777076, "percentage": 39.95, "elapsed_time": "8:56:29", "remaining_time": "13:26:31"} +{"current_steps": 1646, "total_steps": 4118, "loss": 1.7552, "learning_rate": 0.0001, "epoch": 0.39970859640602235, "percentage": 39.97, "elapsed_time": "8:56:48", "remaining_time": "13:26:11"} +{"current_steps": 1647, "total_steps": 4118, "loss": 1.7556, "learning_rate": 0.0001, "epoch": 0.39995143273433703, "percentage": 40.0, "elapsed_time": "8:57:08", "remaining_time": "13:25:52"} +{"current_steps": 1648, "total_steps": 4118, "loss": 1.6424, "learning_rate": 0.0001, "epoch": 0.40019426906265176, "percentage": 40.02, "elapsed_time": "8:57:27", "remaining_time": "13:25:32"} +{"current_steps": 1649, "total_steps": 4118, "loss": 1.9207, "learning_rate": 0.0001, "epoch": 0.4004371053909665, "percentage": 40.04, "elapsed_time": "8:57:47", "remaining_time": "13:25:12"} +{"current_steps": 1650, "total_steps": 4118, "loss": 1.7892, "learning_rate": 0.0001, "epoch": 0.40067994171928123, "percentage": 40.07, "elapsed_time": "8:58:06", "remaining_time": "13:24:53"} +{"current_steps": 1651, "total_steps": 4118, "loss": 1.6172, "learning_rate": 0.0001, "epoch": 0.4009227780475959, "percentage": 40.09, "elapsed_time": "8:58:26", "remaining_time": "13:24:33"} +{"current_steps": 1652, "total_steps": 4118, "loss": 1.6769, "learning_rate": 0.0001, "epoch": 0.40116561437591064, "percentage": 40.12, "elapsed_time": "8:58:45", "remaining_time": "13:24:14"} +{"current_steps": 1653, "total_steps": 4118, "loss": 1.7209, "learning_rate": 0.0001, "epoch": 0.4014084507042254, "percentage": 40.14, "elapsed_time": "8:59:05", "remaining_time": "13:23:54"} +{"current_steps": 1654, "total_steps": 4118, "loss": 1.653, "learning_rate": 0.0001, "epoch": 0.40165128703254005, "percentage": 40.17, "elapsed_time": "8:59:25", "remaining_time": "13:23:35"} +{"current_steps": 1655, "total_steps": 4118, "loss": 1.6745, "learning_rate": 0.0001, "epoch": 0.4018941233608548, "percentage": 40.19, "elapsed_time": "8:59:44", "remaining_time": "13:23:15"} +{"current_steps": 1656, "total_steps": 4118, "loss": 1.6898, "learning_rate": 0.0001, "epoch": 0.4021369596891695, "percentage": 40.21, "elapsed_time": "9:00:04", "remaining_time": "13:22:55"} +{"current_steps": 1657, "total_steps": 4118, "loss": 1.7434, "learning_rate": 0.0001, "epoch": 0.4023797960174842, "percentage": 40.24, "elapsed_time": "9:00:23", "remaining_time": "13:22:36"} +{"current_steps": 1658, "total_steps": 4118, "loss": 1.9286, "learning_rate": 0.0001, "epoch": 0.4026226323457989, "percentage": 40.26, "elapsed_time": "9:00:43", "remaining_time": "13:22:16"} +{"current_steps": 1659, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.40286546867411366, "percentage": 40.29, "elapsed_time": "9:01:02", "remaining_time": "13:21:57"} +{"current_steps": 1660, "total_steps": 4118, "loss": 1.8043, "learning_rate": 0.0001, "epoch": 0.4031083050024284, "percentage": 40.31, "elapsed_time": "9:01:22", "remaining_time": "13:21:37"} +{"current_steps": 1661, "total_steps": 4118, "loss": 1.6961, "learning_rate": 0.0001, "epoch": 0.40335114133074307, "percentage": 40.34, "elapsed_time": "9:01:42", "remaining_time": "13:21:17"} +{"current_steps": 1662, "total_steps": 4118, "loss": 1.6181, "learning_rate": 0.0001, "epoch": 0.4035939776590578, "percentage": 40.36, "elapsed_time": "9:02:01", "remaining_time": "13:20:58"} +{"current_steps": 1663, "total_steps": 4118, "loss": 1.8601, "learning_rate": 0.0001, "epoch": 0.40383681398737253, "percentage": 40.38, "elapsed_time": "9:02:21", "remaining_time": "13:20:38"} +{"current_steps": 1664, "total_steps": 4118, "loss": 1.8385, "learning_rate": 0.0001, "epoch": 0.4040796503156872, "percentage": 40.41, "elapsed_time": "9:02:40", "remaining_time": "13:20:19"} +{"current_steps": 1665, "total_steps": 4118, "loss": 1.7258, "learning_rate": 0.0001, "epoch": 0.40432248664400194, "percentage": 40.43, "elapsed_time": "9:03:00", "remaining_time": "13:19:59"} +{"current_steps": 1666, "total_steps": 4118, "loss": 1.8895, "learning_rate": 0.0001, "epoch": 0.4045653229723167, "percentage": 40.46, "elapsed_time": "9:03:19", "remaining_time": "13:19:40"} +{"current_steps": 1667, "total_steps": 4118, "loss": 1.7546, "learning_rate": 0.0001, "epoch": 0.40480815930063135, "percentage": 40.48, "elapsed_time": "9:03:39", "remaining_time": "13:19:20"} +{"current_steps": 1668, "total_steps": 4118, "loss": 1.7, "learning_rate": 0.0001, "epoch": 0.4050509956289461, "percentage": 40.51, "elapsed_time": "9:03:59", "remaining_time": "13:19:01"} +{"current_steps": 1669, "total_steps": 4118, "loss": 1.6329, "learning_rate": 0.0001, "epoch": 0.4052938319572608, "percentage": 40.53, "elapsed_time": "9:04:18", "remaining_time": "13:18:41"} +{"current_steps": 1670, "total_steps": 4118, "loss": 1.6816, "learning_rate": 0.0001, "epoch": 0.4055366682855755, "percentage": 40.55, "elapsed_time": "9:04:38", "remaining_time": "13:18:21"} +{"current_steps": 1671, "total_steps": 4118, "loss": 1.8344, "learning_rate": 0.0001, "epoch": 0.40577950461389023, "percentage": 40.58, "elapsed_time": "9:04:57", "remaining_time": "13:18:02"} +{"current_steps": 1672, "total_steps": 4118, "loss": 1.8103, "learning_rate": 0.0001, "epoch": 0.40602234094220496, "percentage": 40.6, "elapsed_time": "9:05:17", "remaining_time": "13:17:42"} +{"current_steps": 1673, "total_steps": 4118, "loss": 1.8503, "learning_rate": 0.0001, "epoch": 0.4062651772705197, "percentage": 40.63, "elapsed_time": "9:05:36", "remaining_time": "13:17:23"} +{"current_steps": 1674, "total_steps": 4118, "loss": 1.5834, "learning_rate": 0.0001, "epoch": 0.4065080135988344, "percentage": 40.65, "elapsed_time": "9:05:56", "remaining_time": "13:17:03"} +{"current_steps": 1675, "total_steps": 4118, "loss": 1.8358, "learning_rate": 0.0001, "epoch": 0.4067508499271491, "percentage": 40.68, "elapsed_time": "9:06:15", "remaining_time": "13:16:44"} +{"current_steps": 1676, "total_steps": 4118, "loss": 1.74, "learning_rate": 0.0001, "epoch": 0.40699368625546384, "percentage": 40.7, "elapsed_time": "9:06:35", "remaining_time": "13:16:24"} +{"current_steps": 1677, "total_steps": 4118, "loss": 1.7048, "learning_rate": 0.0001, "epoch": 0.4072365225837785, "percentage": 40.72, "elapsed_time": "9:06:55", "remaining_time": "13:16:04"} +{"current_steps": 1678, "total_steps": 4118, "loss": 1.6215, "learning_rate": 0.0001, "epoch": 0.40747935891209325, "percentage": 40.75, "elapsed_time": "9:07:14", "remaining_time": "13:15:45"} +{"current_steps": 1679, "total_steps": 4118, "loss": 1.7485, "learning_rate": 0.0001, "epoch": 0.407722195240408, "percentage": 40.77, "elapsed_time": "9:07:34", "remaining_time": "13:15:25"} +{"current_steps": 1680, "total_steps": 4118, "loss": 1.8274, "learning_rate": 0.0001, "epoch": 0.40796503156872266, "percentage": 40.8, "elapsed_time": "9:07:53", "remaining_time": "13:15:06"} +{"current_steps": 1681, "total_steps": 4118, "loss": 1.939, "learning_rate": 0.0001, "epoch": 0.4082078678970374, "percentage": 40.82, "elapsed_time": "9:08:13", "remaining_time": "13:14:46"} +{"current_steps": 1682, "total_steps": 4118, "loss": 1.7705, "learning_rate": 0.0001, "epoch": 0.4084507042253521, "percentage": 40.85, "elapsed_time": "9:08:32", "remaining_time": "13:14:27"} +{"current_steps": 1683, "total_steps": 4118, "loss": 1.5974, "learning_rate": 0.0001, "epoch": 0.4086935405536668, "percentage": 40.87, "elapsed_time": "9:08:52", "remaining_time": "13:14:07"} +{"current_steps": 1684, "total_steps": 4118, "loss": 1.7149, "learning_rate": 0.0001, "epoch": 0.40893637688198153, "percentage": 40.89, "elapsed_time": "9:09:12", "remaining_time": "13:13:47"} +{"current_steps": 1685, "total_steps": 4118, "loss": 1.7013, "learning_rate": 0.0001, "epoch": 0.40917921321029627, "percentage": 40.92, "elapsed_time": "9:09:31", "remaining_time": "13:13:28"} +{"current_steps": 1686, "total_steps": 4118, "loss": 1.7755, "learning_rate": 0.0001, "epoch": 0.409422049538611, "percentage": 40.94, "elapsed_time": "9:09:51", "remaining_time": "13:13:08"} +{"current_steps": 1687, "total_steps": 4118, "loss": 1.6197, "learning_rate": 0.0001, "epoch": 0.4096648858669257, "percentage": 40.97, "elapsed_time": "9:10:10", "remaining_time": "13:12:49"} +{"current_steps": 1688, "total_steps": 4118, "loss": 1.5927, "learning_rate": 0.0001, "epoch": 0.4099077221952404, "percentage": 40.99, "elapsed_time": "9:10:30", "remaining_time": "13:12:29"} +{"current_steps": 1689, "total_steps": 4118, "loss": 1.8127, "learning_rate": 0.0001, "epoch": 0.41015055852355514, "percentage": 41.02, "elapsed_time": "9:10:49", "remaining_time": "13:12:09"} +{"current_steps": 1690, "total_steps": 4118, "loss": 1.584, "learning_rate": 0.0001, "epoch": 0.4103933948518698, "percentage": 41.04, "elapsed_time": "9:11:09", "remaining_time": "13:11:50"} +{"current_steps": 1691, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.41063623118018455, "percentage": 41.06, "elapsed_time": "9:11:29", "remaining_time": "13:11:30"} +{"current_steps": 1692, "total_steps": 4118, "loss": 1.8451, "learning_rate": 0.0001, "epoch": 0.4108790675084993, "percentage": 41.09, "elapsed_time": "9:11:48", "remaining_time": "13:11:11"} +{"current_steps": 1693, "total_steps": 4118, "loss": 1.8007, "learning_rate": 0.0001, "epoch": 0.41112190383681396, "percentage": 41.11, "elapsed_time": "9:12:08", "remaining_time": "13:10:51"} +{"current_steps": 1694, "total_steps": 4118, "loss": 1.7214, "learning_rate": 0.0001, "epoch": 0.4113647401651287, "percentage": 41.14, "elapsed_time": "9:12:27", "remaining_time": "13:10:32"} +{"current_steps": 1695, "total_steps": 4118, "loss": 1.6494, "learning_rate": 0.0001, "epoch": 0.41160757649344343, "percentage": 41.16, "elapsed_time": "9:12:47", "remaining_time": "13:10:12"} +{"current_steps": 1696, "total_steps": 4118, "loss": 1.5886, "learning_rate": 0.0001, "epoch": 0.41185041282175816, "percentage": 41.19, "elapsed_time": "9:13:06", "remaining_time": "13:09:53"} +{"current_steps": 1697, "total_steps": 4118, "loss": 1.9049, "learning_rate": 0.0001, "epoch": 0.41209324915007284, "percentage": 41.21, "elapsed_time": "9:13:26", "remaining_time": "13:09:33"} +{"current_steps": 1698, "total_steps": 4118, "loss": 1.7948, "learning_rate": 0.0001, "epoch": 0.41233608547838757, "percentage": 41.23, "elapsed_time": "9:13:45", "remaining_time": "13:09:13"} +{"current_steps": 1699, "total_steps": 4118, "loss": 1.932, "learning_rate": 0.0001, "epoch": 0.4125789218067023, "percentage": 41.26, "elapsed_time": "9:14:05", "remaining_time": "13:08:54"} +{"current_steps": 1700, "total_steps": 4118, "loss": 1.8595, "learning_rate": 0.0001, "epoch": 0.412821758135017, "percentage": 41.28, "elapsed_time": "9:14:25", "remaining_time": "13:08:34"} +{"current_steps": 1701, "total_steps": 4118, "loss": 1.8307, "learning_rate": 0.0001, "epoch": 0.4130645944633317, "percentage": 41.31, "elapsed_time": "9:14:44", "remaining_time": "13:08:15"} +{"current_steps": 1702, "total_steps": 4118, "loss": 1.7059, "learning_rate": 0.0001, "epoch": 0.41330743079164645, "percentage": 41.33, "elapsed_time": "9:15:04", "remaining_time": "13:07:55"} +{"current_steps": 1703, "total_steps": 4118, "loss": 1.6587, "learning_rate": 0.0001, "epoch": 0.4135502671199611, "percentage": 41.36, "elapsed_time": "9:15:23", "remaining_time": "13:07:35"} +{"current_steps": 1704, "total_steps": 4118, "loss": 1.6111, "learning_rate": 0.0001, "epoch": 0.41379310344827586, "percentage": 41.38, "elapsed_time": "9:15:43", "remaining_time": "13:07:16"} +{"current_steps": 1705, "total_steps": 4118, "loss": 1.6834, "learning_rate": 0.0001, "epoch": 0.4140359397765906, "percentage": 41.4, "elapsed_time": "9:16:02", "remaining_time": "13:06:56"} +{"current_steps": 1706, "total_steps": 4118, "loss": 1.7468, "learning_rate": 0.0001, "epoch": 0.41427877610490527, "percentage": 41.43, "elapsed_time": "9:16:22", "remaining_time": "13:06:37"} +{"current_steps": 1707, "total_steps": 4118, "loss": 1.8466, "learning_rate": 0.0001, "epoch": 0.41452161243322, "percentage": 41.45, "elapsed_time": "9:16:42", "remaining_time": "13:06:17"} +{"current_steps": 1708, "total_steps": 4118, "loss": 1.6398, "learning_rate": 0.0001, "epoch": 0.41476444876153473, "percentage": 41.48, "elapsed_time": "9:17:01", "remaining_time": "13:05:58"} +{"current_steps": 1709, "total_steps": 4118, "loss": 1.8333, "learning_rate": 0.0001, "epoch": 0.41500728508984946, "percentage": 41.5, "elapsed_time": "9:17:21", "remaining_time": "13:05:38"} +{"current_steps": 1710, "total_steps": 4118, "loss": 1.7439, "learning_rate": 0.0001, "epoch": 0.41525012141816414, "percentage": 41.53, "elapsed_time": "9:17:40", "remaining_time": "13:05:18"} +{"current_steps": 1711, "total_steps": 4118, "loss": 1.6967, "learning_rate": 0.0001, "epoch": 0.4154929577464789, "percentage": 41.55, "elapsed_time": "9:18:00", "remaining_time": "13:04:59"} +{"current_steps": 1712, "total_steps": 4118, "loss": 1.7642, "learning_rate": 0.0001, "epoch": 0.4157357940747936, "percentage": 41.57, "elapsed_time": "9:18:19", "remaining_time": "13:04:39"} +{"current_steps": 1713, "total_steps": 4118, "loss": 1.9078, "learning_rate": 0.0001, "epoch": 0.4159786304031083, "percentage": 41.6, "elapsed_time": "9:18:39", "remaining_time": "13:04:20"} +{"current_steps": 1714, "total_steps": 4118, "loss": 1.6872, "learning_rate": 0.0001, "epoch": 0.416221466731423, "percentage": 41.62, "elapsed_time": "9:18:59", "remaining_time": "13:04:00"} +{"current_steps": 1715, "total_steps": 4118, "loss": 1.9544, "learning_rate": 0.0001, "epoch": 0.41646430305973775, "percentage": 41.65, "elapsed_time": "9:19:18", "remaining_time": "13:03:41"} +{"current_steps": 1716, "total_steps": 4118, "loss": 1.8014, "learning_rate": 0.0001, "epoch": 0.4167071393880524, "percentage": 41.67, "elapsed_time": "9:19:38", "remaining_time": "13:03:21"} +{"current_steps": 1717, "total_steps": 4118, "loss": 1.8504, "learning_rate": 0.0001, "epoch": 0.41694997571636716, "percentage": 41.69, "elapsed_time": "9:19:57", "remaining_time": "13:03:02"} +{"current_steps": 1718, "total_steps": 4118, "loss": 1.6627, "learning_rate": 0.0001, "epoch": 0.4171928120446819, "percentage": 41.72, "elapsed_time": "9:20:17", "remaining_time": "13:02:42"} +{"current_steps": 1719, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.4174356483729966, "percentage": 41.74, "elapsed_time": "9:20:36", "remaining_time": "13:02:22"} +{"current_steps": 1720, "total_steps": 4118, "loss": 1.7154, "learning_rate": 0.0001, "epoch": 0.4176784847013113, "percentage": 41.77, "elapsed_time": "9:20:56", "remaining_time": "13:02:03"} +{"current_steps": 1721, "total_steps": 4118, "loss": 1.7504, "learning_rate": 0.0001, "epoch": 0.41792132102962604, "percentage": 41.79, "elapsed_time": "9:21:15", "remaining_time": "13:01:43"} +{"current_steps": 1722, "total_steps": 4118, "loss": 1.6858, "learning_rate": 0.0001, "epoch": 0.41816415735794077, "percentage": 41.82, "elapsed_time": "9:21:35", "remaining_time": "13:01:24"} +{"current_steps": 1723, "total_steps": 4118, "loss": 1.7456, "learning_rate": 0.0001, "epoch": 0.41840699368625545, "percentage": 41.84, "elapsed_time": "9:21:55", "remaining_time": "13:01:04"} +{"current_steps": 1724, "total_steps": 4118, "loss": 1.8124, "learning_rate": 0.0001, "epoch": 0.4186498300145702, "percentage": 41.86, "elapsed_time": "9:22:14", "remaining_time": "13:00:45"} +{"current_steps": 1725, "total_steps": 4118, "loss": 1.7569, "learning_rate": 0.0001, "epoch": 0.4188926663428849, "percentage": 41.89, "elapsed_time": "9:22:34", "remaining_time": "13:00:25"} +{"current_steps": 1726, "total_steps": 4118, "loss": 1.7219, "learning_rate": 0.0001, "epoch": 0.4191355026711996, "percentage": 41.91, "elapsed_time": "9:22:53", "remaining_time": "13:00:05"} +{"current_steps": 1727, "total_steps": 4118, "loss": 1.8064, "learning_rate": 0.0001, "epoch": 0.4193783389995143, "percentage": 41.94, "elapsed_time": "9:23:13", "remaining_time": "12:59:46"} +{"current_steps": 1728, "total_steps": 4118, "loss": 1.8677, "learning_rate": 0.0001, "epoch": 0.41962117532782905, "percentage": 41.96, "elapsed_time": "9:23:32", "remaining_time": "12:59:26"} +{"current_steps": 1729, "total_steps": 4118, "loss": 1.685, "learning_rate": 0.0001, "epoch": 0.41986401165614373, "percentage": 41.99, "elapsed_time": "9:23:52", "remaining_time": "12:59:07"} +{"current_steps": 1730, "total_steps": 4118, "loss": 1.6579, "learning_rate": 0.0001, "epoch": 0.42010684798445846, "percentage": 42.01, "elapsed_time": "9:24:12", "remaining_time": "12:58:47"} +{"current_steps": 1731, "total_steps": 4118, "loss": 1.6974, "learning_rate": 0.0001, "epoch": 0.4203496843127732, "percentage": 42.03, "elapsed_time": "9:24:31", "remaining_time": "12:58:27"} +{"current_steps": 1732, "total_steps": 4118, "loss": 1.7598, "learning_rate": 0.0001, "epoch": 0.42059252064108793, "percentage": 42.06, "elapsed_time": "9:24:51", "remaining_time": "12:58:08"} +{"current_steps": 1733, "total_steps": 4118, "loss": 1.8967, "learning_rate": 0.0001, "epoch": 0.4208353569694026, "percentage": 42.08, "elapsed_time": "9:25:10", "remaining_time": "12:57:48"} +{"current_steps": 1734, "total_steps": 4118, "loss": 1.8135, "learning_rate": 0.0001, "epoch": 0.42107819329771734, "percentage": 42.11, "elapsed_time": "9:25:30", "remaining_time": "12:57:29"} +{"current_steps": 1735, "total_steps": 4118, "loss": 1.6223, "learning_rate": 0.0001, "epoch": 0.4213210296260321, "percentage": 42.13, "elapsed_time": "9:25:49", "remaining_time": "12:57:09"} +{"current_steps": 1736, "total_steps": 4118, "loss": 1.7559, "learning_rate": 0.0001, "epoch": 0.42156386595434675, "percentage": 42.16, "elapsed_time": "9:26:09", "remaining_time": "12:56:50"} +{"current_steps": 1737, "total_steps": 4118, "loss": 1.5956, "learning_rate": 0.0001, "epoch": 0.4218067022826615, "percentage": 42.18, "elapsed_time": "9:26:29", "remaining_time": "12:56:30"} +{"current_steps": 1738, "total_steps": 4118, "loss": 1.8049, "learning_rate": 0.0001, "epoch": 0.4220495386109762, "percentage": 42.2, "elapsed_time": "9:26:48", "remaining_time": "12:56:11"} +{"current_steps": 1739, "total_steps": 4118, "loss": 1.6485, "learning_rate": 0.0001, "epoch": 0.4222923749392909, "percentage": 42.23, "elapsed_time": "9:27:08", "remaining_time": "12:55:51"} +{"current_steps": 1740, "total_steps": 4118, "loss": 1.7084, "learning_rate": 0.0001, "epoch": 0.4225352112676056, "percentage": 42.25, "elapsed_time": "9:27:27", "remaining_time": "12:55:31"} +{"current_steps": 1741, "total_steps": 4118, "loss": 1.7292, "learning_rate": 0.0001, "epoch": 0.42277804759592036, "percentage": 42.28, "elapsed_time": "9:27:47", "remaining_time": "12:55:12"} +{"current_steps": 1742, "total_steps": 4118, "loss": 1.6931, "learning_rate": 0.0001, "epoch": 0.4230208839242351, "percentage": 42.3, "elapsed_time": "9:28:06", "remaining_time": "12:54:52"} +{"current_steps": 1743, "total_steps": 4118, "loss": 1.8266, "learning_rate": 0.0001, "epoch": 0.42326372025254977, "percentage": 42.33, "elapsed_time": "9:28:26", "remaining_time": "12:54:33"} +{"current_steps": 1744, "total_steps": 4118, "loss": 1.8816, "learning_rate": 0.0001, "epoch": 0.4235065565808645, "percentage": 42.35, "elapsed_time": "9:28:46", "remaining_time": "12:54:13"} +{"current_steps": 1745, "total_steps": 4118, "loss": 1.6587, "learning_rate": 0.0001, "epoch": 0.42374939290917923, "percentage": 42.37, "elapsed_time": "9:29:05", "remaining_time": "12:53:54"} +{"current_steps": 1746, "total_steps": 4118, "loss": 1.7145, "learning_rate": 0.0001, "epoch": 0.4239922292374939, "percentage": 42.4, "elapsed_time": "9:29:25", "remaining_time": "12:53:34"} +{"current_steps": 1747, "total_steps": 4118, "loss": 1.7031, "learning_rate": 0.0001, "epoch": 0.42423506556580864, "percentage": 42.42, "elapsed_time": "9:29:44", "remaining_time": "12:53:14"} +{"current_steps": 1748, "total_steps": 4118, "loss": 1.8901, "learning_rate": 0.0001, "epoch": 0.4244779018941234, "percentage": 42.45, "elapsed_time": "9:30:04", "remaining_time": "12:52:55"} +{"current_steps": 1749, "total_steps": 4118, "loss": 1.721, "learning_rate": 0.0001, "epoch": 0.42472073822243805, "percentage": 42.47, "elapsed_time": "9:30:23", "remaining_time": "12:52:35"} +{"current_steps": 1750, "total_steps": 4118, "loss": 1.7352, "learning_rate": 0.0001, "epoch": 0.4249635745507528, "percentage": 42.5, "elapsed_time": "9:30:43", "remaining_time": "12:52:16"} +{"current_steps": 1751, "total_steps": 4118, "loss": 1.7598, "learning_rate": 0.0001, "epoch": 0.4252064108790675, "percentage": 42.52, "elapsed_time": "9:31:03", "remaining_time": "12:51:56"} +{"current_steps": 1752, "total_steps": 4118, "loss": 1.8647, "learning_rate": 0.0001, "epoch": 0.4254492472073822, "percentage": 42.54, "elapsed_time": "9:31:22", "remaining_time": "12:51:37"} +{"current_steps": 1753, "total_steps": 4118, "loss": 1.643, "learning_rate": 0.0001, "epoch": 0.42569208353569693, "percentage": 42.57, "elapsed_time": "9:31:42", "remaining_time": "12:51:17"} +{"current_steps": 1754, "total_steps": 4118, "loss": 1.6864, "learning_rate": 0.0001, "epoch": 0.42593491986401166, "percentage": 42.59, "elapsed_time": "9:32:01", "remaining_time": "12:50:57"} +{"current_steps": 1755, "total_steps": 4118, "loss": 1.8961, "learning_rate": 0.0001, "epoch": 0.4261777561923264, "percentage": 42.62, "elapsed_time": "9:32:21", "remaining_time": "12:50:38"} +{"current_steps": 1756, "total_steps": 4118, "loss": 1.888, "learning_rate": 0.0001, "epoch": 0.4264205925206411, "percentage": 42.64, "elapsed_time": "9:32:40", "remaining_time": "12:50:18"} +{"current_steps": 1757, "total_steps": 4118, "loss": 1.8166, "learning_rate": 0.0001, "epoch": 0.4266634288489558, "percentage": 42.67, "elapsed_time": "9:33:00", "remaining_time": "12:49:59"} +{"current_steps": 1758, "total_steps": 4118, "loss": 1.6663, "learning_rate": 0.0001, "epoch": 0.42690626517727054, "percentage": 42.69, "elapsed_time": "9:33:19", "remaining_time": "12:49:39"} +{"current_steps": 1759, "total_steps": 4118, "loss": 1.7696, "learning_rate": 0.0001, "epoch": 0.4271491015055852, "percentage": 42.71, "elapsed_time": "9:33:39", "remaining_time": "12:49:20"} +{"current_steps": 1760, "total_steps": 4118, "loss": 1.5562, "learning_rate": 0.0001, "epoch": 0.42739193783389995, "percentage": 42.74, "elapsed_time": "9:33:59", "remaining_time": "12:49:00"} +{"current_steps": 1761, "total_steps": 4118, "loss": 1.8209, "learning_rate": 0.0001, "epoch": 0.4276347741622147, "percentage": 42.76, "elapsed_time": "9:34:18", "remaining_time": "12:48:41"} +{"current_steps": 1762, "total_steps": 4118, "loss": 1.7567, "learning_rate": 0.0001, "epoch": 0.42787761049052936, "percentage": 42.79, "elapsed_time": "9:34:38", "remaining_time": "12:48:21"} +{"current_steps": 1763, "total_steps": 4118, "loss": 1.7524, "learning_rate": 0.0001, "epoch": 0.4281204468188441, "percentage": 42.81, "elapsed_time": "9:34:57", "remaining_time": "12:48:01"} +{"current_steps": 1764, "total_steps": 4118, "loss": 1.5961, "learning_rate": 0.0001, "epoch": 0.4283632831471588, "percentage": 42.84, "elapsed_time": "9:35:17", "remaining_time": "12:47:42"} +{"current_steps": 1765, "total_steps": 4118, "loss": 1.7058, "learning_rate": 0.0001, "epoch": 0.42860611947547356, "percentage": 42.86, "elapsed_time": "9:35:36", "remaining_time": "12:47:22"} +{"current_steps": 1766, "total_steps": 4118, "loss": 1.8342, "learning_rate": 0.0001, "epoch": 0.42884895580378823, "percentage": 42.88, "elapsed_time": "9:35:56", "remaining_time": "12:47:03"} +{"current_steps": 1767, "total_steps": 4118, "loss": 1.7408, "learning_rate": 0.0001, "epoch": 0.42909179213210297, "percentage": 42.91, "elapsed_time": "9:36:16", "remaining_time": "12:46:43"} +{"current_steps": 1768, "total_steps": 4118, "loss": 1.8358, "learning_rate": 0.0001, "epoch": 0.4293346284604177, "percentage": 42.93, "elapsed_time": "9:36:35", "remaining_time": "12:46:24"} +{"current_steps": 1769, "total_steps": 4118, "loss": 1.8792, "learning_rate": 0.0001, "epoch": 0.4295774647887324, "percentage": 42.96, "elapsed_time": "9:36:55", "remaining_time": "12:46:04"} +{"current_steps": 1770, "total_steps": 4118, "loss": 1.8735, "learning_rate": 0.0001, "epoch": 0.4298203011170471, "percentage": 42.98, "elapsed_time": "9:37:14", "remaining_time": "12:45:44"} +{"current_steps": 1771, "total_steps": 4118, "loss": 1.7451, "learning_rate": 0.0001, "epoch": 0.43006313744536184, "percentage": 43.01, "elapsed_time": "9:37:34", "remaining_time": "12:45:25"} +{"current_steps": 1772, "total_steps": 4118, "loss": 1.779, "learning_rate": 0.0001, "epoch": 0.4303059737736765, "percentage": 43.03, "elapsed_time": "9:37:53", "remaining_time": "12:45:05"} +{"current_steps": 1773, "total_steps": 4118, "loss": 1.7011, "learning_rate": 0.0001, "epoch": 0.43054881010199125, "percentage": 43.05, "elapsed_time": "9:38:13", "remaining_time": "12:44:46"} +{"current_steps": 1774, "total_steps": 4118, "loss": 1.9089, "learning_rate": 0.0001, "epoch": 0.430791646430306, "percentage": 43.08, "elapsed_time": "9:38:33", "remaining_time": "12:44:26"} +{"current_steps": 1775, "total_steps": 4118, "loss": 1.6352, "learning_rate": 0.0001, "epoch": 0.43103448275862066, "percentage": 43.1, "elapsed_time": "9:38:52", "remaining_time": "12:44:07"} +{"current_steps": 1776, "total_steps": 4118, "loss": 1.7771, "learning_rate": 0.0001, "epoch": 0.4312773190869354, "percentage": 43.13, "elapsed_time": "9:39:12", "remaining_time": "12:43:47"} +{"current_steps": 1777, "total_steps": 4118, "loss": 1.7436, "learning_rate": 0.0001, "epoch": 0.43152015541525013, "percentage": 43.15, "elapsed_time": "9:39:31", "remaining_time": "12:43:28"} +{"current_steps": 1778, "total_steps": 4118, "loss": 1.8751, "learning_rate": 0.0001, "epoch": 0.43176299174356486, "percentage": 43.18, "elapsed_time": "9:39:51", "remaining_time": "12:43:08"} +{"current_steps": 1779, "total_steps": 4118, "loss": 1.8221, "learning_rate": 0.0001, "epoch": 0.43200582807187954, "percentage": 43.2, "elapsed_time": "9:40:11", "remaining_time": "12:42:49"} +{"current_steps": 1780, "total_steps": 4118, "loss": 1.8647, "learning_rate": 0.0001, "epoch": 0.43224866440019427, "percentage": 43.22, "elapsed_time": "9:40:30", "remaining_time": "12:42:29"} +{"current_steps": 1781, "total_steps": 4118, "loss": 1.6987, "learning_rate": 0.0001, "epoch": 0.432491500728509, "percentage": 43.25, "elapsed_time": "9:40:50", "remaining_time": "12:42:09"} +{"current_steps": 1782, "total_steps": 4118, "loss": 1.7908, "learning_rate": 0.0001, "epoch": 0.4327343370568237, "percentage": 43.27, "elapsed_time": "9:41:09", "remaining_time": "12:41:50"} +{"current_steps": 1783, "total_steps": 4118, "loss": 1.7411, "learning_rate": 0.0001, "epoch": 0.4329771733851384, "percentage": 43.3, "elapsed_time": "9:41:29", "remaining_time": "12:41:30"} +{"current_steps": 1784, "total_steps": 4118, "loss": 1.617, "learning_rate": 0.0001, "epoch": 0.43322000971345315, "percentage": 43.32, "elapsed_time": "9:41:48", "remaining_time": "12:41:11"} +{"current_steps": 1785, "total_steps": 4118, "loss": 1.5635, "learning_rate": 0.0001, "epoch": 0.4334628460417678, "percentage": 43.35, "elapsed_time": "9:42:08", "remaining_time": "12:40:51"} +{"current_steps": 1786, "total_steps": 4118, "loss": 1.8383, "learning_rate": 0.0001, "epoch": 0.43370568237008256, "percentage": 43.37, "elapsed_time": "9:42:28", "remaining_time": "12:40:32"} +{"current_steps": 1787, "total_steps": 4118, "loss": 1.6905, "learning_rate": 0.0001, "epoch": 0.4339485186983973, "percentage": 43.39, "elapsed_time": "9:42:47", "remaining_time": "12:40:12"} +{"current_steps": 1788, "total_steps": 4118, "loss": 1.8038, "learning_rate": 0.0001, "epoch": 0.434191355026712, "percentage": 43.42, "elapsed_time": "9:43:07", "remaining_time": "12:39:52"} +{"current_steps": 1789, "total_steps": 4118, "loss": 1.7138, "learning_rate": 0.0001, "epoch": 0.4344341913550267, "percentage": 43.44, "elapsed_time": "9:43:26", "remaining_time": "12:39:33"} +{"current_steps": 1790, "total_steps": 4118, "loss": 1.8375, "learning_rate": 0.0001, "epoch": 0.43467702768334143, "percentage": 43.47, "elapsed_time": "9:43:46", "remaining_time": "12:39:13"} +{"current_steps": 1791, "total_steps": 4118, "loss": 1.6283, "learning_rate": 0.0001, "epoch": 0.43491986401165617, "percentage": 43.49, "elapsed_time": "9:44:05", "remaining_time": "12:38:54"} +{"current_steps": 1792, "total_steps": 4118, "loss": 1.4185, "learning_rate": 0.0001, "epoch": 0.43516270033997084, "percentage": 43.52, "elapsed_time": "9:44:25", "remaining_time": "12:38:34"} +{"current_steps": 1793, "total_steps": 4118, "loss": 1.6633, "learning_rate": 0.0001, "epoch": 0.4354055366682856, "percentage": 43.54, "elapsed_time": "9:44:45", "remaining_time": "12:38:15"} +{"current_steps": 1794, "total_steps": 4118, "loss": 1.5953, "learning_rate": 0.0001, "epoch": 0.4356483729966003, "percentage": 43.56, "elapsed_time": "9:45:04", "remaining_time": "12:37:55"} +{"current_steps": 1795, "total_steps": 4118, "loss": 1.7352, "learning_rate": 0.0001, "epoch": 0.435891209324915, "percentage": 43.59, "elapsed_time": "9:45:24", "remaining_time": "12:37:35"} +{"current_steps": 1796, "total_steps": 4118, "loss": 1.7575, "learning_rate": 0.0001, "epoch": 0.4361340456532297, "percentage": 43.61, "elapsed_time": "9:45:43", "remaining_time": "12:37:16"} +{"current_steps": 1797, "total_steps": 4118, "loss": 1.9726, "learning_rate": 0.0001, "epoch": 0.43637688198154445, "percentage": 43.64, "elapsed_time": "9:46:03", "remaining_time": "12:36:56"} +{"current_steps": 1798, "total_steps": 4118, "loss": 1.6332, "learning_rate": 0.0001, "epoch": 0.43661971830985913, "percentage": 43.66, "elapsed_time": "9:46:22", "remaining_time": "12:36:37"} +{"current_steps": 1799, "total_steps": 4118, "loss": 1.6507, "learning_rate": 0.0001, "epoch": 0.43686255463817386, "percentage": 43.69, "elapsed_time": "9:46:42", "remaining_time": "12:36:17"} +{"current_steps": 1800, "total_steps": 4118, "loss": 1.6802, "learning_rate": 0.0001, "epoch": 0.4371053909664886, "percentage": 43.71, "elapsed_time": "9:47:02", "remaining_time": "12:35:58"} +{"current_steps": 1801, "total_steps": 4118, "loss": 1.7225, "learning_rate": 0.0001, "epoch": 0.4373482272948033, "percentage": 43.73, "elapsed_time": "9:47:21", "remaining_time": "12:35:38"} +{"current_steps": 1802, "total_steps": 4118, "loss": 1.8489, "learning_rate": 0.0001, "epoch": 0.437591063623118, "percentage": 43.76, "elapsed_time": "9:47:41", "remaining_time": "12:35:18"} +{"current_steps": 1803, "total_steps": 4118, "loss": 1.9313, "learning_rate": 0.0001, "epoch": 0.43783389995143274, "percentage": 43.78, "elapsed_time": "9:48:00", "remaining_time": "12:34:59"} +{"current_steps": 1804, "total_steps": 4118, "loss": 1.7712, "learning_rate": 0.0001, "epoch": 0.43807673627974747, "percentage": 43.81, "elapsed_time": "9:48:20", "remaining_time": "12:34:39"} +{"current_steps": 1805, "total_steps": 4118, "loss": 1.6894, "learning_rate": 0.0001, "epoch": 0.43831957260806215, "percentage": 43.83, "elapsed_time": "9:48:39", "remaining_time": "12:34:20"} +{"current_steps": 1806, "total_steps": 4118, "loss": 1.9742, "learning_rate": 0.0001, "epoch": 0.4385624089363769, "percentage": 43.86, "elapsed_time": "9:48:59", "remaining_time": "12:34:00"} +{"current_steps": 1807, "total_steps": 4118, "loss": 1.8367, "learning_rate": 0.0001, "epoch": 0.4388052452646916, "percentage": 43.88, "elapsed_time": "9:49:18", "remaining_time": "12:33:41"} +{"current_steps": 1808, "total_steps": 4118, "loss": 1.8717, "learning_rate": 0.0001, "epoch": 0.4390480815930063, "percentage": 43.9, "elapsed_time": "9:49:38", "remaining_time": "12:33:21"} +{"current_steps": 1809, "total_steps": 4118, "loss": 1.6426, "learning_rate": 0.0001, "epoch": 0.439290917921321, "percentage": 43.93, "elapsed_time": "9:49:57", "remaining_time": "12:33:01"} +{"current_steps": 1810, "total_steps": 4118, "loss": 1.8811, "learning_rate": 0.0001, "epoch": 0.43953375424963576, "percentage": 43.95, "elapsed_time": "9:50:17", "remaining_time": "12:32:42"} +{"current_steps": 1811, "total_steps": 4118, "loss": 1.9497, "learning_rate": 0.0001, "epoch": 0.4397765905779505, "percentage": 43.98, "elapsed_time": "9:50:37", "remaining_time": "12:32:22"} +{"current_steps": 1812, "total_steps": 4118, "loss": 1.791, "learning_rate": 0.0001, "epoch": 0.44001942690626517, "percentage": 44.0, "elapsed_time": "9:50:56", "remaining_time": "12:32:03"} +{"current_steps": 1813, "total_steps": 4118, "loss": 1.8838, "learning_rate": 0.0001, "epoch": 0.4402622632345799, "percentage": 44.03, "elapsed_time": "9:51:16", "remaining_time": "12:31:43"} +{"current_steps": 1814, "total_steps": 4118, "loss": 1.8151, "learning_rate": 0.0001, "epoch": 0.44050509956289463, "percentage": 44.05, "elapsed_time": "9:51:35", "remaining_time": "12:31:23"} +{"current_steps": 1815, "total_steps": 4118, "loss": 1.7145, "learning_rate": 0.0001, "epoch": 0.4407479358912093, "percentage": 44.07, "elapsed_time": "9:51:55", "remaining_time": "12:31:04"} +{"current_steps": 1816, "total_steps": 4118, "loss": 1.7025, "learning_rate": 0.0001, "epoch": 0.44099077221952404, "percentage": 44.1, "elapsed_time": "9:52:14", "remaining_time": "12:30:44"} +{"current_steps": 1817, "total_steps": 4118, "loss": 1.788, "learning_rate": 0.0001, "epoch": 0.4412336085478388, "percentage": 44.12, "elapsed_time": "9:52:34", "remaining_time": "12:30:25"} +{"current_steps": 1818, "total_steps": 4118, "loss": 1.656, "learning_rate": 0.0001, "epoch": 0.44147644487615345, "percentage": 44.15, "elapsed_time": "9:52:54", "remaining_time": "12:30:05"} +{"current_steps": 1819, "total_steps": 4118, "loss": 1.6355, "learning_rate": 0.0001, "epoch": 0.4417192812044682, "percentage": 44.17, "elapsed_time": "9:53:13", "remaining_time": "12:29:46"} +{"current_steps": 1820, "total_steps": 4118, "loss": 1.5065, "learning_rate": 0.0001, "epoch": 0.4419621175327829, "percentage": 44.2, "elapsed_time": "9:53:33", "remaining_time": "12:29:26"} +{"current_steps": 1821, "total_steps": 4118, "loss": 1.762, "learning_rate": 0.0001, "epoch": 0.4422049538610976, "percentage": 44.22, "elapsed_time": "9:53:52", "remaining_time": "12:29:07"} +{"current_steps": 1822, "total_steps": 4118, "loss": 1.6321, "learning_rate": 0.0001, "epoch": 0.4424477901894123, "percentage": 44.24, "elapsed_time": "9:54:12", "remaining_time": "12:28:47"} +{"current_steps": 1823, "total_steps": 4118, "loss": 1.7125, "learning_rate": 0.0001, "epoch": 0.44269062651772706, "percentage": 44.27, "elapsed_time": "9:54:31", "remaining_time": "12:28:27"} +{"current_steps": 1824, "total_steps": 4118, "loss": 1.7806, "learning_rate": 0.0001, "epoch": 0.4429334628460418, "percentage": 44.29, "elapsed_time": "9:54:51", "remaining_time": "12:28:08"} +{"current_steps": 1825, "total_steps": 4118, "loss": 1.7916, "learning_rate": 0.0001, "epoch": 0.44317629917435647, "percentage": 44.32, "elapsed_time": "9:55:11", "remaining_time": "12:27:48"} +{"current_steps": 1826, "total_steps": 4118, "loss": 1.7032, "learning_rate": 0.0001, "epoch": 0.4434191355026712, "percentage": 44.34, "elapsed_time": "9:55:30", "remaining_time": "12:27:29"} +{"current_steps": 1827, "total_steps": 4118, "loss": 1.9361, "learning_rate": 0.0001, "epoch": 0.44366197183098594, "percentage": 44.37, "elapsed_time": "9:55:50", "remaining_time": "12:27:09"} +{"current_steps": 1828, "total_steps": 4118, "loss": 1.8163, "learning_rate": 0.0001, "epoch": 0.4439048081593006, "percentage": 44.39, "elapsed_time": "9:56:09", "remaining_time": "12:26:50"} +{"current_steps": 1829, "total_steps": 4118, "loss": 1.8628, "learning_rate": 0.0001, "epoch": 0.44414764448761535, "percentage": 44.41, "elapsed_time": "9:56:29", "remaining_time": "12:26:30"} +{"current_steps": 1830, "total_steps": 4118, "loss": 1.7418, "learning_rate": 0.0001, "epoch": 0.4443904808159301, "percentage": 44.44, "elapsed_time": "9:56:48", "remaining_time": "12:26:10"} +{"current_steps": 1831, "total_steps": 4118, "loss": 1.7401, "learning_rate": 0.0001, "epoch": 0.44463331714424476, "percentage": 44.46, "elapsed_time": "9:57:08", "remaining_time": "12:25:51"} +{"current_steps": 1832, "total_steps": 4118, "loss": 1.6932, "learning_rate": 0.0001, "epoch": 0.4448761534725595, "percentage": 44.49, "elapsed_time": "9:57:27", "remaining_time": "12:25:31"} +{"current_steps": 1833, "total_steps": 4118, "loss": 1.8248, "learning_rate": 0.0001, "epoch": 0.4451189898008742, "percentage": 44.51, "elapsed_time": "9:57:47", "remaining_time": "12:25:12"} +{"current_steps": 1834, "total_steps": 4118, "loss": 1.7586, "learning_rate": 0.0001, "epoch": 0.44536182612918895, "percentage": 44.54, "elapsed_time": "9:58:07", "remaining_time": "12:24:52"} +{"current_steps": 1835, "total_steps": 4118, "loss": 1.7819, "learning_rate": 0.0001, "epoch": 0.44560466245750363, "percentage": 44.56, "elapsed_time": "9:58:26", "remaining_time": "12:24:32"} +{"current_steps": 1836, "total_steps": 4118, "loss": 1.6612, "learning_rate": 0.0001, "epoch": 0.44584749878581836, "percentage": 44.58, "elapsed_time": "9:58:46", "remaining_time": "12:24:13"} +{"current_steps": 1837, "total_steps": 4118, "loss": 1.7779, "learning_rate": 0.0001, "epoch": 0.4460903351141331, "percentage": 44.61, "elapsed_time": "9:59:05", "remaining_time": "12:23:53"} +{"current_steps": 1838, "total_steps": 4118, "loss": 1.9132, "learning_rate": 0.0001, "epoch": 0.4463331714424478, "percentage": 44.63, "elapsed_time": "9:59:25", "remaining_time": "12:23:34"} +{"current_steps": 1839, "total_steps": 4118, "loss": 1.6269, "learning_rate": 0.0001, "epoch": 0.4465760077707625, "percentage": 44.66, "elapsed_time": "9:59:44", "remaining_time": "12:23:14"} +{"current_steps": 1840, "total_steps": 4118, "loss": 1.5489, "learning_rate": 0.0001, "epoch": 0.44681884409907724, "percentage": 44.68, "elapsed_time": "10:00:04", "remaining_time": "12:22:54"} +{"current_steps": 1841, "total_steps": 4118, "loss": 1.7625, "learning_rate": 0.0001, "epoch": 0.4470616804273919, "percentage": 44.71, "elapsed_time": "10:00:23", "remaining_time": "12:22:35"} +{"current_steps": 1842, "total_steps": 4118, "loss": 1.8711, "learning_rate": 0.0001, "epoch": 0.44730451675570665, "percentage": 44.73, "elapsed_time": "10:00:43", "remaining_time": "12:22:15"} +{"current_steps": 1843, "total_steps": 4118, "loss": 1.6822, "learning_rate": 0.0001, "epoch": 0.4475473530840214, "percentage": 44.75, "elapsed_time": "10:01:03", "remaining_time": "12:21:56"} +{"current_steps": 1844, "total_steps": 4118, "loss": 1.7329, "learning_rate": 0.0001, "epoch": 0.44779018941233606, "percentage": 44.78, "elapsed_time": "10:01:22", "remaining_time": "12:21:36"} +{"current_steps": 1845, "total_steps": 4118, "loss": 1.8165, "learning_rate": 0.0001, "epoch": 0.4480330257406508, "percentage": 44.8, "elapsed_time": "10:01:42", "remaining_time": "12:21:17"} +{"current_steps": 1846, "total_steps": 4118, "loss": 1.6548, "learning_rate": 0.0001, "epoch": 0.4482758620689655, "percentage": 44.83, "elapsed_time": "10:02:01", "remaining_time": "12:20:57"} +{"current_steps": 1847, "total_steps": 4118, "loss": 1.5946, "learning_rate": 0.0001, "epoch": 0.44851869839728026, "percentage": 44.85, "elapsed_time": "10:02:21", "remaining_time": "12:20:37"} +{"current_steps": 1848, "total_steps": 4118, "loss": 1.7544, "learning_rate": 0.0001, "epoch": 0.44876153472559493, "percentage": 44.88, "elapsed_time": "10:02:40", "remaining_time": "12:20:18"} +{"current_steps": 1849, "total_steps": 4118, "loss": 1.8197, "learning_rate": 0.0001, "epoch": 0.44900437105390967, "percentage": 44.9, "elapsed_time": "10:03:00", "remaining_time": "12:19:58"} +{"current_steps": 1850, "total_steps": 4118, "loss": 1.8129, "learning_rate": 0.0001, "epoch": 0.4492472073822244, "percentage": 44.92, "elapsed_time": "10:03:19", "remaining_time": "12:19:39"} +{"current_steps": 1851, "total_steps": 4118, "loss": 1.5615, "learning_rate": 0.0001, "epoch": 0.4494900437105391, "percentage": 44.95, "elapsed_time": "10:03:39", "remaining_time": "12:19:19"} +{"current_steps": 1852, "total_steps": 4118, "loss": 1.5596, "learning_rate": 0.0001, "epoch": 0.4497328800388538, "percentage": 44.97, "elapsed_time": "10:03:59", "remaining_time": "12:18:59"} +{"current_steps": 1853, "total_steps": 4118, "loss": 1.7712, "learning_rate": 0.0001, "epoch": 0.44997571636716854, "percentage": 45.0, "elapsed_time": "10:04:18", "remaining_time": "12:18:40"} +{"current_steps": 1854, "total_steps": 4118, "loss": 1.8985, "learning_rate": 0.0001, "epoch": 0.4502185526954832, "percentage": 45.02, "elapsed_time": "10:04:38", "remaining_time": "12:18:20"} +{"current_steps": 1855, "total_steps": 4118, "loss": 1.8248, "learning_rate": 0.0001, "epoch": 0.45046138902379795, "percentage": 45.05, "elapsed_time": "10:04:57", "remaining_time": "12:18:01"} +{"current_steps": 1856, "total_steps": 4118, "loss": 1.8493, "learning_rate": 0.0001, "epoch": 0.4507042253521127, "percentage": 45.07, "elapsed_time": "10:05:17", "remaining_time": "12:17:41"} +{"current_steps": 1857, "total_steps": 4118, "loss": 1.7375, "learning_rate": 0.0001, "epoch": 0.4509470616804274, "percentage": 45.09, "elapsed_time": "10:05:36", "remaining_time": "12:17:22"} +{"current_steps": 1858, "total_steps": 4118, "loss": 1.8562, "learning_rate": 0.0001, "epoch": 0.4511898980087421, "percentage": 45.12, "elapsed_time": "10:05:56", "remaining_time": "12:17:02"} +{"current_steps": 1859, "total_steps": 4118, "loss": 1.7504, "learning_rate": 0.0001, "epoch": 0.45143273433705683, "percentage": 45.14, "elapsed_time": "10:06:15", "remaining_time": "12:16:42"} +{"current_steps": 1860, "total_steps": 4118, "loss": 1.7613, "learning_rate": 0.0001, "epoch": 0.45167557066537156, "percentage": 45.17, "elapsed_time": "10:06:35", "remaining_time": "12:16:23"} +{"current_steps": 1861, "total_steps": 4118, "loss": 1.9256, "learning_rate": 0.0001, "epoch": 0.45191840699368624, "percentage": 45.19, "elapsed_time": "10:06:55", "remaining_time": "12:16:03"} +{"current_steps": 1862, "total_steps": 4118, "loss": 1.6513, "learning_rate": 0.0001, "epoch": 0.45216124332200097, "percentage": 45.22, "elapsed_time": "10:07:14", "remaining_time": "12:15:44"} +{"current_steps": 1863, "total_steps": 4118, "loss": 1.7352, "learning_rate": 0.0001, "epoch": 0.4524040796503157, "percentage": 45.24, "elapsed_time": "10:07:34", "remaining_time": "12:15:24"} +{"current_steps": 1864, "total_steps": 4118, "loss": 1.4759, "learning_rate": 0.0001, "epoch": 0.4526469159786304, "percentage": 45.26, "elapsed_time": "10:07:53", "remaining_time": "12:15:05"} +{"current_steps": 1865, "total_steps": 4118, "loss": 1.6505, "learning_rate": 0.0001, "epoch": 0.4528897523069451, "percentage": 45.29, "elapsed_time": "10:08:13", "remaining_time": "12:14:45"} +{"current_steps": 1866, "total_steps": 4118, "loss": 1.6673, "learning_rate": 0.0001, "epoch": 0.45313258863525985, "percentage": 45.31, "elapsed_time": "10:08:32", "remaining_time": "12:14:25"} +{"current_steps": 1867, "total_steps": 4118, "loss": 1.735, "learning_rate": 0.0001, "epoch": 0.4533754249635745, "percentage": 45.34, "elapsed_time": "10:08:52", "remaining_time": "12:14:06"} +{"current_steps": 1868, "total_steps": 4118, "loss": 1.6946, "learning_rate": 0.0001, "epoch": 0.45361826129188926, "percentage": 45.36, "elapsed_time": "10:09:11", "remaining_time": "12:13:46"} +{"current_steps": 1869, "total_steps": 4118, "loss": 1.6212, "learning_rate": 0.0001, "epoch": 0.453861097620204, "percentage": 45.39, "elapsed_time": "10:09:31", "remaining_time": "12:13:27"} +{"current_steps": 1870, "total_steps": 4118, "loss": 1.6943, "learning_rate": 0.0001, "epoch": 0.4541039339485187, "percentage": 45.41, "elapsed_time": "10:09:50", "remaining_time": "12:13:07"} +{"current_steps": 1871, "total_steps": 4118, "loss": 1.741, "learning_rate": 0.0001, "epoch": 0.4543467702768334, "percentage": 45.43, "elapsed_time": "10:10:10", "remaining_time": "12:12:47"} +{"current_steps": 1872, "total_steps": 4118, "loss": 1.8845, "learning_rate": 0.0001, "epoch": 0.45458960660514813, "percentage": 45.46, "elapsed_time": "10:10:30", "remaining_time": "12:12:28"} +{"current_steps": 1873, "total_steps": 4118, "loss": 1.7074, "learning_rate": 0.0001, "epoch": 0.45483244293346287, "percentage": 45.48, "elapsed_time": "10:10:49", "remaining_time": "12:12:08"} +{"current_steps": 1874, "total_steps": 4118, "loss": 1.6054, "learning_rate": 0.0001, "epoch": 0.45507527926177754, "percentage": 45.51, "elapsed_time": "10:11:09", "remaining_time": "12:11:49"} +{"current_steps": 1875, "total_steps": 4118, "loss": 1.72, "learning_rate": 0.0001, "epoch": 0.4553181155900923, "percentage": 45.53, "elapsed_time": "10:11:28", "remaining_time": "12:11:29"} +{"current_steps": 1876, "total_steps": 4118, "loss": 1.7139, "learning_rate": 0.0001, "epoch": 0.455560951918407, "percentage": 45.56, "elapsed_time": "10:11:48", "remaining_time": "12:11:09"} +{"current_steps": 1877, "total_steps": 4118, "loss": 1.7832, "learning_rate": 0.0001, "epoch": 0.4558037882467217, "percentage": 45.58, "elapsed_time": "10:12:07", "remaining_time": "12:10:50"} +{"current_steps": 1878, "total_steps": 4118, "loss": 1.8575, "learning_rate": 0.0001, "epoch": 0.4560466245750364, "percentage": 45.6, "elapsed_time": "10:12:27", "remaining_time": "12:10:30"} +{"current_steps": 1879, "total_steps": 4118, "loss": 1.5926, "learning_rate": 0.0001, "epoch": 0.45628946090335115, "percentage": 45.63, "elapsed_time": "10:12:46", "remaining_time": "12:10:11"} +{"current_steps": 1880, "total_steps": 4118, "loss": 1.7178, "learning_rate": 0.0001, "epoch": 0.4565322972316659, "percentage": 45.65, "elapsed_time": "10:13:06", "remaining_time": "12:09:51"} +{"current_steps": 1881, "total_steps": 4118, "loss": 1.6868, "learning_rate": 0.0001, "epoch": 0.45677513355998056, "percentage": 45.68, "elapsed_time": "10:13:26", "remaining_time": "12:09:31"} +{"current_steps": 1882, "total_steps": 4118, "loss": 1.8865, "learning_rate": 0.0001, "epoch": 0.4570179698882953, "percentage": 45.7, "elapsed_time": "10:13:45", "remaining_time": "12:09:12"} +{"current_steps": 1883, "total_steps": 4118, "loss": 1.7676, "learning_rate": 0.0001, "epoch": 0.45726080621661, "percentage": 45.73, "elapsed_time": "10:14:05", "remaining_time": "12:08:52"} +{"current_steps": 1884, "total_steps": 4118, "loss": 1.9426, "learning_rate": 0.0001, "epoch": 0.4575036425449247, "percentage": 45.75, "elapsed_time": "10:14:24", "remaining_time": "12:08:33"} +{"current_steps": 1885, "total_steps": 4118, "loss": 1.8112, "learning_rate": 0.0001, "epoch": 0.45774647887323944, "percentage": 45.77, "elapsed_time": "10:14:44", "remaining_time": "12:08:13"} +{"current_steps": 1886, "total_steps": 4118, "loss": 1.6042, "learning_rate": 0.0001, "epoch": 0.45798931520155417, "percentage": 45.8, "elapsed_time": "10:15:03", "remaining_time": "12:07:54"} +{"current_steps": 1887, "total_steps": 4118, "loss": 1.8278, "learning_rate": 0.0001, "epoch": 0.45823215152986885, "percentage": 45.82, "elapsed_time": "10:15:23", "remaining_time": "12:07:34"} +{"current_steps": 1888, "total_steps": 4118, "loss": 1.6571, "learning_rate": 0.0001, "epoch": 0.4584749878581836, "percentage": 45.85, "elapsed_time": "10:15:42", "remaining_time": "12:07:14"} +{"current_steps": 1889, "total_steps": 4118, "loss": 1.8235, "learning_rate": 0.0001, "epoch": 0.4587178241864983, "percentage": 45.87, "elapsed_time": "10:16:02", "remaining_time": "12:06:55"} +{"current_steps": 1890, "total_steps": 4118, "loss": 1.8577, "learning_rate": 0.0001, "epoch": 0.458960660514813, "percentage": 45.9, "elapsed_time": "10:16:22", "remaining_time": "12:06:35"} +{"current_steps": 1891, "total_steps": 4118, "loss": 1.6378, "learning_rate": 0.0001, "epoch": 0.4592034968431277, "percentage": 45.92, "elapsed_time": "10:16:41", "remaining_time": "12:06:16"} +{"current_steps": 1892, "total_steps": 4118, "loss": 1.7262, "learning_rate": 0.0001, "epoch": 0.45944633317144246, "percentage": 45.94, "elapsed_time": "10:17:01", "remaining_time": "12:05:56"} +{"current_steps": 1893, "total_steps": 4118, "loss": 1.7074, "learning_rate": 0.0001, "epoch": 0.4596891694997572, "percentage": 45.97, "elapsed_time": "10:17:20", "remaining_time": "12:05:36"} +{"current_steps": 1894, "total_steps": 4118, "loss": 1.8217, "learning_rate": 0.0001, "epoch": 0.45993200582807187, "percentage": 45.99, "elapsed_time": "10:17:40", "remaining_time": "12:05:17"} +{"current_steps": 1895, "total_steps": 4118, "loss": 1.5828, "learning_rate": 0.0001, "epoch": 0.4601748421563866, "percentage": 46.02, "elapsed_time": "10:17:59", "remaining_time": "12:04:57"} +{"current_steps": 1896, "total_steps": 4118, "loss": 1.6629, "learning_rate": 0.0001, "epoch": 0.46041767848470133, "percentage": 46.04, "elapsed_time": "10:18:19", "remaining_time": "12:04:38"} +{"current_steps": 1897, "total_steps": 4118, "loss": 1.7067, "learning_rate": 0.0001, "epoch": 0.460660514813016, "percentage": 46.07, "elapsed_time": "10:18:38", "remaining_time": "12:04:18"} +{"current_steps": 1898, "total_steps": 4118, "loss": 1.6153, "learning_rate": 0.0001, "epoch": 0.46090335114133074, "percentage": 46.09, "elapsed_time": "10:18:58", "remaining_time": "12:03:59"} +{"current_steps": 1899, "total_steps": 4118, "loss": 1.749, "learning_rate": 0.0001, "epoch": 0.4611461874696455, "percentage": 46.11, "elapsed_time": "10:19:17", "remaining_time": "12:03:39"} +{"current_steps": 1900, "total_steps": 4118, "loss": 1.7965, "learning_rate": 0.0001, "epoch": 0.46138902379796015, "percentage": 46.14, "elapsed_time": "10:19:37", "remaining_time": "12:03:19"} +{"current_steps": 1901, "total_steps": 4118, "loss": 1.6824, "learning_rate": 0.0001, "epoch": 0.4616318601262749, "percentage": 46.16, "elapsed_time": "10:19:57", "remaining_time": "12:03:00"} +{"current_steps": 1902, "total_steps": 4118, "loss": 1.5835, "learning_rate": 0.0001, "epoch": 0.4618746964545896, "percentage": 46.19, "elapsed_time": "10:20:16", "remaining_time": "12:02:40"} +{"current_steps": 1903, "total_steps": 4118, "loss": 1.7209, "learning_rate": 0.0001, "epoch": 0.46211753278290435, "percentage": 46.21, "elapsed_time": "10:20:36", "remaining_time": "12:02:21"} +{"current_steps": 1904, "total_steps": 4118, "loss": 1.6861, "learning_rate": 0.0001, "epoch": 0.462360369111219, "percentage": 46.24, "elapsed_time": "10:20:55", "remaining_time": "12:02:01"} +{"current_steps": 1905, "total_steps": 4118, "loss": 1.734, "learning_rate": 0.0001, "epoch": 0.46260320543953376, "percentage": 46.26, "elapsed_time": "10:21:15", "remaining_time": "12:01:41"} +{"current_steps": 1906, "total_steps": 4118, "loss": 1.7985, "learning_rate": 0.0001, "epoch": 0.4628460417678485, "percentage": 46.28, "elapsed_time": "10:21:34", "remaining_time": "12:01:22"} +{"current_steps": 1907, "total_steps": 4118, "loss": 1.5735, "learning_rate": 0.0001, "epoch": 0.46308887809616317, "percentage": 46.31, "elapsed_time": "10:21:54", "remaining_time": "12:01:02"} +{"current_steps": 1908, "total_steps": 4118, "loss": 1.5683, "learning_rate": 0.0001, "epoch": 0.4633317144244779, "percentage": 46.33, "elapsed_time": "10:22:13", "remaining_time": "12:00:43"} +{"current_steps": 1909, "total_steps": 4118, "loss": 1.6389, "learning_rate": 0.0001, "epoch": 0.46357455075279264, "percentage": 46.36, "elapsed_time": "10:22:33", "remaining_time": "12:00:23"} +{"current_steps": 1910, "total_steps": 4118, "loss": 1.6765, "learning_rate": 0.0001, "epoch": 0.4638173870811073, "percentage": 46.38, "elapsed_time": "10:22:53", "remaining_time": "12:00:04"} +{"current_steps": 1911, "total_steps": 4118, "loss": 1.883, "learning_rate": 0.0001, "epoch": 0.46406022340942205, "percentage": 46.41, "elapsed_time": "10:23:12", "remaining_time": "11:59:44"} +{"current_steps": 1912, "total_steps": 4118, "loss": 1.8475, "learning_rate": 0.0001, "epoch": 0.4643030597377368, "percentage": 46.43, "elapsed_time": "10:23:32", "remaining_time": "11:59:24"} +{"current_steps": 1913, "total_steps": 4118, "loss": 1.8763, "learning_rate": 0.0001, "epoch": 0.46454589606605146, "percentage": 46.45, "elapsed_time": "10:23:51", "remaining_time": "11:59:05"} +{"current_steps": 1914, "total_steps": 4118, "loss": 1.498, "learning_rate": 0.0001, "epoch": 0.4647887323943662, "percentage": 46.48, "elapsed_time": "10:24:11", "remaining_time": "11:58:45"} +{"current_steps": 1915, "total_steps": 4118, "loss": 1.7561, "learning_rate": 0.0001, "epoch": 0.4650315687226809, "percentage": 46.5, "elapsed_time": "10:24:30", "remaining_time": "11:58:26"} +{"current_steps": 1916, "total_steps": 4118, "loss": 1.5602, "learning_rate": 0.0001, "epoch": 0.46527440505099565, "percentage": 46.53, "elapsed_time": "10:24:50", "remaining_time": "11:58:06"} +{"current_steps": 1917, "total_steps": 4118, "loss": 1.7215, "learning_rate": 0.0001, "epoch": 0.46551724137931033, "percentage": 46.55, "elapsed_time": "10:25:09", "remaining_time": "11:57:46"} +{"current_steps": 1918, "total_steps": 4118, "loss": 1.7172, "learning_rate": 0.0001, "epoch": 0.46576007770762506, "percentage": 46.58, "elapsed_time": "10:25:29", "remaining_time": "11:57:27"} +{"current_steps": 1919, "total_steps": 4118, "loss": 1.6293, "learning_rate": 0.0001, "epoch": 0.4660029140359398, "percentage": 46.6, "elapsed_time": "10:25:48", "remaining_time": "11:57:07"} +{"current_steps": 1920, "total_steps": 4118, "loss": 1.643, "learning_rate": 0.0001, "epoch": 0.4662457503642545, "percentage": 46.62, "elapsed_time": "10:26:08", "remaining_time": "11:56:48"} +{"current_steps": 1921, "total_steps": 4118, "loss": 1.803, "learning_rate": 0.0001, "epoch": 0.4664885866925692, "percentage": 46.65, "elapsed_time": "10:26:28", "remaining_time": "11:56:28"} +{"current_steps": 1922, "total_steps": 4118, "loss": 1.7959, "learning_rate": 0.0001, "epoch": 0.46673142302088394, "percentage": 46.67, "elapsed_time": "10:26:47", "remaining_time": "11:56:08"} +{"current_steps": 1923, "total_steps": 4118, "loss": 1.7296, "learning_rate": 0.0001, "epoch": 0.4669742593491986, "percentage": 46.7, "elapsed_time": "10:27:07", "remaining_time": "11:55:49"} +{"current_steps": 1924, "total_steps": 4118, "loss": 1.6417, "learning_rate": 0.0001, "epoch": 0.46721709567751335, "percentage": 46.72, "elapsed_time": "10:27:26", "remaining_time": "11:55:29"} +{"current_steps": 1925, "total_steps": 4118, "loss": 1.7797, "learning_rate": 0.0001, "epoch": 0.4674599320058281, "percentage": 46.75, "elapsed_time": "10:27:46", "remaining_time": "11:55:10"} +{"current_steps": 1926, "total_steps": 4118, "loss": 1.7296, "learning_rate": 0.0001, "epoch": 0.4677027683341428, "percentage": 46.77, "elapsed_time": "10:28:05", "remaining_time": "11:54:50"} +{"current_steps": 1927, "total_steps": 4118, "loss": 1.7844, "learning_rate": 0.0001, "epoch": 0.4679456046624575, "percentage": 46.79, "elapsed_time": "10:28:25", "remaining_time": "11:54:31"} +{"current_steps": 1928, "total_steps": 4118, "loss": 1.7022, "learning_rate": 0.0001, "epoch": 0.4681884409907722, "percentage": 46.82, "elapsed_time": "10:28:44", "remaining_time": "11:54:11"} +{"current_steps": 1929, "total_steps": 4118, "loss": 1.8989, "learning_rate": 0.0001, "epoch": 0.46843127731908696, "percentage": 46.84, "elapsed_time": "10:29:04", "remaining_time": "11:53:51"} +{"current_steps": 1930, "total_steps": 4118, "loss": 1.6923, "learning_rate": 0.0001, "epoch": 0.46867411364740164, "percentage": 46.87, "elapsed_time": "10:29:24", "remaining_time": "11:53:32"} +{"current_steps": 1931, "total_steps": 4118, "loss": 1.7278, "learning_rate": 0.0001, "epoch": 0.46891694997571637, "percentage": 46.89, "elapsed_time": "10:29:43", "remaining_time": "11:53:12"} +{"current_steps": 1932, "total_steps": 4118, "loss": 1.8832, "learning_rate": 0.0001, "epoch": 0.4691597863040311, "percentage": 46.92, "elapsed_time": "10:30:03", "remaining_time": "11:52:53"} +{"current_steps": 1933, "total_steps": 4118, "loss": 1.9534, "learning_rate": 0.0001, "epoch": 0.4694026226323458, "percentage": 46.94, "elapsed_time": "10:30:22", "remaining_time": "11:52:33"} +{"current_steps": 1934, "total_steps": 4118, "loss": 1.8732, "learning_rate": 0.0001, "epoch": 0.4696454589606605, "percentage": 46.96, "elapsed_time": "10:30:42", "remaining_time": "11:52:13"} +{"current_steps": 1935, "total_steps": 4118, "loss": 1.6519, "learning_rate": 0.0001, "epoch": 0.46988829528897524, "percentage": 46.99, "elapsed_time": "10:31:01", "remaining_time": "11:51:54"} +{"current_steps": 1936, "total_steps": 4118, "loss": 1.8822, "learning_rate": 0.0001, "epoch": 0.4701311316172899, "percentage": 47.01, "elapsed_time": "10:31:21", "remaining_time": "11:51:34"} +{"current_steps": 1937, "total_steps": 4118, "loss": 1.8904, "learning_rate": 0.0001, "epoch": 0.47037396794560465, "percentage": 47.04, "elapsed_time": "10:31:40", "remaining_time": "11:51:15"} +{"current_steps": 1938, "total_steps": 4118, "loss": 1.7498, "learning_rate": 0.0001, "epoch": 0.4706168042739194, "percentage": 47.06, "elapsed_time": "10:32:00", "remaining_time": "11:50:55"} +{"current_steps": 1939, "total_steps": 4118, "loss": 1.8484, "learning_rate": 0.0001, "epoch": 0.4708596406022341, "percentage": 47.09, "elapsed_time": "10:32:20", "remaining_time": "11:50:36"} +{"current_steps": 1940, "total_steps": 4118, "loss": 1.7276, "learning_rate": 0.0001, "epoch": 0.4711024769305488, "percentage": 47.11, "elapsed_time": "10:32:39", "remaining_time": "11:50:16"} +{"current_steps": 1941, "total_steps": 4118, "loss": 1.6095, "learning_rate": 0.0001, "epoch": 0.47134531325886353, "percentage": 47.13, "elapsed_time": "10:32:59", "remaining_time": "11:49:56"} +{"current_steps": 1942, "total_steps": 4118, "loss": 1.7745, "learning_rate": 0.0001, "epoch": 0.47158814958717826, "percentage": 47.16, "elapsed_time": "10:33:18", "remaining_time": "11:49:37"} +{"current_steps": 1943, "total_steps": 4118, "loss": 1.5694, "learning_rate": 0.0001, "epoch": 0.47183098591549294, "percentage": 47.18, "elapsed_time": "10:33:38", "remaining_time": "11:49:17"} +{"current_steps": 1944, "total_steps": 4118, "loss": 1.5526, "learning_rate": 0.0001, "epoch": 0.4720738222438077, "percentage": 47.21, "elapsed_time": "10:33:57", "remaining_time": "11:48:58"} +{"current_steps": 1945, "total_steps": 4118, "loss": 1.7063, "learning_rate": 0.0001, "epoch": 0.4723166585721224, "percentage": 47.23, "elapsed_time": "10:34:17", "remaining_time": "11:48:38"} +{"current_steps": 1946, "total_steps": 4118, "loss": 1.5269, "learning_rate": 0.0001, "epoch": 0.4725594949004371, "percentage": 47.26, "elapsed_time": "10:34:36", "remaining_time": "11:48:19"} +{"current_steps": 1947, "total_steps": 4118, "loss": 1.6393, "learning_rate": 0.0001, "epoch": 0.4728023312287518, "percentage": 47.28, "elapsed_time": "10:34:56", "remaining_time": "11:47:59"} +{"current_steps": 1948, "total_steps": 4118, "loss": 1.9834, "learning_rate": 0.0001, "epoch": 0.47304516755706655, "percentage": 47.3, "elapsed_time": "10:35:16", "remaining_time": "11:47:39"} +{"current_steps": 1949, "total_steps": 4118, "loss": 1.5758, "learning_rate": 0.0001, "epoch": 0.4732880038853812, "percentage": 47.33, "elapsed_time": "10:35:35", "remaining_time": "11:47:20"} +{"current_steps": 1950, "total_steps": 4118, "loss": 1.569, "learning_rate": 0.0001, "epoch": 0.47353084021369596, "percentage": 47.35, "elapsed_time": "10:35:55", "remaining_time": "11:47:00"} +{"current_steps": 1951, "total_steps": 4118, "loss": 1.7142, "learning_rate": 0.0001, "epoch": 0.4737736765420107, "percentage": 47.38, "elapsed_time": "10:36:14", "remaining_time": "11:46:41"} +{"current_steps": 1952, "total_steps": 4118, "loss": 1.6426, "learning_rate": 0.0001, "epoch": 0.4740165128703254, "percentage": 47.4, "elapsed_time": "10:36:34", "remaining_time": "11:46:21"} +{"current_steps": 1953, "total_steps": 4118, "loss": 1.8688, "learning_rate": 0.0001, "epoch": 0.4742593491986401, "percentage": 47.43, "elapsed_time": "10:36:53", "remaining_time": "11:46:02"} +{"current_steps": 1954, "total_steps": 4118, "loss": 1.6548, "learning_rate": 0.0001, "epoch": 0.47450218552695483, "percentage": 47.45, "elapsed_time": "10:37:13", "remaining_time": "11:45:42"} +{"current_steps": 1955, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.47474502185526957, "percentage": 47.47, "elapsed_time": "10:37:33", "remaining_time": "11:45:22"} +{"current_steps": 1956, "total_steps": 4118, "loss": 1.7741, "learning_rate": 0.0001, "epoch": 0.47498785818358424, "percentage": 47.5, "elapsed_time": "10:37:52", "remaining_time": "11:45:03"} +{"current_steps": 1957, "total_steps": 4118, "loss": 1.7622, "learning_rate": 0.0001, "epoch": 0.475230694511899, "percentage": 47.52, "elapsed_time": "10:38:12", "remaining_time": "11:44:43"} +{"current_steps": 1958, "total_steps": 4118, "loss": 1.6401, "learning_rate": 0.0001, "epoch": 0.4754735308402137, "percentage": 47.55, "elapsed_time": "10:38:31", "remaining_time": "11:44:24"} +{"current_steps": 1959, "total_steps": 4118, "loss": 1.6743, "learning_rate": 0.0001, "epoch": 0.4757163671685284, "percentage": 47.57, "elapsed_time": "10:38:51", "remaining_time": "11:44:04"} +{"current_steps": 1960, "total_steps": 4118, "loss": 1.7476, "learning_rate": 0.0001, "epoch": 0.4759592034968431, "percentage": 47.6, "elapsed_time": "10:39:10", "remaining_time": "11:43:45"} +{"current_steps": 1961, "total_steps": 4118, "loss": 1.7423, "learning_rate": 0.0001, "epoch": 0.47620203982515785, "percentage": 47.62, "elapsed_time": "10:39:30", "remaining_time": "11:43:25"} +{"current_steps": 1962, "total_steps": 4118, "loss": 1.8605, "learning_rate": 0.0001, "epoch": 0.4764448761534726, "percentage": 47.64, "elapsed_time": "10:39:49", "remaining_time": "11:43:05"} +{"current_steps": 1963, "total_steps": 4118, "loss": 1.7147, "learning_rate": 0.0001, "epoch": 0.47668771248178726, "percentage": 47.67, "elapsed_time": "10:40:09", "remaining_time": "11:42:46"} +{"current_steps": 1964, "total_steps": 4118, "loss": 1.7308, "learning_rate": 0.0001, "epoch": 0.476930548810102, "percentage": 47.69, "elapsed_time": "10:40:29", "remaining_time": "11:42:26"} +{"current_steps": 1965, "total_steps": 4118, "loss": 1.8088, "learning_rate": 0.0001, "epoch": 0.47717338513841673, "percentage": 47.72, "elapsed_time": "10:40:48", "remaining_time": "11:42:07"} +{"current_steps": 1966, "total_steps": 4118, "loss": 1.7187, "learning_rate": 0.0001, "epoch": 0.4774162214667314, "percentage": 47.74, "elapsed_time": "10:41:08", "remaining_time": "11:41:47"} +{"current_steps": 1967, "total_steps": 4118, "loss": 1.7997, "learning_rate": 0.0001, "epoch": 0.47765905779504614, "percentage": 47.77, "elapsed_time": "10:41:27", "remaining_time": "11:41:28"} +{"current_steps": 1968, "total_steps": 4118, "loss": 1.5496, "learning_rate": 0.0001, "epoch": 0.47790189412336087, "percentage": 47.79, "elapsed_time": "10:41:47", "remaining_time": "11:41:08"} +{"current_steps": 1969, "total_steps": 4118, "loss": 1.7427, "learning_rate": 0.0001, "epoch": 0.47814473045167555, "percentage": 47.81, "elapsed_time": "10:42:06", "remaining_time": "11:40:48"} +{"current_steps": 1970, "total_steps": 4118, "loss": 1.4833, "learning_rate": 0.0001, "epoch": 0.4783875667799903, "percentage": 47.84, "elapsed_time": "10:42:26", "remaining_time": "11:40:29"} +{"current_steps": 1971, "total_steps": 4118, "loss": 1.7442, "learning_rate": 0.0001, "epoch": 0.478630403108305, "percentage": 47.86, "elapsed_time": "10:42:45", "remaining_time": "11:40:09"} +{"current_steps": 1972, "total_steps": 4118, "loss": 1.723, "learning_rate": 0.0001, "epoch": 0.4788732394366197, "percentage": 47.89, "elapsed_time": "10:43:05", "remaining_time": "11:39:50"} +{"current_steps": 1973, "total_steps": 4118, "loss": 1.7344, "learning_rate": 0.0001, "epoch": 0.4791160757649344, "percentage": 47.91, "elapsed_time": "10:43:25", "remaining_time": "11:39:30"} +{"current_steps": 1974, "total_steps": 4118, "loss": 1.6592, "learning_rate": 0.0001, "epoch": 0.47935891209324916, "percentage": 47.94, "elapsed_time": "10:43:44", "remaining_time": "11:39:10"} +{"current_steps": 1975, "total_steps": 4118, "loss": 1.5799, "learning_rate": 0.0001, "epoch": 0.4796017484215639, "percentage": 47.96, "elapsed_time": "10:44:04", "remaining_time": "11:38:51"} +{"current_steps": 1976, "total_steps": 4118, "loss": 1.8331, "learning_rate": 0.0001, "epoch": 0.47984458474987857, "percentage": 47.98, "elapsed_time": "10:44:23", "remaining_time": "11:38:31"} +{"current_steps": 1977, "total_steps": 4118, "loss": 1.8329, "learning_rate": 0.0001, "epoch": 0.4800874210781933, "percentage": 48.01, "elapsed_time": "10:44:43", "remaining_time": "11:38:12"} +{"current_steps": 1978, "total_steps": 4118, "loss": 1.7316, "learning_rate": 0.0001, "epoch": 0.48033025740650803, "percentage": 48.03, "elapsed_time": "10:45:02", "remaining_time": "11:37:52"} +{"current_steps": 1979, "total_steps": 4118, "loss": 1.6003, "learning_rate": 0.0001, "epoch": 0.4805730937348227, "percentage": 48.06, "elapsed_time": "10:45:22", "remaining_time": "11:37:33"} +{"current_steps": 1980, "total_steps": 4118, "loss": 1.8482, "learning_rate": 0.0001, "epoch": 0.48081593006313744, "percentage": 48.08, "elapsed_time": "10:45:42", "remaining_time": "11:37:13"} +{"current_steps": 1981, "total_steps": 4118, "loss": 1.8004, "learning_rate": 0.0001, "epoch": 0.4810587663914522, "percentage": 48.11, "elapsed_time": "10:46:01", "remaining_time": "11:36:53"} +{"current_steps": 1982, "total_steps": 4118, "loss": 1.74, "learning_rate": 0.0001, "epoch": 0.48130160271976685, "percentage": 48.13, "elapsed_time": "10:46:21", "remaining_time": "11:36:34"} +{"current_steps": 1983, "total_steps": 4118, "loss": 2.1124, "learning_rate": 0.0001, "epoch": 0.4815444390480816, "percentage": 48.15, "elapsed_time": "10:46:40", "remaining_time": "11:36:14"} +{"current_steps": 1984, "total_steps": 4118, "loss": 1.6096, "learning_rate": 0.0001, "epoch": 0.4817872753763963, "percentage": 48.18, "elapsed_time": "10:47:00", "remaining_time": "11:35:55"} +{"current_steps": 1985, "total_steps": 4118, "loss": 1.7741, "learning_rate": 0.0001, "epoch": 0.48203011170471105, "percentage": 48.2, "elapsed_time": "10:47:19", "remaining_time": "11:35:35"} +{"current_steps": 1986, "total_steps": 4118, "loss": 1.8804, "learning_rate": 0.0001, "epoch": 0.48227294803302573, "percentage": 48.23, "elapsed_time": "10:47:39", "remaining_time": "11:35:16"} +{"current_steps": 1987, "total_steps": 4118, "loss": 1.8036, "learning_rate": 0.0001, "epoch": 0.48251578436134046, "percentage": 48.25, "elapsed_time": "10:47:58", "remaining_time": "11:34:56"} +{"current_steps": 1988, "total_steps": 4118, "loss": 1.7058, "learning_rate": 0.0001, "epoch": 0.4827586206896552, "percentage": 48.28, "elapsed_time": "10:48:18", "remaining_time": "11:34:36"} +{"current_steps": 1989, "total_steps": 4118, "loss": 1.8813, "learning_rate": 0.0001, "epoch": 0.48300145701796987, "percentage": 48.3, "elapsed_time": "10:48:37", "remaining_time": "11:34:17"} +{"current_steps": 1990, "total_steps": 4118, "loss": 1.5937, "learning_rate": 0.0001, "epoch": 0.4832442933462846, "percentage": 48.32, "elapsed_time": "10:48:57", "remaining_time": "11:33:57"} +{"current_steps": 1991, "total_steps": 4118, "loss": 1.6059, "learning_rate": 0.0001, "epoch": 0.48348712967459934, "percentage": 48.35, "elapsed_time": "10:49:17", "remaining_time": "11:33:38"} +{"current_steps": 1992, "total_steps": 4118, "loss": 1.8807, "learning_rate": 0.0001, "epoch": 0.483729966002914, "percentage": 48.37, "elapsed_time": "10:49:36", "remaining_time": "11:33:18"} +{"current_steps": 1993, "total_steps": 4118, "loss": 1.701, "learning_rate": 0.0001, "epoch": 0.48397280233122875, "percentage": 48.4, "elapsed_time": "10:49:56", "remaining_time": "11:32:58"} +{"current_steps": 1994, "total_steps": 4118, "loss": 1.8007, "learning_rate": 0.0001, "epoch": 0.4842156386595435, "percentage": 48.42, "elapsed_time": "10:50:15", "remaining_time": "11:32:39"} +{"current_steps": 1995, "total_steps": 4118, "loss": 1.7212, "learning_rate": 0.0001, "epoch": 0.48445847498785816, "percentage": 48.45, "elapsed_time": "10:50:35", "remaining_time": "11:32:19"} +{"current_steps": 1996, "total_steps": 4118, "loss": 1.8061, "learning_rate": 0.0001, "epoch": 0.4847013113161729, "percentage": 48.47, "elapsed_time": "10:50:54", "remaining_time": "11:32:00"} +{"current_steps": 1997, "total_steps": 4118, "loss": 1.5304, "learning_rate": 0.0001, "epoch": 0.4849441476444876, "percentage": 48.49, "elapsed_time": "10:51:14", "remaining_time": "11:31:40"} +{"current_steps": 1998, "total_steps": 4118, "loss": 1.8191, "learning_rate": 0.0001, "epoch": 0.48518698397280235, "percentage": 48.52, "elapsed_time": "10:51:33", "remaining_time": "11:31:21"} +{"current_steps": 1999, "total_steps": 4118, "loss": 1.8164, "learning_rate": 0.0001, "epoch": 0.48542982030111703, "percentage": 48.54, "elapsed_time": "10:51:53", "remaining_time": "11:31:01"} +{"current_steps": 2000, "total_steps": 4118, "loss": 1.7904, "learning_rate": 0.0001, "epoch": 0.48567265662943176, "percentage": 48.57, "elapsed_time": "10:52:12", "remaining_time": "11:30:41"} +{"current_steps": 2001, "total_steps": 4118, "loss": 1.5279, "learning_rate": 0.0001, "epoch": 0.4859154929577465, "percentage": 48.59, "elapsed_time": "10:52:34", "remaining_time": "11:30:24"} +{"current_steps": 2002, "total_steps": 4118, "loss": 1.7226, "learning_rate": 0.0001, "epoch": 0.4861583292860612, "percentage": 48.62, "elapsed_time": "10:52:54", "remaining_time": "11:30:05"} +{"current_steps": 2003, "total_steps": 4118, "loss": 1.7777, "learning_rate": 0.0001, "epoch": 0.4864011656143759, "percentage": 48.64, "elapsed_time": "10:53:13", "remaining_time": "11:29:45"} +{"current_steps": 2004, "total_steps": 4118, "loss": 1.8408, "learning_rate": 0.0001, "epoch": 0.48664400194269064, "percentage": 48.66, "elapsed_time": "10:53:33", "remaining_time": "11:29:25"} +{"current_steps": 2005, "total_steps": 4118, "loss": 1.8969, "learning_rate": 0.0001, "epoch": 0.4868868382710053, "percentage": 48.69, "elapsed_time": "10:53:53", "remaining_time": "11:29:06"} +{"current_steps": 2006, "total_steps": 4118, "loss": 1.5773, "learning_rate": 0.0001, "epoch": 0.48712967459932005, "percentage": 48.71, "elapsed_time": "10:54:12", "remaining_time": "11:28:46"} +{"current_steps": 2007, "total_steps": 4118, "loss": 1.6821, "learning_rate": 0.0001, "epoch": 0.4873725109276348, "percentage": 48.74, "elapsed_time": "10:54:32", "remaining_time": "11:28:27"} +{"current_steps": 2008, "total_steps": 4118, "loss": 1.8637, "learning_rate": 0.0001, "epoch": 0.4876153472559495, "percentage": 48.76, "elapsed_time": "10:54:51", "remaining_time": "11:28:07"} +{"current_steps": 2009, "total_steps": 4118, "loss": 1.8994, "learning_rate": 0.0001, "epoch": 0.4878581835842642, "percentage": 48.79, "elapsed_time": "10:55:11", "remaining_time": "11:27:48"} +{"current_steps": 2010, "total_steps": 4118, "loss": 1.8082, "learning_rate": 0.0001, "epoch": 0.4881010199125789, "percentage": 48.81, "elapsed_time": "10:55:30", "remaining_time": "11:27:28"} +{"current_steps": 2011, "total_steps": 4118, "loss": 1.7051, "learning_rate": 0.0001, "epoch": 0.48834385624089366, "percentage": 48.83, "elapsed_time": "10:55:50", "remaining_time": "11:27:08"} +{"current_steps": 2012, "total_steps": 4118, "loss": 1.817, "learning_rate": 0.0001, "epoch": 0.48858669256920834, "percentage": 48.86, "elapsed_time": "10:56:09", "remaining_time": "11:26:49"} +{"current_steps": 2013, "total_steps": 4118, "loss": 1.8699, "learning_rate": 0.0001, "epoch": 0.48882952889752307, "percentage": 48.88, "elapsed_time": "10:56:29", "remaining_time": "11:26:29"} +{"current_steps": 2014, "total_steps": 4118, "loss": 1.7398, "learning_rate": 0.0001, "epoch": 0.4890723652258378, "percentage": 48.91, "elapsed_time": "10:56:49", "remaining_time": "11:26:10"} +{"current_steps": 2015, "total_steps": 4118, "loss": 1.7552, "learning_rate": 0.0001, "epoch": 0.4893152015541525, "percentage": 48.93, "elapsed_time": "10:57:08", "remaining_time": "11:25:50"} +{"current_steps": 2016, "total_steps": 4118, "loss": 1.9394, "learning_rate": 0.0001, "epoch": 0.4895580378824672, "percentage": 48.96, "elapsed_time": "10:57:28", "remaining_time": "11:25:30"} +{"current_steps": 2017, "total_steps": 4118, "loss": 1.7152, "learning_rate": 0.0001, "epoch": 0.48980087421078194, "percentage": 48.98, "elapsed_time": "10:57:47", "remaining_time": "11:25:11"} +{"current_steps": 2018, "total_steps": 4118, "loss": 1.7157, "learning_rate": 0.0001, "epoch": 0.4900437105390966, "percentage": 49.0, "elapsed_time": "10:58:07", "remaining_time": "11:24:51"} +{"current_steps": 2019, "total_steps": 4118, "loss": 1.6318, "learning_rate": 0.0001, "epoch": 0.49028654686741135, "percentage": 49.03, "elapsed_time": "10:58:26", "remaining_time": "11:24:32"} +{"current_steps": 2020, "total_steps": 4118, "loss": 1.7926, "learning_rate": 0.0001, "epoch": 0.4905293831957261, "percentage": 49.05, "elapsed_time": "10:58:46", "remaining_time": "11:24:12"} +{"current_steps": 2021, "total_steps": 4118, "loss": 1.8054, "learning_rate": 0.0001, "epoch": 0.4907722195240408, "percentage": 49.08, "elapsed_time": "10:59:05", "remaining_time": "11:23:53"} +{"current_steps": 2022, "total_steps": 4118, "loss": 1.8102, "learning_rate": 0.0001, "epoch": 0.4910150558523555, "percentage": 49.1, "elapsed_time": "10:59:25", "remaining_time": "11:23:33"} +{"current_steps": 2023, "total_steps": 4118, "loss": 1.8815, "learning_rate": 0.0001, "epoch": 0.49125789218067023, "percentage": 49.13, "elapsed_time": "10:59:45", "remaining_time": "11:23:13"} +{"current_steps": 2024, "total_steps": 4118, "loss": 1.729, "learning_rate": 0.0001, "epoch": 0.49150072850898496, "percentage": 49.15, "elapsed_time": "11:00:04", "remaining_time": "11:22:54"} +{"current_steps": 2025, "total_steps": 4118, "loss": 1.8081, "learning_rate": 0.0001, "epoch": 0.49174356483729964, "percentage": 49.17, "elapsed_time": "11:00:24", "remaining_time": "11:22:34"} +{"current_steps": 2026, "total_steps": 4118, "loss": 1.7566, "learning_rate": 0.0001, "epoch": 0.4919864011656144, "percentage": 49.2, "elapsed_time": "11:00:43", "remaining_time": "11:22:15"} +{"current_steps": 2027, "total_steps": 4118, "loss": 1.7305, "learning_rate": 0.0001, "epoch": 0.4922292374939291, "percentage": 49.22, "elapsed_time": "11:01:03", "remaining_time": "11:21:55"} +{"current_steps": 2028, "total_steps": 4118, "loss": 1.7078, "learning_rate": 0.0001, "epoch": 0.4924720738222438, "percentage": 49.25, "elapsed_time": "11:01:22", "remaining_time": "11:21:36"} +{"current_steps": 2029, "total_steps": 4118, "loss": 1.8703, "learning_rate": 0.0001, "epoch": 0.4927149101505585, "percentage": 49.27, "elapsed_time": "11:01:42", "remaining_time": "11:21:16"} +{"current_steps": 2030, "total_steps": 4118, "loss": 1.7124, "learning_rate": 0.0001, "epoch": 0.49295774647887325, "percentage": 49.3, "elapsed_time": "11:02:01", "remaining_time": "11:20:56"} +{"current_steps": 2031, "total_steps": 4118, "loss": 1.768, "learning_rate": 0.0001, "epoch": 0.493200582807188, "percentage": 49.32, "elapsed_time": "11:02:21", "remaining_time": "11:20:37"} +{"current_steps": 2032, "total_steps": 4118, "loss": 1.8702, "learning_rate": 0.0001, "epoch": 0.49344341913550266, "percentage": 49.34, "elapsed_time": "11:02:41", "remaining_time": "11:20:17"} +{"current_steps": 2033, "total_steps": 4118, "loss": 1.422, "learning_rate": 0.0001, "epoch": 0.4936862554638174, "percentage": 49.37, "elapsed_time": "11:03:00", "remaining_time": "11:19:58"} +{"current_steps": 2034, "total_steps": 4118, "loss": 1.7395, "learning_rate": 0.0001, "epoch": 0.4939290917921321, "percentage": 49.39, "elapsed_time": "11:03:20", "remaining_time": "11:19:38"} +{"current_steps": 2035, "total_steps": 4118, "loss": 1.9099, "learning_rate": 0.0001, "epoch": 0.4941719281204468, "percentage": 49.42, "elapsed_time": "11:03:39", "remaining_time": "11:19:18"} +{"current_steps": 2036, "total_steps": 4118, "loss": 1.7586, "learning_rate": 0.0001, "epoch": 0.49441476444876153, "percentage": 49.44, "elapsed_time": "11:03:59", "remaining_time": "11:18:59"} +{"current_steps": 2037, "total_steps": 4118, "loss": 1.8833, "learning_rate": 0.0001, "epoch": 0.49465760077707627, "percentage": 49.47, "elapsed_time": "11:04:18", "remaining_time": "11:18:39"} +{"current_steps": 2038, "total_steps": 4118, "loss": 1.6964, "learning_rate": 0.0001, "epoch": 0.49490043710539094, "percentage": 49.49, "elapsed_time": "11:04:38", "remaining_time": "11:18:20"} +{"current_steps": 2039, "total_steps": 4118, "loss": 1.7251, "learning_rate": 0.0001, "epoch": 0.4951432734337057, "percentage": 49.51, "elapsed_time": "11:04:57", "remaining_time": "11:18:00"} +{"current_steps": 2040, "total_steps": 4118, "loss": 1.7635, "learning_rate": 0.0001, "epoch": 0.4953861097620204, "percentage": 49.54, "elapsed_time": "11:05:17", "remaining_time": "11:17:41"} +{"current_steps": 2041, "total_steps": 4118, "loss": 1.7948, "learning_rate": 0.0001, "epoch": 0.4956289460903351, "percentage": 49.56, "elapsed_time": "11:05:37", "remaining_time": "11:17:21"} +{"current_steps": 2042, "total_steps": 4118, "loss": 1.8111, "learning_rate": 0.0001, "epoch": 0.4958717824186498, "percentage": 49.59, "elapsed_time": "11:05:56", "remaining_time": "11:17:01"} +{"current_steps": 2043, "total_steps": 4118, "loss": 1.77, "learning_rate": 0.0001, "epoch": 0.49611461874696455, "percentage": 49.61, "elapsed_time": "11:06:16", "remaining_time": "11:16:42"} +{"current_steps": 2044, "total_steps": 4118, "loss": 1.7954, "learning_rate": 0.0001, "epoch": 0.4963574550752793, "percentage": 49.64, "elapsed_time": "11:06:35", "remaining_time": "11:16:22"} +{"current_steps": 2045, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.49660029140359396, "percentage": 49.66, "elapsed_time": "11:06:55", "remaining_time": "11:16:03"} +{"current_steps": 2046, "total_steps": 4118, "loss": 1.7093, "learning_rate": 0.0001, "epoch": 0.4968431277319087, "percentage": 49.68, "elapsed_time": "11:07:14", "remaining_time": "11:15:43"} +{"current_steps": 2047, "total_steps": 4118, "loss": 1.7402, "learning_rate": 0.0001, "epoch": 0.49708596406022343, "percentage": 49.71, "elapsed_time": "11:07:34", "remaining_time": "11:15:23"} +{"current_steps": 2048, "total_steps": 4118, "loss": 1.6705, "learning_rate": 0.0001, "epoch": 0.4973288003885381, "percentage": 49.73, "elapsed_time": "11:07:53", "remaining_time": "11:15:04"} +{"current_steps": 2049, "total_steps": 4118, "loss": 1.7713, "learning_rate": 0.0001, "epoch": 0.49757163671685284, "percentage": 49.76, "elapsed_time": "11:08:13", "remaining_time": "11:14:44"} +{"current_steps": 2050, "total_steps": 4118, "loss": 1.8701, "learning_rate": 0.0001, "epoch": 0.49781447304516757, "percentage": 49.78, "elapsed_time": "11:08:32", "remaining_time": "11:14:25"} +{"current_steps": 2051, "total_steps": 4118, "loss": 1.829, "learning_rate": 0.0001, "epoch": 0.49805730937348225, "percentage": 49.81, "elapsed_time": "11:08:52", "remaining_time": "11:14:05"} +{"current_steps": 2052, "total_steps": 4118, "loss": 1.6451, "learning_rate": 0.0001, "epoch": 0.498300145701797, "percentage": 49.83, "elapsed_time": "11:09:12", "remaining_time": "11:13:46"} +{"current_steps": 2053, "total_steps": 4118, "loss": 1.5854, "learning_rate": 0.0001, "epoch": 0.4985429820301117, "percentage": 49.85, "elapsed_time": "11:09:31", "remaining_time": "11:13:26"} +{"current_steps": 2054, "total_steps": 4118, "loss": 1.6651, "learning_rate": 0.0001, "epoch": 0.49878581835842645, "percentage": 49.88, "elapsed_time": "11:09:51", "remaining_time": "11:13:06"} +{"current_steps": 2055, "total_steps": 4118, "loss": 1.6858, "learning_rate": 0.0001, "epoch": 0.4990286546867411, "percentage": 49.9, "elapsed_time": "11:10:10", "remaining_time": "11:12:47"} +{"current_steps": 2056, "total_steps": 4118, "loss": 1.6466, "learning_rate": 0.0001, "epoch": 0.49927149101505586, "percentage": 49.93, "elapsed_time": "11:10:30", "remaining_time": "11:12:27"} +{"current_steps": 2057, "total_steps": 4118, "loss": 1.755, "learning_rate": 0.0001, "epoch": 0.4995143273433706, "percentage": 49.95, "elapsed_time": "11:10:49", "remaining_time": "11:12:08"} +{"current_steps": 2058, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.49975716367168527, "percentage": 49.98, "elapsed_time": "11:11:09", "remaining_time": "11:11:48"} +{"current_steps": 2059, "total_steps": 4118, "loss": 1.7961, "learning_rate": 0.0001, "epoch": 0.5, "percentage": 50.0, "elapsed_time": "11:11:29", "remaining_time": "11:11:29"} +{"current_steps": 2060, "total_steps": 4118, "loss": 1.6511, "learning_rate": 0.0001, "epoch": 0.5002428363283147, "percentage": 50.02, "elapsed_time": "11:11:48", "remaining_time": "11:11:09"} +{"current_steps": 2061, "total_steps": 4118, "loss": 1.6494, "learning_rate": 0.0001, "epoch": 0.5004856726566295, "percentage": 50.05, "elapsed_time": "11:12:08", "remaining_time": "11:10:49"} +{"current_steps": 2062, "total_steps": 4118, "loss": 1.783, "learning_rate": 0.0001, "epoch": 0.5007285089849441, "percentage": 50.07, "elapsed_time": "11:12:27", "remaining_time": "11:10:30"} +{"current_steps": 2063, "total_steps": 4118, "loss": 1.7739, "learning_rate": 0.0001, "epoch": 0.5009713453132588, "percentage": 50.1, "elapsed_time": "11:12:47", "remaining_time": "11:10:10"} +{"current_steps": 2064, "total_steps": 4118, "loss": 1.6707, "learning_rate": 0.0001, "epoch": 0.5012141816415736, "percentage": 50.12, "elapsed_time": "11:13:06", "remaining_time": "11:09:51"} +{"current_steps": 2065, "total_steps": 4118, "loss": 1.7933, "learning_rate": 0.0001, "epoch": 0.5014570179698883, "percentage": 50.15, "elapsed_time": "11:13:26", "remaining_time": "11:09:31"} +{"current_steps": 2066, "total_steps": 4118, "loss": 1.6298, "learning_rate": 0.0001, "epoch": 0.501699854298203, "percentage": 50.17, "elapsed_time": "11:13:45", "remaining_time": "11:09:12"} +{"current_steps": 2067, "total_steps": 4118, "loss": 1.7876, "learning_rate": 0.0001, "epoch": 0.5019426906265178, "percentage": 50.19, "elapsed_time": "11:14:05", "remaining_time": "11:08:52"} +{"current_steps": 2068, "total_steps": 4118, "loss": 1.7885, "learning_rate": 0.0001, "epoch": 0.5021855269548324, "percentage": 50.22, "elapsed_time": "11:14:25", "remaining_time": "11:08:32"} +{"current_steps": 2069, "total_steps": 4118, "loss": 1.661, "learning_rate": 0.0001, "epoch": 0.5024283632831471, "percentage": 50.24, "elapsed_time": "11:14:44", "remaining_time": "11:08:13"} +{"current_steps": 2070, "total_steps": 4118, "loss": 1.8036, "learning_rate": 0.0001, "epoch": 0.5026711996114619, "percentage": 50.27, "elapsed_time": "11:15:04", "remaining_time": "11:07:53"} +{"current_steps": 2071, "total_steps": 4118, "loss": 1.746, "learning_rate": 0.0001, "epoch": 0.5029140359397766, "percentage": 50.29, "elapsed_time": "11:15:23", "remaining_time": "11:07:34"} +{"current_steps": 2072, "total_steps": 4118, "loss": 1.7597, "learning_rate": 0.0001, "epoch": 0.5031568722680914, "percentage": 50.32, "elapsed_time": "11:15:43", "remaining_time": "11:07:14"} +{"current_steps": 2073, "total_steps": 4118, "loss": 1.6675, "learning_rate": 0.0001, "epoch": 0.503399708596406, "percentage": 50.34, "elapsed_time": "11:16:02", "remaining_time": "11:06:54"} +{"current_steps": 2074, "total_steps": 4118, "loss": 1.716, "learning_rate": 0.0001, "epoch": 0.5036425449247207, "percentage": 50.36, "elapsed_time": "11:16:22", "remaining_time": "11:06:35"} +{"current_steps": 2075, "total_steps": 4118, "loss": 1.8213, "learning_rate": 0.0001, "epoch": 0.5038853812530355, "percentage": 50.39, "elapsed_time": "11:16:41", "remaining_time": "11:06:15"} +{"current_steps": 2076, "total_steps": 4118, "loss": 1.6624, "learning_rate": 0.0001, "epoch": 0.5041282175813502, "percentage": 50.41, "elapsed_time": "11:17:01", "remaining_time": "11:05:56"} +{"current_steps": 2077, "total_steps": 4118, "loss": 1.7982, "learning_rate": 0.0001, "epoch": 0.5043710539096649, "percentage": 50.44, "elapsed_time": "11:17:20", "remaining_time": "11:05:36"} +{"current_steps": 2078, "total_steps": 4118, "loss": 1.7007, "learning_rate": 0.0001, "epoch": 0.5046138902379796, "percentage": 50.46, "elapsed_time": "11:17:40", "remaining_time": "11:05:16"} +{"current_steps": 2079, "total_steps": 4118, "loss": 1.7711, "learning_rate": 0.0001, "epoch": 0.5048567265662943, "percentage": 50.49, "elapsed_time": "11:18:00", "remaining_time": "11:04:57"} +{"current_steps": 2080, "total_steps": 4118, "loss": 1.6718, "learning_rate": 0.0001, "epoch": 0.505099562894609, "percentage": 50.51, "elapsed_time": "11:18:19", "remaining_time": "11:04:37"} +{"current_steps": 2081, "total_steps": 4118, "loss": 1.5546, "learning_rate": 0.0001, "epoch": 0.5053423992229238, "percentage": 50.53, "elapsed_time": "11:18:39", "remaining_time": "11:04:18"} +{"current_steps": 2082, "total_steps": 4118, "loss": 1.695, "learning_rate": 0.0001, "epoch": 0.5055852355512385, "percentage": 50.56, "elapsed_time": "11:18:58", "remaining_time": "11:03:58"} +{"current_steps": 2083, "total_steps": 4118, "loss": 1.7639, "learning_rate": 0.0001, "epoch": 0.5058280718795531, "percentage": 50.58, "elapsed_time": "11:19:18", "remaining_time": "11:03:39"} +{"current_steps": 2084, "total_steps": 4118, "loss": 1.769, "learning_rate": 0.0001, "epoch": 0.5060709082078679, "percentage": 50.61, "elapsed_time": "11:19:37", "remaining_time": "11:03:19"} +{"current_steps": 2085, "total_steps": 4118, "loss": 1.7277, "learning_rate": 0.0001, "epoch": 0.5063137445361826, "percentage": 50.63, "elapsed_time": "11:19:57", "remaining_time": "11:02:59"} +{"current_steps": 2086, "total_steps": 4118, "loss": 1.7907, "learning_rate": 0.0001, "epoch": 0.5065565808644973, "percentage": 50.66, "elapsed_time": "11:20:16", "remaining_time": "11:02:40"} +{"current_steps": 2087, "total_steps": 4118, "loss": 1.7991, "learning_rate": 0.0001, "epoch": 0.5067994171928121, "percentage": 50.68, "elapsed_time": "11:20:36", "remaining_time": "11:02:20"} +{"current_steps": 2088, "total_steps": 4118, "loss": 1.7187, "learning_rate": 0.0001, "epoch": 0.5070422535211268, "percentage": 50.7, "elapsed_time": "11:20:56", "remaining_time": "11:02:01"} +{"current_steps": 2089, "total_steps": 4118, "loss": 1.6085, "learning_rate": 0.0001, "epoch": 0.5072850898494414, "percentage": 50.73, "elapsed_time": "11:21:15", "remaining_time": "11:01:41"} +{"current_steps": 2090, "total_steps": 4118, "loss": 1.7736, "learning_rate": 0.0001, "epoch": 0.5075279261777562, "percentage": 50.75, "elapsed_time": "11:21:35", "remaining_time": "11:01:21"} +{"current_steps": 2091, "total_steps": 4118, "loss": 1.7275, "learning_rate": 0.0001, "epoch": 0.5077707625060709, "percentage": 50.78, "elapsed_time": "11:21:54", "remaining_time": "11:01:02"} +{"current_steps": 2092, "total_steps": 4118, "loss": 1.6922, "learning_rate": 0.0001, "epoch": 0.5080135988343856, "percentage": 50.8, "elapsed_time": "11:22:14", "remaining_time": "11:00:42"} +{"current_steps": 2093, "total_steps": 4118, "loss": 1.7152, "learning_rate": 0.0001, "epoch": 0.5082564351627004, "percentage": 50.83, "elapsed_time": "11:22:33", "remaining_time": "11:00:23"} +{"current_steps": 2094, "total_steps": 4118, "loss": 1.6539, "learning_rate": 0.0001, "epoch": 0.508499271491015, "percentage": 50.85, "elapsed_time": "11:22:53", "remaining_time": "11:00:03"} +{"current_steps": 2095, "total_steps": 4118, "loss": 1.5823, "learning_rate": 0.0001, "epoch": 0.5087421078193298, "percentage": 50.87, "elapsed_time": "11:23:12", "remaining_time": "10:59:44"} +{"current_steps": 2096, "total_steps": 4118, "loss": 1.7869, "learning_rate": 0.0001, "epoch": 0.5089849441476445, "percentage": 50.9, "elapsed_time": "11:23:32", "remaining_time": "10:59:24"} +{"current_steps": 2097, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.5092277804759592, "percentage": 50.92, "elapsed_time": "11:23:52", "remaining_time": "10:59:04"} +{"current_steps": 2098, "total_steps": 4118, "loss": 1.6741, "learning_rate": 0.0001, "epoch": 0.509470616804274, "percentage": 50.95, "elapsed_time": "11:24:11", "remaining_time": "10:58:45"} +{"current_steps": 2099, "total_steps": 4118, "loss": 1.533, "learning_rate": 0.0001, "epoch": 0.5097134531325886, "percentage": 50.97, "elapsed_time": "11:24:31", "remaining_time": "10:58:25"} +{"current_steps": 2100, "total_steps": 4118, "loss": 1.499, "learning_rate": 0.0001, "epoch": 0.5099562894609033, "percentage": 51.0, "elapsed_time": "11:24:50", "remaining_time": "10:58:06"} +{"current_steps": 2101, "total_steps": 4118, "loss": 1.6929, "learning_rate": 0.0001, "epoch": 0.5101991257892181, "percentage": 51.02, "elapsed_time": "11:25:10", "remaining_time": "10:57:46"} +{"current_steps": 2102, "total_steps": 4118, "loss": 1.7024, "learning_rate": 0.0001, "epoch": 0.5104419621175328, "percentage": 51.04, "elapsed_time": "11:25:29", "remaining_time": "10:57:27"} +{"current_steps": 2103, "total_steps": 4118, "loss": 1.9133, "learning_rate": 0.0001, "epoch": 0.5106847984458475, "percentage": 51.07, "elapsed_time": "11:25:49", "remaining_time": "10:57:07"} +{"current_steps": 2104, "total_steps": 4118, "loss": 1.5847, "learning_rate": 0.0001, "epoch": 0.5109276347741623, "percentage": 51.09, "elapsed_time": "11:26:08", "remaining_time": "10:56:47"} +{"current_steps": 2105, "total_steps": 4118, "loss": 1.7599, "learning_rate": 0.0001, "epoch": 0.5111704711024769, "percentage": 51.12, "elapsed_time": "11:26:28", "remaining_time": "10:56:28"} +{"current_steps": 2106, "total_steps": 4118, "loss": 1.8942, "learning_rate": 0.0001, "epoch": 0.5114133074307916, "percentage": 51.14, "elapsed_time": "11:26:48", "remaining_time": "10:56:08"} +{"current_steps": 2107, "total_steps": 4118, "loss": 1.5984, "learning_rate": 0.0001, "epoch": 0.5116561437591064, "percentage": 51.17, "elapsed_time": "11:27:07", "remaining_time": "10:55:49"} +{"current_steps": 2108, "total_steps": 4118, "loss": 1.6216, "learning_rate": 0.0001, "epoch": 0.5118989800874211, "percentage": 51.19, "elapsed_time": "11:27:27", "remaining_time": "10:55:29"} +{"current_steps": 2109, "total_steps": 4118, "loss": 1.6233, "learning_rate": 0.0001, "epoch": 0.5121418164157358, "percentage": 51.21, "elapsed_time": "11:27:46", "remaining_time": "10:55:10"} +{"current_steps": 2110, "total_steps": 4118, "loss": 1.8429, "learning_rate": 0.0001, "epoch": 0.5123846527440505, "percentage": 51.24, "elapsed_time": "11:28:06", "remaining_time": "10:54:50"} +{"current_steps": 2111, "total_steps": 4118, "loss": 1.7464, "learning_rate": 0.0001, "epoch": 0.5126274890723652, "percentage": 51.26, "elapsed_time": "11:28:25", "remaining_time": "10:54:30"} +{"current_steps": 2112, "total_steps": 4118, "loss": 1.7334, "learning_rate": 0.0001, "epoch": 0.5128703254006799, "percentage": 51.29, "elapsed_time": "11:28:45", "remaining_time": "10:54:11"} +{"current_steps": 2113, "total_steps": 4118, "loss": 1.7154, "learning_rate": 0.0001, "epoch": 0.5131131617289947, "percentage": 51.31, "elapsed_time": "11:29:04", "remaining_time": "10:53:51"} +{"current_steps": 2114, "total_steps": 4118, "loss": 1.8161, "learning_rate": 0.0001, "epoch": 0.5133559980573094, "percentage": 51.34, "elapsed_time": "11:29:24", "remaining_time": "10:53:32"} +{"current_steps": 2115, "total_steps": 4118, "loss": 1.5473, "learning_rate": 0.0001, "epoch": 0.513598834385624, "percentage": 51.36, "elapsed_time": "11:29:44", "remaining_time": "10:53:12"} +{"current_steps": 2116, "total_steps": 4118, "loss": 1.8494, "learning_rate": 0.0001, "epoch": 0.5138416707139388, "percentage": 51.38, "elapsed_time": "11:30:03", "remaining_time": "10:52:52"} +{"current_steps": 2117, "total_steps": 4118, "loss": 1.6683, "learning_rate": 0.0001, "epoch": 0.5140845070422535, "percentage": 51.41, "elapsed_time": "11:30:23", "remaining_time": "10:52:33"} +{"current_steps": 2118, "total_steps": 4118, "loss": 2.0095, "learning_rate": 0.0001, "epoch": 0.5143273433705683, "percentage": 51.43, "elapsed_time": "11:30:42", "remaining_time": "10:52:13"} +{"current_steps": 2119, "total_steps": 4118, "loss": 1.6554, "learning_rate": 0.0001, "epoch": 0.514570179698883, "percentage": 51.46, "elapsed_time": "11:31:02", "remaining_time": "10:51:54"} +{"current_steps": 2120, "total_steps": 4118, "loss": 1.8573, "learning_rate": 0.0001, "epoch": 0.5148130160271976, "percentage": 51.48, "elapsed_time": "11:31:21", "remaining_time": "10:51:34"} +{"current_steps": 2121, "total_steps": 4118, "loss": 1.7084, "learning_rate": 0.0001, "epoch": 0.5150558523555124, "percentage": 51.51, "elapsed_time": "11:31:41", "remaining_time": "10:51:15"} +{"current_steps": 2122, "total_steps": 4118, "loss": 1.7033, "learning_rate": 0.0001, "epoch": 0.5152986886838271, "percentage": 51.53, "elapsed_time": "11:32:00", "remaining_time": "10:50:55"} +{"current_steps": 2123, "total_steps": 4118, "loss": 1.8273, "learning_rate": 0.0001, "epoch": 0.5155415250121418, "percentage": 51.55, "elapsed_time": "11:32:20", "remaining_time": "10:50:35"} +{"current_steps": 2124, "total_steps": 4118, "loss": 1.7826, "learning_rate": 0.0001, "epoch": 0.5157843613404566, "percentage": 51.58, "elapsed_time": "11:32:40", "remaining_time": "10:50:16"} +{"current_steps": 2125, "total_steps": 4118, "loss": 1.7943, "learning_rate": 0.0001, "epoch": 0.5160271976687713, "percentage": 51.6, "elapsed_time": "11:32:59", "remaining_time": "10:49:56"} +{"current_steps": 2126, "total_steps": 4118, "loss": 1.8508, "learning_rate": 0.0001, "epoch": 0.5162700339970859, "percentage": 51.63, "elapsed_time": "11:33:19", "remaining_time": "10:49:37"} +{"current_steps": 2127, "total_steps": 4118, "loss": 1.6205, "learning_rate": 0.0001, "epoch": 0.5165128703254007, "percentage": 51.65, "elapsed_time": "11:33:38", "remaining_time": "10:49:17"} +{"current_steps": 2128, "total_steps": 4118, "loss": 1.8338, "learning_rate": 0.0001, "epoch": 0.5167557066537154, "percentage": 51.68, "elapsed_time": "11:33:58", "remaining_time": "10:48:58"} +{"current_steps": 2129, "total_steps": 4118, "loss": 1.7478, "learning_rate": 0.0001, "epoch": 0.5169985429820301, "percentage": 51.7, "elapsed_time": "11:34:17", "remaining_time": "10:48:38"} +{"current_steps": 2130, "total_steps": 4118, "loss": 1.7956, "learning_rate": 0.0001, "epoch": 0.5172413793103449, "percentage": 51.72, "elapsed_time": "11:34:37", "remaining_time": "10:48:18"} +{"current_steps": 2131, "total_steps": 4118, "loss": 1.6198, "learning_rate": 0.0001, "epoch": 0.5174842156386595, "percentage": 51.75, "elapsed_time": "11:34:56", "remaining_time": "10:47:59"} +{"current_steps": 2132, "total_steps": 4118, "loss": 1.7405, "learning_rate": 0.0001, "epoch": 0.5177270519669742, "percentage": 51.77, "elapsed_time": "11:35:16", "remaining_time": "10:47:39"} +{"current_steps": 2133, "total_steps": 4118, "loss": 1.8489, "learning_rate": 0.0001, "epoch": 0.517969888295289, "percentage": 51.8, "elapsed_time": "11:35:36", "remaining_time": "10:47:20"} +{"current_steps": 2134, "total_steps": 4118, "loss": 1.615, "learning_rate": 0.0001, "epoch": 0.5182127246236037, "percentage": 51.82, "elapsed_time": "11:35:55", "remaining_time": "10:47:00"} +{"current_steps": 2135, "total_steps": 4118, "loss": 1.7793, "learning_rate": 0.0001, "epoch": 0.5184555609519184, "percentage": 51.85, "elapsed_time": "11:36:15", "remaining_time": "10:46:41"} +{"current_steps": 2136, "total_steps": 4118, "loss": 1.824, "learning_rate": 0.0001, "epoch": 0.5186983972802331, "percentage": 51.87, "elapsed_time": "11:36:34", "remaining_time": "10:46:21"} +{"current_steps": 2137, "total_steps": 4118, "loss": 1.7335, "learning_rate": 0.0001, "epoch": 0.5189412336085478, "percentage": 51.89, "elapsed_time": "11:36:54", "remaining_time": "10:46:01"} +{"current_steps": 2138, "total_steps": 4118, "loss": 1.8103, "learning_rate": 0.0001, "epoch": 0.5191840699368625, "percentage": 51.92, "elapsed_time": "11:37:13", "remaining_time": "10:45:42"} +{"current_steps": 2139, "total_steps": 4118, "loss": 1.8236, "learning_rate": 0.0001, "epoch": 0.5194269062651773, "percentage": 51.94, "elapsed_time": "11:37:33", "remaining_time": "10:45:22"} +{"current_steps": 2140, "total_steps": 4118, "loss": 1.7559, "learning_rate": 0.0001, "epoch": 0.519669742593492, "percentage": 51.97, "elapsed_time": "11:37:52", "remaining_time": "10:45:03"} +{"current_steps": 2141, "total_steps": 4118, "loss": 1.7246, "learning_rate": 0.0001, "epoch": 0.5199125789218068, "percentage": 51.99, "elapsed_time": "11:38:12", "remaining_time": "10:44:43"} +{"current_steps": 2142, "total_steps": 4118, "loss": 1.7486, "learning_rate": 0.0001, "epoch": 0.5201554152501214, "percentage": 52.02, "elapsed_time": "11:38:32", "remaining_time": "10:44:23"} +{"current_steps": 2143, "total_steps": 4118, "loss": 1.7552, "learning_rate": 0.0001, "epoch": 0.5203982515784361, "percentage": 52.04, "elapsed_time": "11:38:51", "remaining_time": "10:44:04"} +{"current_steps": 2144, "total_steps": 4118, "loss": 1.7007, "learning_rate": 0.0001, "epoch": 0.5206410879067509, "percentage": 52.06, "elapsed_time": "11:39:11", "remaining_time": "10:43:44"} +{"current_steps": 2145, "total_steps": 4118, "loss": 1.6921, "learning_rate": 0.0001, "epoch": 0.5208839242350656, "percentage": 52.09, "elapsed_time": "11:39:30", "remaining_time": "10:43:25"} +{"current_steps": 2146, "total_steps": 4118, "loss": 1.7569, "learning_rate": 0.0001, "epoch": 0.5211267605633803, "percentage": 52.11, "elapsed_time": "11:39:50", "remaining_time": "10:43:05"} +{"current_steps": 2147, "total_steps": 4118, "loss": 1.831, "learning_rate": 0.0001, "epoch": 0.521369596891695, "percentage": 52.14, "elapsed_time": "11:40:09", "remaining_time": "10:42:46"} +{"current_steps": 2148, "total_steps": 4118, "loss": 1.6698, "learning_rate": 0.0001, "epoch": 0.5216124332200097, "percentage": 52.16, "elapsed_time": "11:40:29", "remaining_time": "10:42:26"} +{"current_steps": 2149, "total_steps": 4118, "loss": 1.7232, "learning_rate": 0.0001, "epoch": 0.5218552695483244, "percentage": 52.19, "elapsed_time": "11:40:48", "remaining_time": "10:42:06"} +{"current_steps": 2150, "total_steps": 4118, "loss": 1.8183, "learning_rate": 0.0001, "epoch": 0.5220981058766392, "percentage": 52.21, "elapsed_time": "11:41:08", "remaining_time": "10:41:47"} +{"current_steps": 2151, "total_steps": 4118, "loss": 1.768, "learning_rate": 0.0001, "epoch": 0.5223409422049539, "percentage": 52.23, "elapsed_time": "11:41:27", "remaining_time": "10:41:27"} +{"current_steps": 2152, "total_steps": 4118, "loss": 1.5589, "learning_rate": 0.0001, "epoch": 0.5225837785332685, "percentage": 52.26, "elapsed_time": "11:41:47", "remaining_time": "10:41:08"} +{"current_steps": 2153, "total_steps": 4118, "loss": 1.5566, "learning_rate": 0.0001, "epoch": 0.5228266148615833, "percentage": 52.28, "elapsed_time": "11:42:07", "remaining_time": "10:40:48"} +{"current_steps": 2154, "total_steps": 4118, "loss": 1.6489, "learning_rate": 0.0001, "epoch": 0.523069451189898, "percentage": 52.31, "elapsed_time": "11:42:26", "remaining_time": "10:40:28"} +{"current_steps": 2155, "total_steps": 4118, "loss": 1.7998, "learning_rate": 0.0001, "epoch": 0.5233122875182127, "percentage": 52.33, "elapsed_time": "11:42:46", "remaining_time": "10:40:09"} +{"current_steps": 2156, "total_steps": 4118, "loss": 1.6535, "learning_rate": 0.0001, "epoch": 0.5235551238465275, "percentage": 52.36, "elapsed_time": "11:43:05", "remaining_time": "10:39:49"} +{"current_steps": 2157, "total_steps": 4118, "loss": 1.7161, "learning_rate": 0.0001, "epoch": 0.5237979601748421, "percentage": 52.38, "elapsed_time": "11:43:25", "remaining_time": "10:39:30"} +{"current_steps": 2158, "total_steps": 4118, "loss": 1.8182, "learning_rate": 0.0001, "epoch": 0.5240407965031568, "percentage": 52.4, "elapsed_time": "11:43:44", "remaining_time": "10:39:10"} +{"current_steps": 2159, "total_steps": 4118, "loss": 1.7707, "learning_rate": 0.0001, "epoch": 0.5242836328314716, "percentage": 52.43, "elapsed_time": "11:44:04", "remaining_time": "10:38:51"} +{"current_steps": 2160, "total_steps": 4118, "loss": 1.6457, "learning_rate": 0.0001, "epoch": 0.5245264691597863, "percentage": 52.45, "elapsed_time": "11:44:23", "remaining_time": "10:38:31"} +{"current_steps": 2161, "total_steps": 4118, "loss": 1.676, "learning_rate": 0.0001, "epoch": 0.524769305488101, "percentage": 52.48, "elapsed_time": "11:44:43", "remaining_time": "10:38:11"} +{"current_steps": 2162, "total_steps": 4118, "loss": 1.6701, "learning_rate": 0.0001, "epoch": 0.5250121418164158, "percentage": 52.5, "elapsed_time": "11:45:03", "remaining_time": "10:37:52"} +{"current_steps": 2163, "total_steps": 4118, "loss": 1.5333, "learning_rate": 0.0001, "epoch": 0.5252549781447304, "percentage": 52.53, "elapsed_time": "11:45:22", "remaining_time": "10:37:32"} +{"current_steps": 2164, "total_steps": 4118, "loss": 1.6603, "learning_rate": 0.0001, "epoch": 0.5254978144730452, "percentage": 52.55, "elapsed_time": "11:45:42", "remaining_time": "10:37:13"} +{"current_steps": 2165, "total_steps": 4118, "loss": 1.8696, "learning_rate": 0.0001, "epoch": 0.5257406508013599, "percentage": 52.57, "elapsed_time": "11:46:01", "remaining_time": "10:36:53"} +{"current_steps": 2166, "total_steps": 4118, "loss": 1.6907, "learning_rate": 0.0001, "epoch": 0.5259834871296746, "percentage": 52.6, "elapsed_time": "11:46:21", "remaining_time": "10:36:33"} +{"current_steps": 2167, "total_steps": 4118, "loss": 1.905, "learning_rate": 0.0001, "epoch": 0.5262263234579894, "percentage": 52.62, "elapsed_time": "11:46:40", "remaining_time": "10:36:14"} +{"current_steps": 2168, "total_steps": 4118, "loss": 1.7181, "learning_rate": 0.0001, "epoch": 0.526469159786304, "percentage": 52.65, "elapsed_time": "11:47:00", "remaining_time": "10:35:54"} +{"current_steps": 2169, "total_steps": 4118, "loss": 1.7185, "learning_rate": 0.0001, "epoch": 0.5267119961146187, "percentage": 52.67, "elapsed_time": "11:47:19", "remaining_time": "10:35:35"} +{"current_steps": 2170, "total_steps": 4118, "loss": 1.7855, "learning_rate": 0.0001, "epoch": 0.5269548324429335, "percentage": 52.7, "elapsed_time": "11:47:39", "remaining_time": "10:35:15"} +{"current_steps": 2171, "total_steps": 4118, "loss": 1.823, "learning_rate": 0.0001, "epoch": 0.5271976687712482, "percentage": 52.72, "elapsed_time": "11:47:58", "remaining_time": "10:34:56"} +{"current_steps": 2172, "total_steps": 4118, "loss": 1.7401, "learning_rate": 0.0001, "epoch": 0.5274405050995629, "percentage": 52.74, "elapsed_time": "11:48:18", "remaining_time": "10:34:36"} +{"current_steps": 2173, "total_steps": 4118, "loss": 1.8566, "learning_rate": 0.0001, "epoch": 0.5276833414278777, "percentage": 52.77, "elapsed_time": "11:48:38", "remaining_time": "10:34:16"} +{"current_steps": 2174, "total_steps": 4118, "loss": 1.7087, "learning_rate": 0.0001, "epoch": 0.5279261777561923, "percentage": 52.79, "elapsed_time": "11:48:57", "remaining_time": "10:33:57"} +{"current_steps": 2175, "total_steps": 4118, "loss": 1.6388, "learning_rate": 0.0001, "epoch": 0.528169014084507, "percentage": 52.82, "elapsed_time": "11:49:17", "remaining_time": "10:33:37"} +{"current_steps": 2176, "total_steps": 4118, "loss": 1.7216, "learning_rate": 0.0001, "epoch": 0.5284118504128218, "percentage": 52.84, "elapsed_time": "11:49:36", "remaining_time": "10:33:18"} +{"current_steps": 2177, "total_steps": 4118, "loss": 1.7665, "learning_rate": 0.0001, "epoch": 0.5286546867411365, "percentage": 52.87, "elapsed_time": "11:49:56", "remaining_time": "10:32:58"} +{"current_steps": 2178, "total_steps": 4118, "loss": 1.6417, "learning_rate": 0.0001, "epoch": 0.5288975230694511, "percentage": 52.89, "elapsed_time": "11:50:15", "remaining_time": "10:32:39"} +{"current_steps": 2179, "total_steps": 4118, "loss": 1.99, "learning_rate": 0.0001, "epoch": 0.5291403593977659, "percentage": 52.91, "elapsed_time": "11:50:35", "remaining_time": "10:32:19"} +{"current_steps": 2180, "total_steps": 4118, "loss": 1.9405, "learning_rate": 0.0001, "epoch": 0.5293831957260806, "percentage": 52.94, "elapsed_time": "11:50:54", "remaining_time": "10:31:59"} +{"current_steps": 2181, "total_steps": 4118, "loss": 1.6438, "learning_rate": 0.0001, "epoch": 0.5296260320543953, "percentage": 52.96, "elapsed_time": "11:51:14", "remaining_time": "10:31:40"} +{"current_steps": 2182, "total_steps": 4118, "loss": 1.8281, "learning_rate": 0.0001, "epoch": 0.5298688683827101, "percentage": 52.99, "elapsed_time": "11:51:34", "remaining_time": "10:31:20"} +{"current_steps": 2183, "total_steps": 4118, "loss": 1.7686, "learning_rate": 0.0001, "epoch": 0.5301117047110248, "percentage": 53.01, "elapsed_time": "11:51:53", "remaining_time": "10:31:01"} +{"current_steps": 2184, "total_steps": 4118, "loss": 1.8797, "learning_rate": 0.0001, "epoch": 0.5303545410393394, "percentage": 53.04, "elapsed_time": "11:52:13", "remaining_time": "10:30:41"} +{"current_steps": 2185, "total_steps": 4118, "loss": 1.728, "learning_rate": 0.0001, "epoch": 0.5305973773676542, "percentage": 53.06, "elapsed_time": "11:52:32", "remaining_time": "10:30:21"} +{"current_steps": 2186, "total_steps": 4118, "loss": 1.5575, "learning_rate": 0.0001, "epoch": 0.5308402136959689, "percentage": 53.08, "elapsed_time": "11:52:52", "remaining_time": "10:30:02"} +{"current_steps": 2187, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.5310830500242837, "percentage": 53.11, "elapsed_time": "11:53:11", "remaining_time": "10:29:42"} +{"current_steps": 2188, "total_steps": 4118, "loss": 1.5167, "learning_rate": 0.0001, "epoch": 0.5313258863525984, "percentage": 53.13, "elapsed_time": "11:53:31", "remaining_time": "10:29:23"} +{"current_steps": 2189, "total_steps": 4118, "loss": 1.8666, "learning_rate": 0.0001, "epoch": 0.531568722680913, "percentage": 53.16, "elapsed_time": "11:53:50", "remaining_time": "10:29:03"} +{"current_steps": 2190, "total_steps": 4118, "loss": 1.783, "learning_rate": 0.0001, "epoch": 0.5318115590092278, "percentage": 53.18, "elapsed_time": "11:54:10", "remaining_time": "10:28:43"} +{"current_steps": 2191, "total_steps": 4118, "loss": 1.68, "learning_rate": 0.0001, "epoch": 0.5320543953375425, "percentage": 53.21, "elapsed_time": "11:54:29", "remaining_time": "10:28:24"} +{"current_steps": 2192, "total_steps": 4118, "loss": 1.9791, "learning_rate": 0.0001, "epoch": 0.5322972316658572, "percentage": 53.23, "elapsed_time": "11:54:49", "remaining_time": "10:28:04"} +{"current_steps": 2193, "total_steps": 4118, "loss": 1.8134, "learning_rate": 0.0001, "epoch": 0.532540067994172, "percentage": 53.25, "elapsed_time": "11:55:08", "remaining_time": "10:27:45"} +{"current_steps": 2194, "total_steps": 4118, "loss": 1.8626, "learning_rate": 0.0001, "epoch": 0.5327829043224867, "percentage": 53.28, "elapsed_time": "11:55:28", "remaining_time": "10:27:25"} +{"current_steps": 2195, "total_steps": 4118, "loss": 1.8335, "learning_rate": 0.0001, "epoch": 0.5330257406508013, "percentage": 53.3, "elapsed_time": "11:55:48", "remaining_time": "10:27:05"} +{"current_steps": 2196, "total_steps": 4118, "loss": 1.9244, "learning_rate": 0.0001, "epoch": 0.5332685769791161, "percentage": 53.33, "elapsed_time": "11:56:07", "remaining_time": "10:26:46"} +{"current_steps": 2197, "total_steps": 4118, "loss": 1.7939, "learning_rate": 0.0001, "epoch": 0.5335114133074308, "percentage": 53.35, "elapsed_time": "11:56:27", "remaining_time": "10:26:26"} +{"current_steps": 2198, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.5337542496357455, "percentage": 53.38, "elapsed_time": "11:56:46", "remaining_time": "10:26:07"} +{"current_steps": 2199, "total_steps": 4118, "loss": 1.8213, "learning_rate": 0.0001, "epoch": 0.5339970859640603, "percentage": 53.4, "elapsed_time": "11:57:06", "remaining_time": "10:25:47"} +{"current_steps": 2200, "total_steps": 4118, "loss": 1.9446, "learning_rate": 0.0001, "epoch": 0.5342399222923749, "percentage": 53.42, "elapsed_time": "11:57:25", "remaining_time": "10:25:28"} +{"current_steps": 2201, "total_steps": 4118, "loss": 1.7507, "learning_rate": 0.0001, "epoch": 0.5344827586206896, "percentage": 53.45, "elapsed_time": "11:57:45", "remaining_time": "10:25:08"} +{"current_steps": 2202, "total_steps": 4118, "loss": 1.8288, "learning_rate": 0.0001, "epoch": 0.5347255949490044, "percentage": 53.47, "elapsed_time": "11:58:04", "remaining_time": "10:24:48"} +{"current_steps": 2203, "total_steps": 4118, "loss": 1.6564, "learning_rate": 0.0001, "epoch": 0.5349684312773191, "percentage": 53.5, "elapsed_time": "11:58:24", "remaining_time": "10:24:29"} +{"current_steps": 2204, "total_steps": 4118, "loss": 1.6451, "learning_rate": 0.0001, "epoch": 0.5352112676056338, "percentage": 53.52, "elapsed_time": "11:58:43", "remaining_time": "10:24:09"} +{"current_steps": 2205, "total_steps": 4118, "loss": 1.6321, "learning_rate": 0.0001, "epoch": 0.5354541039339485, "percentage": 53.55, "elapsed_time": "11:59:03", "remaining_time": "10:23:50"} +{"current_steps": 2206, "total_steps": 4118, "loss": 1.8789, "learning_rate": 0.0001, "epoch": 0.5356969402622632, "percentage": 53.57, "elapsed_time": "11:59:23", "remaining_time": "10:23:30"} +{"current_steps": 2207, "total_steps": 4118, "loss": 1.4983, "learning_rate": 0.0001, "epoch": 0.5359397765905779, "percentage": 53.59, "elapsed_time": "11:59:42", "remaining_time": "10:23:11"} +{"current_steps": 2208, "total_steps": 4118, "loss": 1.6933, "learning_rate": 0.0001, "epoch": 0.5361826129188927, "percentage": 53.62, "elapsed_time": "12:00:02", "remaining_time": "10:22:51"} +{"current_steps": 2209, "total_steps": 4118, "loss": 1.762, "learning_rate": 0.0001, "epoch": 0.5364254492472074, "percentage": 53.64, "elapsed_time": "12:00:21", "remaining_time": "10:22:31"} +{"current_steps": 2210, "total_steps": 4118, "loss": 1.921, "learning_rate": 0.0001, "epoch": 0.5366682855755222, "percentage": 53.67, "elapsed_time": "12:00:41", "remaining_time": "10:22:12"} +{"current_steps": 2211, "total_steps": 4118, "loss": 1.8159, "learning_rate": 0.0001, "epoch": 0.5369111219038368, "percentage": 53.69, "elapsed_time": "12:01:00", "remaining_time": "10:21:52"} +{"current_steps": 2212, "total_steps": 4118, "loss": 1.7398, "learning_rate": 0.0001, "epoch": 0.5371539582321515, "percentage": 53.72, "elapsed_time": "12:01:20", "remaining_time": "10:21:33"} +{"current_steps": 2213, "total_steps": 4118, "loss": 1.6758, "learning_rate": 0.0001, "epoch": 0.5373967945604663, "percentage": 53.74, "elapsed_time": "12:01:39", "remaining_time": "10:21:13"} +{"current_steps": 2214, "total_steps": 4118, "loss": 1.8827, "learning_rate": 0.0001, "epoch": 0.537639630888781, "percentage": 53.76, "elapsed_time": "12:01:59", "remaining_time": "10:20:53"} +{"current_steps": 2215, "total_steps": 4118, "loss": 1.5354, "learning_rate": 0.0001, "epoch": 0.5378824672170957, "percentage": 53.79, "elapsed_time": "12:02:19", "remaining_time": "10:20:34"} +{"current_steps": 2216, "total_steps": 4118, "loss": 1.7744, "learning_rate": 0.0001, "epoch": 0.5381253035454104, "percentage": 53.81, "elapsed_time": "12:02:38", "remaining_time": "10:20:14"} +{"current_steps": 2217, "total_steps": 4118, "loss": 1.7616, "learning_rate": 0.0001, "epoch": 0.5383681398737251, "percentage": 53.84, "elapsed_time": "12:02:58", "remaining_time": "10:19:55"} +{"current_steps": 2218, "total_steps": 4118, "loss": 1.6569, "learning_rate": 0.0001, "epoch": 0.5386109762020398, "percentage": 53.86, "elapsed_time": "12:03:17", "remaining_time": "10:19:35"} +{"current_steps": 2219, "total_steps": 4118, "loss": 1.6597, "learning_rate": 0.0001, "epoch": 0.5388538125303546, "percentage": 53.89, "elapsed_time": "12:03:37", "remaining_time": "10:19:16"} +{"current_steps": 2220, "total_steps": 4118, "loss": 1.6099, "learning_rate": 0.0001, "epoch": 0.5390966488586693, "percentage": 53.91, "elapsed_time": "12:03:56", "remaining_time": "10:18:56"} +{"current_steps": 2221, "total_steps": 4118, "loss": 1.6436, "learning_rate": 0.0001, "epoch": 0.5393394851869839, "percentage": 53.93, "elapsed_time": "12:04:16", "remaining_time": "10:18:36"} +{"current_steps": 2222, "total_steps": 4118, "loss": 1.6047, "learning_rate": 0.0001, "epoch": 0.5395823215152987, "percentage": 53.96, "elapsed_time": "12:04:35", "remaining_time": "10:18:17"} +{"current_steps": 2223, "total_steps": 4118, "loss": 1.8487, "learning_rate": 0.0001, "epoch": 0.5398251578436134, "percentage": 53.98, "elapsed_time": "12:04:55", "remaining_time": "10:17:57"} +{"current_steps": 2224, "total_steps": 4118, "loss": 1.8072, "learning_rate": 0.0001, "epoch": 0.5400679941719281, "percentage": 54.01, "elapsed_time": "12:05:15", "remaining_time": "10:17:38"} +{"current_steps": 2225, "total_steps": 4118, "loss": 1.6205, "learning_rate": 0.0001, "epoch": 0.5403108305002429, "percentage": 54.03, "elapsed_time": "12:05:34", "remaining_time": "10:17:18"} +{"current_steps": 2226, "total_steps": 4118, "loss": 1.5781, "learning_rate": 0.0001, "epoch": 0.5405536668285575, "percentage": 54.06, "elapsed_time": "12:05:54", "remaining_time": "10:16:59"} +{"current_steps": 2227, "total_steps": 4118, "loss": 1.8501, "learning_rate": 0.0001, "epoch": 0.5407965031568722, "percentage": 54.08, "elapsed_time": "12:06:13", "remaining_time": "10:16:39"} +{"current_steps": 2228, "total_steps": 4118, "loss": 1.7222, "learning_rate": 0.0001, "epoch": 0.541039339485187, "percentage": 54.1, "elapsed_time": "12:06:33", "remaining_time": "10:16:19"} +{"current_steps": 2229, "total_steps": 4118, "loss": 1.6986, "learning_rate": 0.0001, "epoch": 0.5412821758135017, "percentage": 54.13, "elapsed_time": "12:06:52", "remaining_time": "10:16:00"} +{"current_steps": 2230, "total_steps": 4118, "loss": 1.8236, "learning_rate": 0.0001, "epoch": 0.5415250121418164, "percentage": 54.15, "elapsed_time": "12:07:12", "remaining_time": "10:15:40"} +{"current_steps": 2231, "total_steps": 4118, "loss": 1.5892, "learning_rate": 0.0001, "epoch": 0.5417678484701312, "percentage": 54.18, "elapsed_time": "12:07:31", "remaining_time": "10:15:21"} +{"current_steps": 2232, "total_steps": 4118, "loss": 1.771, "learning_rate": 0.0001, "epoch": 0.5420106847984458, "percentage": 54.2, "elapsed_time": "12:07:51", "remaining_time": "10:15:01"} +{"current_steps": 2233, "total_steps": 4118, "loss": 1.7288, "learning_rate": 0.0001, "epoch": 0.5422535211267606, "percentage": 54.23, "elapsed_time": "12:08:10", "remaining_time": "10:14:41"} +{"current_steps": 2234, "total_steps": 4118, "loss": 1.8202, "learning_rate": 0.0001, "epoch": 0.5424963574550753, "percentage": 54.25, "elapsed_time": "12:08:30", "remaining_time": "10:14:22"} +{"current_steps": 2235, "total_steps": 4118, "loss": 1.7418, "learning_rate": 0.0001, "epoch": 0.54273919378339, "percentage": 54.27, "elapsed_time": "12:08:50", "remaining_time": "10:14:02"} +{"current_steps": 2236, "total_steps": 4118, "loss": 1.8817, "learning_rate": 0.0001, "epoch": 0.5429820301117048, "percentage": 54.3, "elapsed_time": "12:09:09", "remaining_time": "10:13:43"} +{"current_steps": 2237, "total_steps": 4118, "loss": 1.8875, "learning_rate": 0.0001, "epoch": 0.5432248664400194, "percentage": 54.32, "elapsed_time": "12:09:29", "remaining_time": "10:13:23"} +{"current_steps": 2238, "total_steps": 4118, "loss": 1.6417, "learning_rate": 0.0001, "epoch": 0.5434677027683341, "percentage": 54.35, "elapsed_time": "12:09:48", "remaining_time": "10:13:04"} +{"current_steps": 2239, "total_steps": 4118, "loss": 1.8409, "learning_rate": 0.0001, "epoch": 0.5437105390966489, "percentage": 54.37, "elapsed_time": "12:10:08", "remaining_time": "10:12:44"} +{"current_steps": 2240, "total_steps": 4118, "loss": 1.6133, "learning_rate": 0.0001, "epoch": 0.5439533754249636, "percentage": 54.4, "elapsed_time": "12:10:27", "remaining_time": "10:12:24"} +{"current_steps": 2241, "total_steps": 4118, "loss": 1.7432, "learning_rate": 0.0001, "epoch": 0.5441962117532783, "percentage": 54.42, "elapsed_time": "12:10:47", "remaining_time": "10:12:05"} +{"current_steps": 2242, "total_steps": 4118, "loss": 1.7109, "learning_rate": 0.0001, "epoch": 0.544439048081593, "percentage": 54.44, "elapsed_time": "12:11:06", "remaining_time": "10:11:45"} +{"current_steps": 2243, "total_steps": 4118, "loss": 1.63, "learning_rate": 0.0001, "epoch": 0.5446818844099077, "percentage": 54.47, "elapsed_time": "12:11:26", "remaining_time": "10:11:26"} +{"current_steps": 2244, "total_steps": 4118, "loss": 1.849, "learning_rate": 0.0001, "epoch": 0.5449247207382224, "percentage": 54.49, "elapsed_time": "12:11:45", "remaining_time": "10:11:06"} +{"current_steps": 2245, "total_steps": 4118, "loss": 1.6105, "learning_rate": 0.0001, "epoch": 0.5451675570665372, "percentage": 54.52, "elapsed_time": "12:12:05", "remaining_time": "10:10:47"} +{"current_steps": 2246, "total_steps": 4118, "loss": 1.7307, "learning_rate": 0.0001, "epoch": 0.5454103933948519, "percentage": 54.54, "elapsed_time": "12:12:25", "remaining_time": "10:10:27"} +{"current_steps": 2247, "total_steps": 4118, "loss": 1.6827, "learning_rate": 0.0001, "epoch": 0.5456532297231665, "percentage": 54.57, "elapsed_time": "12:12:44", "remaining_time": "10:10:07"} +{"current_steps": 2248, "total_steps": 4118, "loss": 1.5555, "learning_rate": 0.0001, "epoch": 0.5458960660514813, "percentage": 54.59, "elapsed_time": "12:13:04", "remaining_time": "10:09:48"} +{"current_steps": 2249, "total_steps": 4118, "loss": 1.8795, "learning_rate": 0.0001, "epoch": 0.546138902379796, "percentage": 54.61, "elapsed_time": "12:13:23", "remaining_time": "10:09:28"} +{"current_steps": 2250, "total_steps": 4118, "loss": 1.5186, "learning_rate": 0.0001, "epoch": 0.5463817387081107, "percentage": 54.64, "elapsed_time": "12:13:43", "remaining_time": "10:09:09"} +{"current_steps": 2251, "total_steps": 4118, "loss": 1.4862, "learning_rate": 0.0001, "epoch": 0.5466245750364255, "percentage": 54.66, "elapsed_time": "12:14:02", "remaining_time": "10:08:49"} +{"current_steps": 2252, "total_steps": 4118, "loss": 1.6883, "learning_rate": 0.0001, "epoch": 0.5468674113647402, "percentage": 54.69, "elapsed_time": "12:14:22", "remaining_time": "10:08:29"} +{"current_steps": 2253, "total_steps": 4118, "loss": 1.5138, "learning_rate": 0.0001, "epoch": 0.5471102476930548, "percentage": 54.71, "elapsed_time": "12:14:41", "remaining_time": "10:08:10"} +{"current_steps": 2254, "total_steps": 4118, "loss": 1.7989, "learning_rate": 0.0001, "epoch": 0.5473530840213696, "percentage": 54.74, "elapsed_time": "12:15:01", "remaining_time": "10:07:50"} +{"current_steps": 2255, "total_steps": 4118, "loss": 1.7545, "learning_rate": 0.0001, "epoch": 0.5475959203496843, "percentage": 54.76, "elapsed_time": "12:15:21", "remaining_time": "10:07:31"} +{"current_steps": 2256, "total_steps": 4118, "loss": 1.8236, "learning_rate": 0.0001, "epoch": 0.5478387566779991, "percentage": 54.78, "elapsed_time": "12:15:40", "remaining_time": "10:07:11"} +{"current_steps": 2257, "total_steps": 4118, "loss": 1.6173, "learning_rate": 0.0001, "epoch": 0.5480815930063138, "percentage": 54.81, "elapsed_time": "12:16:00", "remaining_time": "10:06:52"} +{"current_steps": 2258, "total_steps": 4118, "loss": 1.6454, "learning_rate": 0.0001, "epoch": 0.5483244293346284, "percentage": 54.83, "elapsed_time": "12:16:19", "remaining_time": "10:06:32"} +{"current_steps": 2259, "total_steps": 4118, "loss": 1.7265, "learning_rate": 0.0001, "epoch": 0.5485672656629432, "percentage": 54.86, "elapsed_time": "12:16:39", "remaining_time": "10:06:12"} +{"current_steps": 2260, "total_steps": 4118, "loss": 1.7944, "learning_rate": 0.0001, "epoch": 0.5488101019912579, "percentage": 54.88, "elapsed_time": "12:16:58", "remaining_time": "10:05:53"} +{"current_steps": 2261, "total_steps": 4118, "loss": 1.6329, "learning_rate": 0.0001, "epoch": 0.5490529383195726, "percentage": 54.91, "elapsed_time": "12:17:18", "remaining_time": "10:05:33"} +{"current_steps": 2262, "total_steps": 4118, "loss": 1.6399, "learning_rate": 0.0001, "epoch": 0.5492957746478874, "percentage": 54.93, "elapsed_time": "12:17:37", "remaining_time": "10:05:14"} +{"current_steps": 2263, "total_steps": 4118, "loss": 1.6578, "learning_rate": 0.0001, "epoch": 0.549538610976202, "percentage": 54.95, "elapsed_time": "12:17:57", "remaining_time": "10:04:54"} +{"current_steps": 2264, "total_steps": 4118, "loss": 1.8544, "learning_rate": 0.0001, "epoch": 0.5497814473045167, "percentage": 54.98, "elapsed_time": "12:18:17", "remaining_time": "10:04:35"} +{"current_steps": 2265, "total_steps": 4118, "loss": 1.7348, "learning_rate": 0.0001, "epoch": 0.5500242836328315, "percentage": 55.0, "elapsed_time": "12:18:36", "remaining_time": "10:04:15"} +{"current_steps": 2266, "total_steps": 4118, "loss": 1.7989, "learning_rate": 0.0001, "epoch": 0.5502671199611462, "percentage": 55.03, "elapsed_time": "12:18:56", "remaining_time": "10:03:55"} +{"current_steps": 2267, "total_steps": 4118, "loss": 1.7589, "learning_rate": 0.0001, "epoch": 0.5505099562894609, "percentage": 55.05, "elapsed_time": "12:19:15", "remaining_time": "10:03:36"} +{"current_steps": 2268, "total_steps": 4118, "loss": 1.7689, "learning_rate": 0.0001, "epoch": 0.5507527926177757, "percentage": 55.08, "elapsed_time": "12:19:35", "remaining_time": "10:03:16"} +{"current_steps": 2269, "total_steps": 4118, "loss": 1.533, "learning_rate": 0.0001, "epoch": 0.5509956289460903, "percentage": 55.1, "elapsed_time": "12:19:54", "remaining_time": "10:02:57"} +{"current_steps": 2270, "total_steps": 4118, "loss": 1.7269, "learning_rate": 0.0001, "epoch": 0.551238465274405, "percentage": 55.12, "elapsed_time": "12:20:14", "remaining_time": "10:02:37"} +{"current_steps": 2271, "total_steps": 4118, "loss": 1.7654, "learning_rate": 0.0001, "epoch": 0.5514813016027198, "percentage": 55.15, "elapsed_time": "12:20:33", "remaining_time": "10:02:17"} +{"current_steps": 2272, "total_steps": 4118, "loss": 1.6063, "learning_rate": 0.0001, "epoch": 0.5517241379310345, "percentage": 55.17, "elapsed_time": "12:20:53", "remaining_time": "10:01:58"} +{"current_steps": 2273, "total_steps": 4118, "loss": 1.7648, "learning_rate": 0.0001, "epoch": 0.5519669742593492, "percentage": 55.2, "elapsed_time": "12:21:12", "remaining_time": "10:01:38"} +{"current_steps": 2274, "total_steps": 4118, "loss": 1.6738, "learning_rate": 0.0001, "epoch": 0.5522098105876639, "percentage": 55.22, "elapsed_time": "12:21:32", "remaining_time": "10:01:19"} +{"current_steps": 2275, "total_steps": 4118, "loss": 1.7205, "learning_rate": 0.0001, "epoch": 0.5524526469159786, "percentage": 55.25, "elapsed_time": "12:21:52", "remaining_time": "10:00:59"} +{"current_steps": 2276, "total_steps": 4118, "loss": 1.6669, "learning_rate": 0.0001, "epoch": 0.5526954832442933, "percentage": 55.27, "elapsed_time": "12:22:11", "remaining_time": "10:00:40"} +{"current_steps": 2277, "total_steps": 4118, "loss": 1.7265, "learning_rate": 0.0001, "epoch": 0.5529383195726081, "percentage": 55.29, "elapsed_time": "12:22:31", "remaining_time": "10:00:20"} +{"current_steps": 2278, "total_steps": 4118, "loss": 1.8464, "learning_rate": 0.0001, "epoch": 0.5531811559009228, "percentage": 55.32, "elapsed_time": "12:22:50", "remaining_time": "10:00:00"} +{"current_steps": 2279, "total_steps": 4118, "loss": 1.7909, "learning_rate": 0.0001, "epoch": 0.5534239922292375, "percentage": 55.34, "elapsed_time": "12:23:10", "remaining_time": "9:59:41"} +{"current_steps": 2280, "total_steps": 4118, "loss": 1.8017, "learning_rate": 0.0001, "epoch": 0.5536668285575522, "percentage": 55.37, "elapsed_time": "12:23:29", "remaining_time": "9:59:21"} +{"current_steps": 2281, "total_steps": 4118, "loss": 1.7704, "learning_rate": 0.0001, "epoch": 0.5539096648858669, "percentage": 55.39, "elapsed_time": "12:23:49", "remaining_time": "9:59:02"} +{"current_steps": 2282, "total_steps": 4118, "loss": 1.6169, "learning_rate": 0.0001, "epoch": 0.5541525012141817, "percentage": 55.42, "elapsed_time": "12:24:08", "remaining_time": "9:58:42"} +{"current_steps": 2283, "total_steps": 4118, "loss": 1.6261, "learning_rate": 0.0001, "epoch": 0.5543953375424964, "percentage": 55.44, "elapsed_time": "12:24:28", "remaining_time": "9:58:22"} +{"current_steps": 2284, "total_steps": 4118, "loss": 1.7858, "learning_rate": 0.0001, "epoch": 0.554638173870811, "percentage": 55.46, "elapsed_time": "12:24:47", "remaining_time": "9:58:03"} +{"current_steps": 2285, "total_steps": 4118, "loss": 1.7946, "learning_rate": 0.0001, "epoch": 0.5548810101991258, "percentage": 55.49, "elapsed_time": "12:25:07", "remaining_time": "9:57:43"} +{"current_steps": 2286, "total_steps": 4118, "loss": 1.7534, "learning_rate": 0.0001, "epoch": 0.5551238465274405, "percentage": 55.51, "elapsed_time": "12:25:27", "remaining_time": "9:57:24"} +{"current_steps": 2287, "total_steps": 4118, "loss": 1.7831, "learning_rate": 0.0001, "epoch": 0.5553666828557552, "percentage": 55.54, "elapsed_time": "12:25:46", "remaining_time": "9:57:04"} +{"current_steps": 2288, "total_steps": 4118, "loss": 1.8227, "learning_rate": 0.0001, "epoch": 0.55560951918407, "percentage": 55.56, "elapsed_time": "12:26:06", "remaining_time": "9:56:45"} +{"current_steps": 2289, "total_steps": 4118, "loss": 1.6859, "learning_rate": 0.0001, "epoch": 0.5558523555123847, "percentage": 55.59, "elapsed_time": "12:26:25", "remaining_time": "9:56:25"} +{"current_steps": 2290, "total_steps": 4118, "loss": 1.7324, "learning_rate": 0.0001, "epoch": 0.5560951918406993, "percentage": 55.61, "elapsed_time": "12:26:45", "remaining_time": "9:56:06"} +{"current_steps": 2291, "total_steps": 4118, "loss": 1.8266, "learning_rate": 0.0001, "epoch": 0.5563380281690141, "percentage": 55.63, "elapsed_time": "12:27:04", "remaining_time": "9:55:46"} +{"current_steps": 2292, "total_steps": 4118, "loss": 1.7979, "learning_rate": 0.0001, "epoch": 0.5565808644973288, "percentage": 55.66, "elapsed_time": "12:27:24", "remaining_time": "9:55:26"} +{"current_steps": 2293, "total_steps": 4118, "loss": 1.7008, "learning_rate": 0.0001, "epoch": 0.5568237008256435, "percentage": 55.68, "elapsed_time": "12:27:44", "remaining_time": "9:55:07"} +{"current_steps": 2294, "total_steps": 4118, "loss": 1.8149, "learning_rate": 0.0001, "epoch": 0.5570665371539583, "percentage": 55.71, "elapsed_time": "12:28:03", "remaining_time": "9:54:47"} +{"current_steps": 2295, "total_steps": 4118, "loss": 1.729, "learning_rate": 0.0001, "epoch": 0.5573093734822729, "percentage": 55.73, "elapsed_time": "12:28:23", "remaining_time": "9:54:28"} +{"current_steps": 2296, "total_steps": 4118, "loss": 1.6504, "learning_rate": 0.0001, "epoch": 0.5575522098105876, "percentage": 55.76, "elapsed_time": "12:28:42", "remaining_time": "9:54:08"} +{"current_steps": 2297, "total_steps": 4118, "loss": 1.8222, "learning_rate": 0.0001, "epoch": 0.5577950461389024, "percentage": 55.78, "elapsed_time": "12:29:02", "remaining_time": "9:53:49"} +{"current_steps": 2298, "total_steps": 4118, "loss": 1.6657, "learning_rate": 0.0001, "epoch": 0.5580378824672171, "percentage": 55.8, "elapsed_time": "12:29:21", "remaining_time": "9:53:29"} +{"current_steps": 2299, "total_steps": 4118, "loss": 1.9264, "learning_rate": 0.0001, "epoch": 0.5582807187955318, "percentage": 55.83, "elapsed_time": "12:29:41", "remaining_time": "9:53:09"} +{"current_steps": 2300, "total_steps": 4118, "loss": 1.8343, "learning_rate": 0.0001, "epoch": 0.5585235551238465, "percentage": 55.85, "elapsed_time": "12:30:00", "remaining_time": "9:52:50"} +{"current_steps": 2301, "total_steps": 4118, "loss": 1.7337, "learning_rate": 0.0001, "epoch": 0.5587663914521612, "percentage": 55.88, "elapsed_time": "12:30:20", "remaining_time": "9:52:30"} +{"current_steps": 2302, "total_steps": 4118, "loss": 1.743, "learning_rate": 0.0001, "epoch": 0.559009227780476, "percentage": 55.9, "elapsed_time": "12:30:40", "remaining_time": "9:52:11"} +{"current_steps": 2303, "total_steps": 4118, "loss": 1.731, "learning_rate": 0.0001, "epoch": 0.5592520641087907, "percentage": 55.93, "elapsed_time": "12:30:59", "remaining_time": "9:51:51"} +{"current_steps": 2304, "total_steps": 4118, "loss": 1.7801, "learning_rate": 0.0001, "epoch": 0.5594949004371054, "percentage": 55.95, "elapsed_time": "12:31:19", "remaining_time": "9:51:32"} +{"current_steps": 2305, "total_steps": 4118, "loss": 1.7146, "learning_rate": 0.0001, "epoch": 0.5597377367654202, "percentage": 55.97, "elapsed_time": "12:31:38", "remaining_time": "9:51:12"} +{"current_steps": 2306, "total_steps": 4118, "loss": 1.6984, "learning_rate": 0.0001, "epoch": 0.5599805730937348, "percentage": 56.0, "elapsed_time": "12:31:58", "remaining_time": "9:50:52"} +{"current_steps": 2307, "total_steps": 4118, "loss": 1.7677, "learning_rate": 0.0001, "epoch": 0.5602234094220495, "percentage": 56.02, "elapsed_time": "12:32:17", "remaining_time": "9:50:33"} +{"current_steps": 2308, "total_steps": 4118, "loss": 1.6873, "learning_rate": 0.0001, "epoch": 0.5604662457503643, "percentage": 56.05, "elapsed_time": "12:32:37", "remaining_time": "9:50:13"} +{"current_steps": 2309, "total_steps": 4118, "loss": 1.4814, "learning_rate": 0.0001, "epoch": 0.560709082078679, "percentage": 56.07, "elapsed_time": "12:32:57", "remaining_time": "9:49:54"} +{"current_steps": 2310, "total_steps": 4118, "loss": 1.7439, "learning_rate": 0.0001, "epoch": 0.5609519184069937, "percentage": 56.1, "elapsed_time": "12:33:16", "remaining_time": "9:49:34"} +{"current_steps": 2311, "total_steps": 4118, "loss": 1.6413, "learning_rate": 0.0001, "epoch": 0.5611947547353084, "percentage": 56.12, "elapsed_time": "12:33:36", "remaining_time": "9:49:15"} +{"current_steps": 2312, "total_steps": 4118, "loss": 1.7521, "learning_rate": 0.0001, "epoch": 0.5614375910636231, "percentage": 56.14, "elapsed_time": "12:33:55", "remaining_time": "9:48:55"} +{"current_steps": 2313, "total_steps": 4118, "loss": 1.772, "learning_rate": 0.0001, "epoch": 0.5616804273919378, "percentage": 56.17, "elapsed_time": "12:34:15", "remaining_time": "9:48:35"} +{"current_steps": 2314, "total_steps": 4118, "loss": 1.6474, "learning_rate": 0.0001, "epoch": 0.5619232637202526, "percentage": 56.19, "elapsed_time": "12:34:34", "remaining_time": "9:48:16"} +{"current_steps": 2315, "total_steps": 4118, "loss": 1.7656, "learning_rate": 0.0001, "epoch": 0.5621661000485673, "percentage": 56.22, "elapsed_time": "12:34:54", "remaining_time": "9:47:56"} +{"current_steps": 2316, "total_steps": 4118, "loss": 1.9436, "learning_rate": 0.0001, "epoch": 0.5624089363768819, "percentage": 56.24, "elapsed_time": "12:35:13", "remaining_time": "9:47:37"} +{"current_steps": 2317, "total_steps": 4118, "loss": 1.8797, "learning_rate": 0.0001, "epoch": 0.5626517727051967, "percentage": 56.27, "elapsed_time": "12:35:33", "remaining_time": "9:47:17"} +{"current_steps": 2318, "total_steps": 4118, "loss": 1.6235, "learning_rate": 0.0001, "epoch": 0.5628946090335114, "percentage": 56.29, "elapsed_time": "12:35:53", "remaining_time": "9:46:58"} +{"current_steps": 2319, "total_steps": 4118, "loss": 1.782, "learning_rate": 0.0001, "epoch": 0.5631374453618261, "percentage": 56.31, "elapsed_time": "12:36:12", "remaining_time": "9:46:38"} +{"current_steps": 2320, "total_steps": 4118, "loss": 1.5866, "learning_rate": 0.0001, "epoch": 0.5633802816901409, "percentage": 56.34, "elapsed_time": "12:36:32", "remaining_time": "9:46:18"} +{"current_steps": 2321, "total_steps": 4118, "loss": 1.7379, "learning_rate": 0.0001, "epoch": 0.5636231180184555, "percentage": 56.36, "elapsed_time": "12:36:51", "remaining_time": "9:45:59"} +{"current_steps": 2322, "total_steps": 4118, "loss": 1.5871, "learning_rate": 0.0001, "epoch": 0.5638659543467702, "percentage": 56.39, "elapsed_time": "12:37:11", "remaining_time": "9:45:39"} +{"current_steps": 2323, "total_steps": 4118, "loss": 1.7865, "learning_rate": 0.0001, "epoch": 0.564108790675085, "percentage": 56.41, "elapsed_time": "12:37:30", "remaining_time": "9:45:20"} +{"current_steps": 2324, "total_steps": 4118, "loss": 1.7973, "learning_rate": 0.0001, "epoch": 0.5643516270033997, "percentage": 56.44, "elapsed_time": "12:37:50", "remaining_time": "9:45:00"} +{"current_steps": 2325, "total_steps": 4118, "loss": 1.7634, "learning_rate": 0.0001, "epoch": 0.5645944633317144, "percentage": 56.46, "elapsed_time": "12:38:09", "remaining_time": "9:44:41"} +{"current_steps": 2326, "total_steps": 4118, "loss": 1.8117, "learning_rate": 0.0001, "epoch": 0.5648372996600292, "percentage": 56.48, "elapsed_time": "12:38:29", "remaining_time": "9:44:21"} +{"current_steps": 2327, "total_steps": 4118, "loss": 1.6803, "learning_rate": 0.0001, "epoch": 0.5650801359883438, "percentage": 56.51, "elapsed_time": "12:38:49", "remaining_time": "9:44:01"} +{"current_steps": 2328, "total_steps": 4118, "loss": 1.8422, "learning_rate": 0.0001, "epoch": 0.5653229723166586, "percentage": 56.53, "elapsed_time": "12:39:08", "remaining_time": "9:43:42"} +{"current_steps": 2329, "total_steps": 4118, "loss": 1.6783, "learning_rate": 0.0001, "epoch": 0.5655658086449733, "percentage": 56.56, "elapsed_time": "12:39:28", "remaining_time": "9:43:22"} +{"current_steps": 2330, "total_steps": 4118, "loss": 1.5066, "learning_rate": 0.0001, "epoch": 0.565808644973288, "percentage": 56.58, "elapsed_time": "12:39:47", "remaining_time": "9:43:03"} +{"current_steps": 2331, "total_steps": 4118, "loss": 1.844, "learning_rate": 0.0001, "epoch": 0.5660514813016028, "percentage": 56.61, "elapsed_time": "12:40:07", "remaining_time": "9:42:43"} +{"current_steps": 2332, "total_steps": 4118, "loss": 1.6876, "learning_rate": 0.0001, "epoch": 0.5662943176299174, "percentage": 56.63, "elapsed_time": "12:40:26", "remaining_time": "9:42:24"} +{"current_steps": 2333, "total_steps": 4118, "loss": 1.6384, "learning_rate": 0.0001, "epoch": 0.5665371539582321, "percentage": 56.65, "elapsed_time": "12:40:46", "remaining_time": "9:42:04"} +{"current_steps": 2334, "total_steps": 4118, "loss": 1.6236, "learning_rate": 0.0001, "epoch": 0.5667799902865469, "percentage": 56.68, "elapsed_time": "12:41:05", "remaining_time": "9:41:44"} +{"current_steps": 2335, "total_steps": 4118, "loss": 1.746, "learning_rate": 0.0001, "epoch": 0.5670228266148616, "percentage": 56.7, "elapsed_time": "12:41:25", "remaining_time": "9:41:25"} +{"current_steps": 2336, "total_steps": 4118, "loss": 1.7133, "learning_rate": 0.0001, "epoch": 0.5672656629431763, "percentage": 56.73, "elapsed_time": "12:41:45", "remaining_time": "9:41:05"} +{"current_steps": 2337, "total_steps": 4118, "loss": 1.7201, "learning_rate": 0.0001, "epoch": 0.567508499271491, "percentage": 56.75, "elapsed_time": "12:42:04", "remaining_time": "9:40:46"} +{"current_steps": 2338, "total_steps": 4118, "loss": 1.7501, "learning_rate": 0.0001, "epoch": 0.5677513355998057, "percentage": 56.78, "elapsed_time": "12:42:24", "remaining_time": "9:40:26"} +{"current_steps": 2339, "total_steps": 4118, "loss": 1.7436, "learning_rate": 0.0001, "epoch": 0.5679941719281204, "percentage": 56.8, "elapsed_time": "12:42:43", "remaining_time": "9:40:07"} +{"current_steps": 2340, "total_steps": 4118, "loss": 1.7623, "learning_rate": 0.0001, "epoch": 0.5682370082564352, "percentage": 56.82, "elapsed_time": "12:43:03", "remaining_time": "9:39:47"} +{"current_steps": 2341, "total_steps": 4118, "loss": 1.7754, "learning_rate": 0.0001, "epoch": 0.5684798445847499, "percentage": 56.85, "elapsed_time": "12:43:22", "remaining_time": "9:39:27"} +{"current_steps": 2342, "total_steps": 4118, "loss": 1.8693, "learning_rate": 0.0001, "epoch": 0.5687226809130645, "percentage": 56.87, "elapsed_time": "12:43:42", "remaining_time": "9:39:08"} +{"current_steps": 2343, "total_steps": 4118, "loss": 1.728, "learning_rate": 0.0001, "epoch": 0.5689655172413793, "percentage": 56.9, "elapsed_time": "12:44:02", "remaining_time": "9:38:48"} +{"current_steps": 2344, "total_steps": 4118, "loss": 1.5661, "learning_rate": 0.0001, "epoch": 0.569208353569694, "percentage": 56.92, "elapsed_time": "12:44:21", "remaining_time": "9:38:29"} +{"current_steps": 2345, "total_steps": 4118, "loss": 1.935, "learning_rate": 0.0001, "epoch": 0.5694511898980087, "percentage": 56.95, "elapsed_time": "12:44:41", "remaining_time": "9:38:09"} +{"current_steps": 2346, "total_steps": 4118, "loss": 1.5963, "learning_rate": 0.0001, "epoch": 0.5696940262263235, "percentage": 56.97, "elapsed_time": "12:45:00", "remaining_time": "9:37:50"} +{"current_steps": 2347, "total_steps": 4118, "loss": 1.7894, "learning_rate": 0.0001, "epoch": 0.5699368625546382, "percentage": 56.99, "elapsed_time": "12:45:20", "remaining_time": "9:37:30"} +{"current_steps": 2348, "total_steps": 4118, "loss": 1.7274, "learning_rate": 0.0001, "epoch": 0.5701796988829528, "percentage": 57.02, "elapsed_time": "12:45:39", "remaining_time": "9:37:10"} +{"current_steps": 2349, "total_steps": 4118, "loss": 1.7221, "learning_rate": 0.0001, "epoch": 0.5704225352112676, "percentage": 57.04, "elapsed_time": "12:45:59", "remaining_time": "9:36:51"} +{"current_steps": 2350, "total_steps": 4118, "loss": 1.7184, "learning_rate": 0.0001, "epoch": 0.5706653715395823, "percentage": 57.07, "elapsed_time": "12:46:18", "remaining_time": "9:36:31"} +{"current_steps": 2351, "total_steps": 4118, "loss": 1.6667, "learning_rate": 0.0001, "epoch": 0.5709082078678971, "percentage": 57.09, "elapsed_time": "12:46:38", "remaining_time": "9:36:12"} +{"current_steps": 2352, "total_steps": 4118, "loss": 1.6042, "learning_rate": 0.0001, "epoch": 0.5711510441962118, "percentage": 57.12, "elapsed_time": "12:46:57", "remaining_time": "9:35:52"} +{"current_steps": 2353, "total_steps": 4118, "loss": 1.7552, "learning_rate": 0.0001, "epoch": 0.5713938805245264, "percentage": 57.14, "elapsed_time": "12:47:17", "remaining_time": "9:35:33"} +{"current_steps": 2354, "total_steps": 4118, "loss": 1.6923, "learning_rate": 0.0001, "epoch": 0.5716367168528412, "percentage": 57.16, "elapsed_time": "12:47:37", "remaining_time": "9:35:13"} +{"current_steps": 2355, "total_steps": 4118, "loss": 1.6528, "learning_rate": 0.0001, "epoch": 0.5718795531811559, "percentage": 57.19, "elapsed_time": "12:47:56", "remaining_time": "9:34:53"} +{"current_steps": 2356, "total_steps": 4118, "loss": 1.6574, "learning_rate": 0.0001, "epoch": 0.5721223895094706, "percentage": 57.21, "elapsed_time": "12:48:16", "remaining_time": "9:34:34"} +{"current_steps": 2357, "total_steps": 4118, "loss": 1.8068, "learning_rate": 0.0001, "epoch": 0.5723652258377854, "percentage": 57.24, "elapsed_time": "12:48:35", "remaining_time": "9:34:14"} +{"current_steps": 2358, "total_steps": 4118, "loss": 1.7533, "learning_rate": 0.0001, "epoch": 0.5726080621661, "percentage": 57.26, "elapsed_time": "12:48:55", "remaining_time": "9:33:55"} +{"current_steps": 2359, "total_steps": 4118, "loss": 1.7634, "learning_rate": 0.0001, "epoch": 0.5728508984944147, "percentage": 57.29, "elapsed_time": "12:49:14", "remaining_time": "9:33:35"} +{"current_steps": 2360, "total_steps": 4118, "loss": 1.6588, "learning_rate": 0.0001, "epoch": 0.5730937348227295, "percentage": 57.31, "elapsed_time": "12:49:34", "remaining_time": "9:33:15"} +{"current_steps": 2361, "total_steps": 4118, "loss": 1.6151, "learning_rate": 0.0001, "epoch": 0.5733365711510442, "percentage": 57.33, "elapsed_time": "12:49:53", "remaining_time": "9:32:56"} +{"current_steps": 2362, "total_steps": 4118, "loss": 1.7077, "learning_rate": 0.0001, "epoch": 0.5735794074793589, "percentage": 57.36, "elapsed_time": "12:50:13", "remaining_time": "9:32:36"} +{"current_steps": 2363, "total_steps": 4118, "loss": 1.7373, "learning_rate": 0.0001, "epoch": 0.5738222438076737, "percentage": 57.38, "elapsed_time": "12:50:33", "remaining_time": "9:32:17"} +{"current_steps": 2364, "total_steps": 4118, "loss": 1.6969, "learning_rate": 0.0001, "epoch": 0.5740650801359883, "percentage": 57.41, "elapsed_time": "12:50:52", "remaining_time": "9:31:57"} +{"current_steps": 2365, "total_steps": 4118, "loss": 1.7601, "learning_rate": 0.0001, "epoch": 0.574307916464303, "percentage": 57.43, "elapsed_time": "12:51:12", "remaining_time": "9:31:38"} +{"current_steps": 2366, "total_steps": 4118, "loss": 1.7324, "learning_rate": 0.0001, "epoch": 0.5745507527926178, "percentage": 57.46, "elapsed_time": "12:51:31", "remaining_time": "9:31:18"} +{"current_steps": 2367, "total_steps": 4118, "loss": 1.7839, "learning_rate": 0.0001, "epoch": 0.5747935891209325, "percentage": 57.48, "elapsed_time": "12:51:51", "remaining_time": "9:30:58"} +{"current_steps": 2368, "total_steps": 4118, "loss": 1.6839, "learning_rate": 0.0001, "epoch": 0.5750364254492472, "percentage": 57.5, "elapsed_time": "12:52:10", "remaining_time": "9:30:39"} +{"current_steps": 2369, "total_steps": 4118, "loss": 1.7092, "learning_rate": 0.0001, "epoch": 0.575279261777562, "percentage": 57.53, "elapsed_time": "12:52:30", "remaining_time": "9:30:19"} +{"current_steps": 2370, "total_steps": 4118, "loss": 1.845, "learning_rate": 0.0001, "epoch": 0.5755220981058766, "percentage": 57.55, "elapsed_time": "12:52:49", "remaining_time": "9:30:00"} +{"current_steps": 2371, "total_steps": 4118, "loss": 1.6876, "learning_rate": 0.0001, "epoch": 0.5757649344341913, "percentage": 57.58, "elapsed_time": "12:53:09", "remaining_time": "9:29:40"} +{"current_steps": 2372, "total_steps": 4118, "loss": 1.7879, "learning_rate": 0.0001, "epoch": 0.5760077707625061, "percentage": 57.6, "elapsed_time": "12:53:28", "remaining_time": "9:29:21"} +{"current_steps": 2373, "total_steps": 4118, "loss": 1.7602, "learning_rate": 0.0001, "epoch": 0.5762506070908208, "percentage": 57.63, "elapsed_time": "12:53:48", "remaining_time": "9:29:01"} +{"current_steps": 2374, "total_steps": 4118, "loss": 1.8354, "learning_rate": 0.0001, "epoch": 0.5764934434191356, "percentage": 57.65, "elapsed_time": "12:54:08", "remaining_time": "9:28:41"} +{"current_steps": 2375, "total_steps": 4118, "loss": 1.6206, "learning_rate": 0.0001, "epoch": 0.5767362797474502, "percentage": 57.67, "elapsed_time": "12:54:27", "remaining_time": "9:28:22"} +{"current_steps": 2376, "total_steps": 4118, "loss": 1.8859, "learning_rate": 0.0001, "epoch": 0.5769791160757649, "percentage": 57.7, "elapsed_time": "12:54:47", "remaining_time": "9:28:02"} +{"current_steps": 2377, "total_steps": 4118, "loss": 1.7462, "learning_rate": 0.0001, "epoch": 0.5772219524040797, "percentage": 57.72, "elapsed_time": "12:55:06", "remaining_time": "9:27:43"} +{"current_steps": 2378, "total_steps": 4118, "loss": 1.7953, "learning_rate": 0.0001, "epoch": 0.5774647887323944, "percentage": 57.75, "elapsed_time": "12:55:26", "remaining_time": "9:27:23"} +{"current_steps": 2379, "total_steps": 4118, "loss": 1.6441, "learning_rate": 0.0001, "epoch": 0.577707625060709, "percentage": 57.77, "elapsed_time": "12:55:45", "remaining_time": "9:27:04"} +{"current_steps": 2380, "total_steps": 4118, "loss": 1.6298, "learning_rate": 0.0001, "epoch": 0.5779504613890238, "percentage": 57.8, "elapsed_time": "12:56:05", "remaining_time": "9:26:44"} +{"current_steps": 2381, "total_steps": 4118, "loss": 1.4524, "learning_rate": 0.0001, "epoch": 0.5781932977173385, "percentage": 57.82, "elapsed_time": "12:56:25", "remaining_time": "9:26:25"} +{"current_steps": 2382, "total_steps": 4118, "loss": 1.8397, "learning_rate": 0.0001, "epoch": 0.5784361340456532, "percentage": 57.84, "elapsed_time": "12:56:44", "remaining_time": "9:26:05"} +{"current_steps": 2383, "total_steps": 4118, "loss": 1.7121, "learning_rate": 0.0001, "epoch": 0.578678970373968, "percentage": 57.87, "elapsed_time": "12:57:04", "remaining_time": "9:25:46"} +{"current_steps": 2384, "total_steps": 4118, "loss": 1.7422, "learning_rate": 0.0001, "epoch": 0.5789218067022827, "percentage": 57.89, "elapsed_time": "12:57:24", "remaining_time": "9:25:26"} +{"current_steps": 2385, "total_steps": 4118, "loss": 1.6469, "learning_rate": 0.0001, "epoch": 0.5791646430305973, "percentage": 57.92, "elapsed_time": "12:57:43", "remaining_time": "9:25:06"} +{"current_steps": 2386, "total_steps": 4118, "loss": 1.727, "learning_rate": 0.0001, "epoch": 0.5794074793589121, "percentage": 57.94, "elapsed_time": "12:58:03", "remaining_time": "9:24:47"} +{"current_steps": 2387, "total_steps": 4118, "loss": 1.7558, "learning_rate": 0.0001, "epoch": 0.5796503156872268, "percentage": 57.97, "elapsed_time": "12:58:22", "remaining_time": "9:24:27"} +{"current_steps": 2388, "total_steps": 4118, "loss": 1.7193, "learning_rate": 0.0001, "epoch": 0.5798931520155415, "percentage": 57.99, "elapsed_time": "12:58:42", "remaining_time": "9:24:08"} +{"current_steps": 2389, "total_steps": 4118, "loss": 1.7997, "learning_rate": 0.0001, "epoch": 0.5801359883438563, "percentage": 58.01, "elapsed_time": "12:59:01", "remaining_time": "9:23:48"} +{"current_steps": 2390, "total_steps": 4118, "loss": 1.6309, "learning_rate": 0.0001, "epoch": 0.580378824672171, "percentage": 58.04, "elapsed_time": "12:59:21", "remaining_time": "9:23:29"} +{"current_steps": 2391, "total_steps": 4118, "loss": 1.7135, "learning_rate": 0.0001, "epoch": 0.5806216610004856, "percentage": 58.06, "elapsed_time": "12:59:40", "remaining_time": "9:23:09"} +{"current_steps": 2392, "total_steps": 4118, "loss": 1.6715, "learning_rate": 0.0001, "epoch": 0.5808644973288004, "percentage": 58.09, "elapsed_time": "13:00:00", "remaining_time": "9:22:49"} +{"current_steps": 2393, "total_steps": 4118, "loss": 1.6143, "learning_rate": 0.0001, "epoch": 0.5811073336571151, "percentage": 58.11, "elapsed_time": "13:00:20", "remaining_time": "9:22:30"} +{"current_steps": 2394, "total_steps": 4118, "loss": 1.8453, "learning_rate": 0.0001, "epoch": 0.5813501699854298, "percentage": 58.14, "elapsed_time": "13:00:39", "remaining_time": "9:22:10"} +{"current_steps": 2395, "total_steps": 4118, "loss": 1.7878, "learning_rate": 0.0001, "epoch": 0.5815930063137446, "percentage": 58.16, "elapsed_time": "13:00:59", "remaining_time": "9:21:51"} +{"current_steps": 2396, "total_steps": 4118, "loss": 1.6801, "learning_rate": 0.0001, "epoch": 0.5818358426420592, "percentage": 58.18, "elapsed_time": "13:01:18", "remaining_time": "9:21:31"} +{"current_steps": 2397, "total_steps": 4118, "loss": 1.7075, "learning_rate": 0.0001, "epoch": 0.582078678970374, "percentage": 58.21, "elapsed_time": "13:01:38", "remaining_time": "9:21:12"} +{"current_steps": 2398, "total_steps": 4118, "loss": 1.701, "learning_rate": 0.0001, "epoch": 0.5823215152986887, "percentage": 58.23, "elapsed_time": "13:01:57", "remaining_time": "9:20:52"} +{"current_steps": 2399, "total_steps": 4118, "loss": 1.7647, "learning_rate": 0.0001, "epoch": 0.5825643516270034, "percentage": 58.26, "elapsed_time": "13:02:17", "remaining_time": "9:20:32"} +{"current_steps": 2400, "total_steps": 4118, "loss": 1.72, "learning_rate": 0.0001, "epoch": 0.5828071879553182, "percentage": 58.28, "elapsed_time": "13:02:36", "remaining_time": "9:20:13"} +{"current_steps": 2401, "total_steps": 4118, "loss": 1.535, "learning_rate": 0.0001, "epoch": 0.5830500242836328, "percentage": 58.31, "elapsed_time": "13:02:56", "remaining_time": "9:19:53"} +{"current_steps": 2402, "total_steps": 4118, "loss": 1.7711, "learning_rate": 0.0001, "epoch": 0.5832928606119475, "percentage": 58.33, "elapsed_time": "13:03:16", "remaining_time": "9:19:34"} +{"current_steps": 2403, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.5835356969402623, "percentage": 58.35, "elapsed_time": "13:03:35", "remaining_time": "9:19:14"} +{"current_steps": 2404, "total_steps": 4118, "loss": 1.6464, "learning_rate": 0.0001, "epoch": 0.583778533268577, "percentage": 58.38, "elapsed_time": "13:03:55", "remaining_time": "9:18:55"} +{"current_steps": 2405, "total_steps": 4118, "loss": 1.9778, "learning_rate": 0.0001, "epoch": 0.5840213695968917, "percentage": 58.4, "elapsed_time": "13:04:14", "remaining_time": "9:18:35"} +{"current_steps": 2406, "total_steps": 4118, "loss": 1.6748, "learning_rate": 0.0001, "epoch": 0.5842642059252064, "percentage": 58.43, "elapsed_time": "13:04:34", "remaining_time": "9:18:15"} +{"current_steps": 2407, "total_steps": 4118, "loss": 1.6799, "learning_rate": 0.0001, "epoch": 0.5845070422535211, "percentage": 58.45, "elapsed_time": "13:04:53", "remaining_time": "9:17:56"} +{"current_steps": 2408, "total_steps": 4118, "loss": 1.5963, "learning_rate": 0.0001, "epoch": 0.5847498785818358, "percentage": 58.47, "elapsed_time": "13:05:13", "remaining_time": "9:17:36"} +{"current_steps": 2409, "total_steps": 4118, "loss": 1.6614, "learning_rate": 0.0001, "epoch": 0.5849927149101506, "percentage": 58.5, "elapsed_time": "13:05:32", "remaining_time": "9:17:17"} +{"current_steps": 2410, "total_steps": 4118, "loss": 1.6783, "learning_rate": 0.0001, "epoch": 0.5852355512384653, "percentage": 58.52, "elapsed_time": "13:05:52", "remaining_time": "9:16:57"} +{"current_steps": 2411, "total_steps": 4118, "loss": 1.7227, "learning_rate": 0.0001, "epoch": 0.58547838756678, "percentage": 58.55, "elapsed_time": "13:06:12", "remaining_time": "9:16:38"} +{"current_steps": 2412, "total_steps": 4118, "loss": 1.6505, "learning_rate": 0.0001, "epoch": 0.5857212238950947, "percentage": 58.57, "elapsed_time": "13:06:31", "remaining_time": "9:16:18"} +{"current_steps": 2413, "total_steps": 4118, "loss": 1.7429, "learning_rate": 0.0001, "epoch": 0.5859640602234094, "percentage": 58.6, "elapsed_time": "13:06:51", "remaining_time": "9:15:58"} +{"current_steps": 2414, "total_steps": 4118, "loss": 1.718, "learning_rate": 0.0001, "epoch": 0.5862068965517241, "percentage": 58.62, "elapsed_time": "13:07:10", "remaining_time": "9:15:39"} +{"current_steps": 2415, "total_steps": 4118, "loss": 1.6093, "learning_rate": 0.0001, "epoch": 0.5864497328800389, "percentage": 58.64, "elapsed_time": "13:07:30", "remaining_time": "9:15:19"} +{"current_steps": 2416, "total_steps": 4118, "loss": 1.628, "learning_rate": 0.0001, "epoch": 0.5866925692083536, "percentage": 58.67, "elapsed_time": "13:07:49", "remaining_time": "9:15:00"} +{"current_steps": 2417, "total_steps": 4118, "loss": 1.8531, "learning_rate": 0.0001, "epoch": 0.5869354055366682, "percentage": 58.69, "elapsed_time": "13:08:09", "remaining_time": "9:14:40"} +{"current_steps": 2418, "total_steps": 4118, "loss": 1.8302, "learning_rate": 0.0001, "epoch": 0.587178241864983, "percentage": 58.72, "elapsed_time": "13:08:28", "remaining_time": "9:14:20"} +{"current_steps": 2419, "total_steps": 4118, "loss": 1.7584, "learning_rate": 0.0001, "epoch": 0.5874210781932977, "percentage": 58.74, "elapsed_time": "13:08:48", "remaining_time": "9:14:01"} +{"current_steps": 2420, "total_steps": 4118, "loss": 1.5638, "learning_rate": 0.0001, "epoch": 0.5876639145216125, "percentage": 58.77, "elapsed_time": "13:09:07", "remaining_time": "9:13:41"} +{"current_steps": 2421, "total_steps": 4118, "loss": 1.6546, "learning_rate": 0.0001, "epoch": 0.5879067508499272, "percentage": 58.79, "elapsed_time": "13:09:27", "remaining_time": "9:13:22"} +{"current_steps": 2422, "total_steps": 4118, "loss": 1.6042, "learning_rate": 0.0001, "epoch": 0.5881495871782418, "percentage": 58.81, "elapsed_time": "13:09:47", "remaining_time": "9:13:02"} +{"current_steps": 2423, "total_steps": 4118, "loss": 1.6796, "learning_rate": 0.0001, "epoch": 0.5883924235065566, "percentage": 58.84, "elapsed_time": "13:10:06", "remaining_time": "9:12:43"} +{"current_steps": 2424, "total_steps": 4118, "loss": 1.6311, "learning_rate": 0.0001, "epoch": 0.5886352598348713, "percentage": 58.86, "elapsed_time": "13:10:26", "remaining_time": "9:12:23"} +{"current_steps": 2425, "total_steps": 4118, "loss": 1.6425, "learning_rate": 0.0001, "epoch": 0.588878096163186, "percentage": 58.89, "elapsed_time": "13:10:45", "remaining_time": "9:12:03"} +{"current_steps": 2426, "total_steps": 4118, "loss": 1.7506, "learning_rate": 0.0001, "epoch": 0.5891209324915008, "percentage": 58.91, "elapsed_time": "13:11:05", "remaining_time": "9:11:44"} +{"current_steps": 2427, "total_steps": 4118, "loss": 1.7998, "learning_rate": 0.0001, "epoch": 0.5893637688198154, "percentage": 58.94, "elapsed_time": "13:11:24", "remaining_time": "9:11:24"} +{"current_steps": 2428, "total_steps": 4118, "loss": 1.7444, "learning_rate": 0.0001, "epoch": 0.5896066051481301, "percentage": 58.96, "elapsed_time": "13:11:44", "remaining_time": "9:11:05"} +{"current_steps": 2429, "total_steps": 4118, "loss": 1.7615, "learning_rate": 0.0001, "epoch": 0.5898494414764449, "percentage": 58.98, "elapsed_time": "13:12:03", "remaining_time": "9:10:45"} +{"current_steps": 2430, "total_steps": 4118, "loss": 1.7267, "learning_rate": 0.0001, "epoch": 0.5900922778047596, "percentage": 59.01, "elapsed_time": "13:12:23", "remaining_time": "9:10:26"} +{"current_steps": 2431, "total_steps": 4118, "loss": 1.5541, "learning_rate": 0.0001, "epoch": 0.5903351141330743, "percentage": 59.03, "elapsed_time": "13:12:43", "remaining_time": "9:10:06"} +{"current_steps": 2432, "total_steps": 4118, "loss": 1.8933, "learning_rate": 0.0001, "epoch": 0.5905779504613891, "percentage": 59.06, "elapsed_time": "13:13:02", "remaining_time": "9:09:46"} +{"current_steps": 2433, "total_steps": 4118, "loss": 1.7799, "learning_rate": 0.0001, "epoch": 0.5908207867897037, "percentage": 59.08, "elapsed_time": "13:13:22", "remaining_time": "9:09:27"} +{"current_steps": 2434, "total_steps": 4118, "loss": 1.6437, "learning_rate": 0.0001, "epoch": 0.5910636231180184, "percentage": 59.11, "elapsed_time": "13:13:41", "remaining_time": "9:09:07"} +{"current_steps": 2435, "total_steps": 4118, "loss": 1.6825, "learning_rate": 0.0001, "epoch": 0.5913064594463332, "percentage": 59.13, "elapsed_time": "13:14:01", "remaining_time": "9:08:48"} +{"current_steps": 2436, "total_steps": 4118, "loss": 1.7585, "learning_rate": 0.0001, "epoch": 0.5915492957746479, "percentage": 59.15, "elapsed_time": "13:14:20", "remaining_time": "9:08:28"} +{"current_steps": 2437, "total_steps": 4118, "loss": 1.8517, "learning_rate": 0.0001, "epoch": 0.5917921321029626, "percentage": 59.18, "elapsed_time": "13:14:40", "remaining_time": "9:08:09"} +{"current_steps": 2438, "total_steps": 4118, "loss": 1.7078, "learning_rate": 0.0001, "epoch": 0.5920349684312773, "percentage": 59.2, "elapsed_time": "13:14:59", "remaining_time": "9:07:49"} +{"current_steps": 2439, "total_steps": 4118, "loss": 1.7455, "learning_rate": 0.0001, "epoch": 0.592277804759592, "percentage": 59.23, "elapsed_time": "13:15:19", "remaining_time": "9:07:29"} +{"current_steps": 2440, "total_steps": 4118, "loss": 1.8297, "learning_rate": 0.0001, "epoch": 0.5925206410879067, "percentage": 59.25, "elapsed_time": "13:15:39", "remaining_time": "9:07:10"} +{"current_steps": 2441, "total_steps": 4118, "loss": 1.7428, "learning_rate": 0.0001, "epoch": 0.5927634774162215, "percentage": 59.28, "elapsed_time": "13:15:58", "remaining_time": "9:06:50"} +{"current_steps": 2442, "total_steps": 4118, "loss": 1.6983, "learning_rate": 0.0001, "epoch": 0.5930063137445362, "percentage": 59.3, "elapsed_time": "13:16:18", "remaining_time": "9:06:31"} +{"current_steps": 2443, "total_steps": 4118, "loss": 1.7456, "learning_rate": 0.0001, "epoch": 0.593249150072851, "percentage": 59.32, "elapsed_time": "13:16:37", "remaining_time": "9:06:11"} +{"current_steps": 2444, "total_steps": 4118, "loss": 1.7105, "learning_rate": 0.0001, "epoch": 0.5934919864011656, "percentage": 59.35, "elapsed_time": "13:16:57", "remaining_time": "9:05:52"} +{"current_steps": 2445, "total_steps": 4118, "loss": 1.6796, "learning_rate": 0.0001, "epoch": 0.5937348227294803, "percentage": 59.37, "elapsed_time": "13:17:16", "remaining_time": "9:05:32"} +{"current_steps": 2446, "total_steps": 4118, "loss": 1.701, "learning_rate": 0.0001, "epoch": 0.5939776590577951, "percentage": 59.4, "elapsed_time": "13:17:36", "remaining_time": "9:05:12"} +{"current_steps": 2447, "total_steps": 4118, "loss": 1.7882, "learning_rate": 0.0001, "epoch": 0.5942204953861098, "percentage": 59.42, "elapsed_time": "13:17:55", "remaining_time": "9:04:53"} +{"current_steps": 2448, "total_steps": 4118, "loss": 1.7656, "learning_rate": 0.0001, "epoch": 0.5944633317144244, "percentage": 59.45, "elapsed_time": "13:18:15", "remaining_time": "9:04:33"} +{"current_steps": 2449, "total_steps": 4118, "loss": 1.6402, "learning_rate": 0.0001, "epoch": 0.5947061680427392, "percentage": 59.47, "elapsed_time": "13:18:34", "remaining_time": "9:04:14"} +{"current_steps": 2450, "total_steps": 4118, "loss": 1.8408, "learning_rate": 0.0001, "epoch": 0.5949490043710539, "percentage": 59.49, "elapsed_time": "13:18:54", "remaining_time": "9:03:54"} +{"current_steps": 2451, "total_steps": 4118, "loss": 1.7701, "learning_rate": 0.0001, "epoch": 0.5951918406993686, "percentage": 59.52, "elapsed_time": "13:19:14", "remaining_time": "9:03:35"} +{"current_steps": 2452, "total_steps": 4118, "loss": 1.8588, "learning_rate": 0.0001, "epoch": 0.5954346770276834, "percentage": 59.54, "elapsed_time": "13:19:33", "remaining_time": "9:03:15"} +{"current_steps": 2453, "total_steps": 4118, "loss": 1.74, "learning_rate": 0.0001, "epoch": 0.5956775133559981, "percentage": 59.57, "elapsed_time": "13:19:53", "remaining_time": "9:02:55"} +{"current_steps": 2454, "total_steps": 4118, "loss": 1.7731, "learning_rate": 0.0001, "epoch": 0.5959203496843127, "percentage": 59.59, "elapsed_time": "13:20:12", "remaining_time": "9:02:36"} +{"current_steps": 2455, "total_steps": 4118, "loss": 1.575, "learning_rate": 0.0001, "epoch": 0.5961631860126275, "percentage": 59.62, "elapsed_time": "13:20:32", "remaining_time": "9:02:16"} +{"current_steps": 2456, "total_steps": 4118, "loss": 1.6891, "learning_rate": 0.0001, "epoch": 0.5964060223409422, "percentage": 59.64, "elapsed_time": "13:20:51", "remaining_time": "9:01:57"} +{"current_steps": 2457, "total_steps": 4118, "loss": 1.753, "learning_rate": 0.0001, "epoch": 0.5966488586692569, "percentage": 59.66, "elapsed_time": "13:21:11", "remaining_time": "9:01:37"} +{"current_steps": 2458, "total_steps": 4118, "loss": 1.7561, "learning_rate": 0.0001, "epoch": 0.5968916949975717, "percentage": 59.69, "elapsed_time": "13:21:30", "remaining_time": "9:01:18"} +{"current_steps": 2459, "total_steps": 4118, "loss": 1.7971, "learning_rate": 0.0001, "epoch": 0.5971345313258863, "percentage": 59.71, "elapsed_time": "13:21:50", "remaining_time": "9:00:58"} +{"current_steps": 2460, "total_steps": 4118, "loss": 1.7459, "learning_rate": 0.0001, "epoch": 0.597377367654201, "percentage": 59.74, "elapsed_time": "13:22:09", "remaining_time": "9:00:38"} +{"current_steps": 2461, "total_steps": 4118, "loss": 1.6879, "learning_rate": 0.0001, "epoch": 0.5976202039825158, "percentage": 59.76, "elapsed_time": "13:22:29", "remaining_time": "9:00:19"} +{"current_steps": 2462, "total_steps": 4118, "loss": 1.5011, "learning_rate": 0.0001, "epoch": 0.5978630403108305, "percentage": 59.79, "elapsed_time": "13:22:49", "remaining_time": "8:59:59"} +{"current_steps": 2463, "total_steps": 4118, "loss": 1.8806, "learning_rate": 0.0001, "epoch": 0.5981058766391452, "percentage": 59.81, "elapsed_time": "13:23:08", "remaining_time": "8:59:40"} +{"current_steps": 2464, "total_steps": 4118, "loss": 1.7462, "learning_rate": 0.0001, "epoch": 0.59834871296746, "percentage": 59.83, "elapsed_time": "13:23:28", "remaining_time": "8:59:20"} +{"current_steps": 2465, "total_steps": 4118, "loss": 1.5594, "learning_rate": 0.0001, "epoch": 0.5985915492957746, "percentage": 59.86, "elapsed_time": "13:23:47", "remaining_time": "8:59:00"} +{"current_steps": 2466, "total_steps": 4118, "loss": 1.8102, "learning_rate": 0.0001, "epoch": 0.5988343856240894, "percentage": 59.88, "elapsed_time": "13:24:07", "remaining_time": "8:58:41"} +{"current_steps": 2467, "total_steps": 4118, "loss": 1.8661, "learning_rate": 0.0001, "epoch": 0.5990772219524041, "percentage": 59.91, "elapsed_time": "13:24:26", "remaining_time": "8:58:21"} +{"current_steps": 2468, "total_steps": 4118, "loss": 1.6398, "learning_rate": 0.0001, "epoch": 0.5993200582807188, "percentage": 59.93, "elapsed_time": "13:24:46", "remaining_time": "8:58:02"} +{"current_steps": 2469, "total_steps": 4118, "loss": 1.7186, "learning_rate": 0.0001, "epoch": 0.5995628946090336, "percentage": 59.96, "elapsed_time": "13:25:05", "remaining_time": "8:57:42"} +{"current_steps": 2470, "total_steps": 4118, "loss": 1.8196, "learning_rate": 0.0001, "epoch": 0.5998057309373482, "percentage": 59.98, "elapsed_time": "13:25:25", "remaining_time": "8:57:23"} +{"current_steps": 2471, "total_steps": 4118, "loss": 1.7887, "learning_rate": 0.0001, "epoch": 0.6000485672656629, "percentage": 60.0, "elapsed_time": "13:25:45", "remaining_time": "8:57:03"} +{"current_steps": 2472, "total_steps": 4118, "loss": 1.6674, "learning_rate": 0.0001, "epoch": 0.6002914035939777, "percentage": 60.03, "elapsed_time": "13:26:04", "remaining_time": "8:56:43"} +{"current_steps": 2473, "total_steps": 4118, "loss": 1.6249, "learning_rate": 0.0001, "epoch": 0.6005342399222924, "percentage": 60.05, "elapsed_time": "13:26:24", "remaining_time": "8:56:24"} +{"current_steps": 2474, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.6007770762506071, "percentage": 60.08, "elapsed_time": "13:26:43", "remaining_time": "8:56:04"} +{"current_steps": 2475, "total_steps": 4118, "loss": 1.6598, "learning_rate": 0.0001, "epoch": 0.6010199125789218, "percentage": 60.1, "elapsed_time": "13:27:03", "remaining_time": "8:55:45"} +{"current_steps": 2476, "total_steps": 4118, "loss": 1.6075, "learning_rate": 0.0001, "epoch": 0.6012627489072365, "percentage": 60.13, "elapsed_time": "13:27:22", "remaining_time": "8:55:25"} +{"current_steps": 2477, "total_steps": 4118, "loss": 1.851, "learning_rate": 0.0001, "epoch": 0.6015055852355512, "percentage": 60.15, "elapsed_time": "13:27:42", "remaining_time": "8:55:06"} +{"current_steps": 2478, "total_steps": 4118, "loss": 1.7714, "learning_rate": 0.0001, "epoch": 0.601748421563866, "percentage": 60.17, "elapsed_time": "13:28:01", "remaining_time": "8:54:46"} +{"current_steps": 2479, "total_steps": 4118, "loss": 1.6885, "learning_rate": 0.0001, "epoch": 0.6019912578921807, "percentage": 60.2, "elapsed_time": "13:28:21", "remaining_time": "8:54:26"} +{"current_steps": 2480, "total_steps": 4118, "loss": 1.7201, "learning_rate": 0.0001, "epoch": 0.6022340942204953, "percentage": 60.22, "elapsed_time": "13:28:40", "remaining_time": "8:54:07"} +{"current_steps": 2481, "total_steps": 4118, "loss": 1.6574, "learning_rate": 0.0001, "epoch": 0.6024769305488101, "percentage": 60.25, "elapsed_time": "13:29:00", "remaining_time": "8:53:47"} +{"current_steps": 2482, "total_steps": 4118, "loss": 1.669, "learning_rate": 0.0001, "epoch": 0.6027197668771248, "percentage": 60.27, "elapsed_time": "13:29:20", "remaining_time": "8:53:28"} +{"current_steps": 2483, "total_steps": 4118, "loss": 1.7852, "learning_rate": 0.0001, "epoch": 0.6029626032054395, "percentage": 60.3, "elapsed_time": "13:29:39", "remaining_time": "8:53:08"} +{"current_steps": 2484, "total_steps": 4118, "loss": 1.6766, "learning_rate": 0.0001, "epoch": 0.6032054395337543, "percentage": 60.32, "elapsed_time": "13:29:59", "remaining_time": "8:52:49"} +{"current_steps": 2485, "total_steps": 4118, "loss": 1.6301, "learning_rate": 0.0001, "epoch": 0.603448275862069, "percentage": 60.34, "elapsed_time": "13:30:18", "remaining_time": "8:52:29"} +{"current_steps": 2486, "total_steps": 4118, "loss": 1.752, "learning_rate": 0.0001, "epoch": 0.6036911121903836, "percentage": 60.37, "elapsed_time": "13:30:38", "remaining_time": "8:52:09"} +{"current_steps": 2487, "total_steps": 4118, "loss": 1.7345, "learning_rate": 0.0001, "epoch": 0.6039339485186984, "percentage": 60.39, "elapsed_time": "13:30:57", "remaining_time": "8:51:50"} +{"current_steps": 2488, "total_steps": 4118, "loss": 1.6648, "learning_rate": 0.0001, "epoch": 0.6041767848470131, "percentage": 60.42, "elapsed_time": "13:31:17", "remaining_time": "8:51:30"} +{"current_steps": 2489, "total_steps": 4118, "loss": 1.7135, "learning_rate": 0.0001, "epoch": 0.6044196211753279, "percentage": 60.44, "elapsed_time": "13:31:37", "remaining_time": "8:51:11"} +{"current_steps": 2490, "total_steps": 4118, "loss": 1.9021, "learning_rate": 0.0001, "epoch": 0.6046624575036426, "percentage": 60.47, "elapsed_time": "13:31:56", "remaining_time": "8:50:51"} +{"current_steps": 2491, "total_steps": 4118, "loss": 1.6332, "learning_rate": 0.0001, "epoch": 0.6049052938319572, "percentage": 60.49, "elapsed_time": "13:32:16", "remaining_time": "8:50:32"} +{"current_steps": 2492, "total_steps": 4118, "loss": 1.7134, "learning_rate": 0.0001, "epoch": 0.605148130160272, "percentage": 60.51, "elapsed_time": "13:32:35", "remaining_time": "8:50:12"} +{"current_steps": 2493, "total_steps": 4118, "loss": 1.8625, "learning_rate": 0.0001, "epoch": 0.6053909664885867, "percentage": 60.54, "elapsed_time": "13:32:55", "remaining_time": "8:49:52"} +{"current_steps": 2494, "total_steps": 4118, "loss": 1.6393, "learning_rate": 0.0001, "epoch": 0.6056338028169014, "percentage": 60.56, "elapsed_time": "13:33:14", "remaining_time": "8:49:33"} +{"current_steps": 2495, "total_steps": 4118, "loss": 1.5929, "learning_rate": 0.0001, "epoch": 0.6058766391452162, "percentage": 60.59, "elapsed_time": "13:33:34", "remaining_time": "8:49:13"} +{"current_steps": 2496, "total_steps": 4118, "loss": 1.7613, "learning_rate": 0.0001, "epoch": 0.6061194754735308, "percentage": 60.61, "elapsed_time": "13:33:53", "remaining_time": "8:48:54"} +{"current_steps": 2497, "total_steps": 4118, "loss": 1.7512, "learning_rate": 0.0001, "epoch": 0.6063623118018455, "percentage": 60.64, "elapsed_time": "13:34:13", "remaining_time": "8:48:34"} +{"current_steps": 2498, "total_steps": 4118, "loss": 1.7071, "learning_rate": 0.0001, "epoch": 0.6066051481301603, "percentage": 60.66, "elapsed_time": "13:34:33", "remaining_time": "8:48:15"} +{"current_steps": 2499, "total_steps": 4118, "loss": 1.7515, "learning_rate": 0.0001, "epoch": 0.606847984458475, "percentage": 60.68, "elapsed_time": "13:34:52", "remaining_time": "8:47:55"} +{"current_steps": 2500, "total_steps": 4118, "loss": 1.669, "learning_rate": 0.0001, "epoch": 0.6070908207867897, "percentage": 60.71, "elapsed_time": "13:35:12", "remaining_time": "8:47:35"} +{"current_steps": 2501, "total_steps": 4118, "loss": 1.794, "learning_rate": 0.0001, "epoch": 0.6073336571151045, "percentage": 60.73, "elapsed_time": "13:35:34", "remaining_time": "8:47:17"} +{"current_steps": 2502, "total_steps": 4118, "loss": 1.6624, "learning_rate": 0.0001, "epoch": 0.6075764934434191, "percentage": 60.76, "elapsed_time": "13:35:53", "remaining_time": "8:46:58"} +{"current_steps": 2503, "total_steps": 4118, "loss": 1.626, "learning_rate": 0.0001, "epoch": 0.6078193297717338, "percentage": 60.78, "elapsed_time": "13:36:13", "remaining_time": "8:46:38"} +{"current_steps": 2504, "total_steps": 4118, "loss": 1.7252, "learning_rate": 0.0001, "epoch": 0.6080621661000486, "percentage": 60.81, "elapsed_time": "13:36:32", "remaining_time": "8:46:19"} +{"current_steps": 2505, "total_steps": 4118, "loss": 1.8142, "learning_rate": 0.0001, "epoch": 0.6083050024283633, "percentage": 60.83, "elapsed_time": "13:36:52", "remaining_time": "8:45:59"} +{"current_steps": 2506, "total_steps": 4118, "loss": 1.6216, "learning_rate": 0.0001, "epoch": 0.608547838756678, "percentage": 60.85, "elapsed_time": "13:37:11", "remaining_time": "8:45:39"} +{"current_steps": 2507, "total_steps": 4118, "loss": 1.6092, "learning_rate": 0.0001, "epoch": 0.6087906750849927, "percentage": 60.88, "elapsed_time": "13:37:31", "remaining_time": "8:45:20"} +{"current_steps": 2508, "total_steps": 4118, "loss": 1.6247, "learning_rate": 0.0001, "epoch": 0.6090335114133074, "percentage": 60.9, "elapsed_time": "13:37:50", "remaining_time": "8:45:00"} +{"current_steps": 2509, "total_steps": 4118, "loss": 1.7226, "learning_rate": 0.0001, "epoch": 0.6092763477416221, "percentage": 60.93, "elapsed_time": "13:38:10", "remaining_time": "8:44:41"} +{"current_steps": 2510, "total_steps": 4118, "loss": 1.8676, "learning_rate": 0.0001, "epoch": 0.6095191840699369, "percentage": 60.95, "elapsed_time": "13:38:29", "remaining_time": "8:44:21"} +{"current_steps": 2511, "total_steps": 4118, "loss": 1.7946, "learning_rate": 0.0001, "epoch": 0.6097620203982516, "percentage": 60.98, "elapsed_time": "13:38:49", "remaining_time": "8:44:02"} +{"current_steps": 2512, "total_steps": 4118, "loss": 1.5512, "learning_rate": 0.0001, "epoch": 0.6100048567265663, "percentage": 61.0, "elapsed_time": "13:39:09", "remaining_time": "8:43:42"} +{"current_steps": 2513, "total_steps": 4118, "loss": 1.7985, "learning_rate": 0.0001, "epoch": 0.610247693054881, "percentage": 61.02, "elapsed_time": "13:39:28", "remaining_time": "8:43:22"} +{"current_steps": 2514, "total_steps": 4118, "loss": 1.6581, "learning_rate": 0.0001, "epoch": 0.6104905293831957, "percentage": 61.05, "elapsed_time": "13:39:48", "remaining_time": "8:43:03"} +{"current_steps": 2515, "total_steps": 4118, "loss": 1.8217, "learning_rate": 0.0001, "epoch": 0.6107333657115105, "percentage": 61.07, "elapsed_time": "13:40:07", "remaining_time": "8:42:43"} +{"current_steps": 2516, "total_steps": 4118, "loss": 1.8342, "learning_rate": 0.0001, "epoch": 0.6109762020398252, "percentage": 61.1, "elapsed_time": "13:40:27", "remaining_time": "8:42:24"} +{"current_steps": 2517, "total_steps": 4118, "loss": 1.6572, "learning_rate": 0.0001, "epoch": 0.6112190383681398, "percentage": 61.12, "elapsed_time": "13:40:46", "remaining_time": "8:42:04"} +{"current_steps": 2518, "total_steps": 4118, "loss": 1.6116, "learning_rate": 0.0001, "epoch": 0.6114618746964546, "percentage": 61.15, "elapsed_time": "13:41:06", "remaining_time": "8:41:45"} +{"current_steps": 2519, "total_steps": 4118, "loss": 1.591, "learning_rate": 0.0001, "epoch": 0.6117047110247693, "percentage": 61.17, "elapsed_time": "13:41:25", "remaining_time": "8:41:25"} +{"current_steps": 2520, "total_steps": 4118, "loss": 1.6938, "learning_rate": 0.0001, "epoch": 0.611947547353084, "percentage": 61.19, "elapsed_time": "13:41:45", "remaining_time": "8:41:05"} +{"current_steps": 2521, "total_steps": 4118, "loss": 1.7318, "learning_rate": 0.0001, "epoch": 0.6121903836813988, "percentage": 61.22, "elapsed_time": "13:42:04", "remaining_time": "8:40:46"} +{"current_steps": 2522, "total_steps": 4118, "loss": 1.6655, "learning_rate": 0.0001, "epoch": 0.6124332200097135, "percentage": 61.24, "elapsed_time": "13:42:24", "remaining_time": "8:40:26"} +{"current_steps": 2523, "total_steps": 4118, "loss": 1.7788, "learning_rate": 0.0001, "epoch": 0.6126760563380281, "percentage": 61.27, "elapsed_time": "13:42:44", "remaining_time": "8:40:07"} +{"current_steps": 2524, "total_steps": 4118, "loss": 1.7749, "learning_rate": 0.0001, "epoch": 0.6129188926663429, "percentage": 61.29, "elapsed_time": "13:43:03", "remaining_time": "8:39:47"} +{"current_steps": 2525, "total_steps": 4118, "loss": 1.8248, "learning_rate": 0.0001, "epoch": 0.6131617289946576, "percentage": 61.32, "elapsed_time": "13:43:23", "remaining_time": "8:39:28"} +{"current_steps": 2526, "total_steps": 4118, "loss": 1.7334, "learning_rate": 0.0001, "epoch": 0.6134045653229723, "percentage": 61.34, "elapsed_time": "13:43:42", "remaining_time": "8:39:08"} +{"current_steps": 2527, "total_steps": 4118, "loss": 1.6869, "learning_rate": 0.0001, "epoch": 0.6136474016512871, "percentage": 61.36, "elapsed_time": "13:44:02", "remaining_time": "8:38:48"} +{"current_steps": 2528, "total_steps": 4118, "loss": 1.7805, "learning_rate": 0.0001, "epoch": 0.6138902379796017, "percentage": 61.39, "elapsed_time": "13:44:21", "remaining_time": "8:38:29"} +{"current_steps": 2529, "total_steps": 4118, "loss": 1.7499, "learning_rate": 0.0001, "epoch": 0.6141330743079164, "percentage": 61.41, "elapsed_time": "13:44:41", "remaining_time": "8:38:09"} +{"current_steps": 2530, "total_steps": 4118, "loss": 1.6446, "learning_rate": 0.0001, "epoch": 0.6143759106362312, "percentage": 61.44, "elapsed_time": "13:45:00", "remaining_time": "8:37:50"} +{"current_steps": 2531, "total_steps": 4118, "loss": 1.6044, "learning_rate": 0.0001, "epoch": 0.6146187469645459, "percentage": 61.46, "elapsed_time": "13:45:20", "remaining_time": "8:37:30"} +{"current_steps": 2532, "total_steps": 4118, "loss": 1.6518, "learning_rate": 0.0001, "epoch": 0.6148615832928606, "percentage": 61.49, "elapsed_time": "13:45:40", "remaining_time": "8:37:11"} +{"current_steps": 2533, "total_steps": 4118, "loss": 1.5604, "learning_rate": 0.0001, "epoch": 0.6151044196211753, "percentage": 61.51, "elapsed_time": "13:45:59", "remaining_time": "8:36:51"} +{"current_steps": 2534, "total_steps": 4118, "loss": 1.6777, "learning_rate": 0.0001, "epoch": 0.61534725594949, "percentage": 61.53, "elapsed_time": "13:46:19", "remaining_time": "8:36:31"} +{"current_steps": 2535, "total_steps": 4118, "loss": 1.688, "learning_rate": 0.0001, "epoch": 0.6155900922778048, "percentage": 61.56, "elapsed_time": "13:46:38", "remaining_time": "8:36:12"} +{"current_steps": 2536, "total_steps": 4118, "loss": 1.662, "learning_rate": 0.0001, "epoch": 0.6158329286061195, "percentage": 61.58, "elapsed_time": "13:46:58", "remaining_time": "8:35:52"} +{"current_steps": 2537, "total_steps": 4118, "loss": 1.733, "learning_rate": 0.0001, "epoch": 0.6160757649344342, "percentage": 61.61, "elapsed_time": "13:47:17", "remaining_time": "8:35:33"} +{"current_steps": 2538, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.616318601262749, "percentage": 61.63, "elapsed_time": "13:47:37", "remaining_time": "8:35:13"} +{"current_steps": 2539, "total_steps": 4118, "loss": 1.784, "learning_rate": 0.0001, "epoch": 0.6165614375910636, "percentage": 61.66, "elapsed_time": "13:47:56", "remaining_time": "8:34:54"} +{"current_steps": 2540, "total_steps": 4118, "loss": 1.7121, "learning_rate": 0.0001, "epoch": 0.6168042739193783, "percentage": 61.68, "elapsed_time": "13:48:16", "remaining_time": "8:34:34"} +{"current_steps": 2541, "total_steps": 4118, "loss": 1.6022, "learning_rate": 0.0001, "epoch": 0.6170471102476931, "percentage": 61.7, "elapsed_time": "13:48:36", "remaining_time": "8:34:14"} +{"current_steps": 2542, "total_steps": 4118, "loss": 1.6473, "learning_rate": 0.0001, "epoch": 0.6172899465760078, "percentage": 61.73, "elapsed_time": "13:48:55", "remaining_time": "8:33:55"} +{"current_steps": 2543, "total_steps": 4118, "loss": 1.8678, "learning_rate": 0.0001, "epoch": 0.6175327829043225, "percentage": 61.75, "elapsed_time": "13:49:15", "remaining_time": "8:33:35"} +{"current_steps": 2544, "total_steps": 4118, "loss": 1.7395, "learning_rate": 0.0001, "epoch": 0.6177756192326372, "percentage": 61.78, "elapsed_time": "13:49:34", "remaining_time": "8:33:16"} +{"current_steps": 2545, "total_steps": 4118, "loss": 1.7785, "learning_rate": 0.0001, "epoch": 0.6180184555609519, "percentage": 61.8, "elapsed_time": "13:49:54", "remaining_time": "8:32:56"} +{"current_steps": 2546, "total_steps": 4118, "loss": 1.8783, "learning_rate": 0.0001, "epoch": 0.6182612918892666, "percentage": 61.83, "elapsed_time": "13:50:13", "remaining_time": "8:32:36"} +{"current_steps": 2547, "total_steps": 4118, "loss": 1.8255, "learning_rate": 0.0001, "epoch": 0.6185041282175814, "percentage": 61.85, "elapsed_time": "13:50:33", "remaining_time": "8:32:17"} +{"current_steps": 2548, "total_steps": 4118, "loss": 1.6306, "learning_rate": 0.0001, "epoch": 0.6187469645458961, "percentage": 61.87, "elapsed_time": "13:50:52", "remaining_time": "8:31:57"} +{"current_steps": 2549, "total_steps": 4118, "loss": 1.7048, "learning_rate": 0.0001, "epoch": 0.6189898008742107, "percentage": 61.9, "elapsed_time": "13:51:12", "remaining_time": "8:31:38"} +{"current_steps": 2550, "total_steps": 4118, "loss": 1.5743, "learning_rate": 0.0001, "epoch": 0.6192326372025255, "percentage": 61.92, "elapsed_time": "13:51:31", "remaining_time": "8:31:18"} +{"current_steps": 2551, "total_steps": 4118, "loss": 1.6904, "learning_rate": 0.0001, "epoch": 0.6194754735308402, "percentage": 61.95, "elapsed_time": "13:51:51", "remaining_time": "8:30:59"} +{"current_steps": 2552, "total_steps": 4118, "loss": 1.4971, "learning_rate": 0.0001, "epoch": 0.6197183098591549, "percentage": 61.97, "elapsed_time": "13:52:11", "remaining_time": "8:30:39"} +{"current_steps": 2553, "total_steps": 4118, "loss": 1.6914, "learning_rate": 0.0001, "epoch": 0.6199611461874697, "percentage": 62.0, "elapsed_time": "13:52:30", "remaining_time": "8:30:19"} +{"current_steps": 2554, "total_steps": 4118, "loss": 2.0322, "learning_rate": 0.0001, "epoch": 0.6202039825157843, "percentage": 62.02, "elapsed_time": "13:52:50", "remaining_time": "8:30:00"} +{"current_steps": 2555, "total_steps": 4118, "loss": 1.8533, "learning_rate": 0.0001, "epoch": 0.620446818844099, "percentage": 62.04, "elapsed_time": "13:53:09", "remaining_time": "8:29:40"} +{"current_steps": 2556, "total_steps": 4118, "loss": 1.7889, "learning_rate": 0.0001, "epoch": 0.6206896551724138, "percentage": 62.07, "elapsed_time": "13:53:29", "remaining_time": "8:29:21"} +{"current_steps": 2557, "total_steps": 4118, "loss": 1.7491, "learning_rate": 0.0001, "epoch": 0.6209324915007285, "percentage": 62.09, "elapsed_time": "13:53:48", "remaining_time": "8:29:01"} +{"current_steps": 2558, "total_steps": 4118, "loss": 1.7514, "learning_rate": 0.0001, "epoch": 0.6211753278290433, "percentage": 62.12, "elapsed_time": "13:54:08", "remaining_time": "8:28:42"} +{"current_steps": 2559, "total_steps": 4118, "loss": 1.6251, "learning_rate": 0.0001, "epoch": 0.621418164157358, "percentage": 62.14, "elapsed_time": "13:54:27", "remaining_time": "8:28:22"} +{"current_steps": 2560, "total_steps": 4118, "loss": 1.7402, "learning_rate": 0.0001, "epoch": 0.6216610004856726, "percentage": 62.17, "elapsed_time": "13:54:47", "remaining_time": "8:28:02"} +{"current_steps": 2561, "total_steps": 4118, "loss": 1.8496, "learning_rate": 0.0001, "epoch": 0.6219038368139874, "percentage": 62.19, "elapsed_time": "13:55:06", "remaining_time": "8:27:43"} +{"current_steps": 2562, "total_steps": 4118, "loss": 1.4845, "learning_rate": 0.0001, "epoch": 0.6221466731423021, "percentage": 62.21, "elapsed_time": "13:55:26", "remaining_time": "8:27:23"} +{"current_steps": 2563, "total_steps": 4118, "loss": 1.6659, "learning_rate": 0.0001, "epoch": 0.6223895094706168, "percentage": 62.24, "elapsed_time": "13:55:46", "remaining_time": "8:27:04"} +{"current_steps": 2564, "total_steps": 4118, "loss": 1.7719, "learning_rate": 0.0001, "epoch": 0.6226323457989316, "percentage": 62.26, "elapsed_time": "13:56:05", "remaining_time": "8:26:44"} +{"current_steps": 2565, "total_steps": 4118, "loss": 1.6443, "learning_rate": 0.0001, "epoch": 0.6228751821272462, "percentage": 62.29, "elapsed_time": "13:56:25", "remaining_time": "8:26:25"} +{"current_steps": 2566, "total_steps": 4118, "loss": 1.7575, "learning_rate": 0.0001, "epoch": 0.6231180184555609, "percentage": 62.31, "elapsed_time": "13:56:44", "remaining_time": "8:26:05"} +{"current_steps": 2567, "total_steps": 4118, "loss": 1.8922, "learning_rate": 0.0001, "epoch": 0.6233608547838757, "percentage": 62.34, "elapsed_time": "13:57:04", "remaining_time": "8:25:45"} +{"current_steps": 2568, "total_steps": 4118, "loss": 1.6528, "learning_rate": 0.0001, "epoch": 0.6236036911121904, "percentage": 62.36, "elapsed_time": "13:57:23", "remaining_time": "8:25:26"} +{"current_steps": 2569, "total_steps": 4118, "loss": 1.7915, "learning_rate": 0.0001, "epoch": 0.6238465274405051, "percentage": 62.38, "elapsed_time": "13:57:43", "remaining_time": "8:25:06"} +{"current_steps": 2570, "total_steps": 4118, "loss": 1.597, "learning_rate": 0.0001, "epoch": 0.6240893637688198, "percentage": 62.41, "elapsed_time": "13:58:02", "remaining_time": "8:24:47"} +{"current_steps": 2571, "total_steps": 4118, "loss": 1.6806, "learning_rate": 0.0001, "epoch": 0.6243322000971345, "percentage": 62.43, "elapsed_time": "13:58:22", "remaining_time": "8:24:27"} +{"current_steps": 2572, "total_steps": 4118, "loss": 1.766, "learning_rate": 0.0001, "epoch": 0.6245750364254492, "percentage": 62.46, "elapsed_time": "13:58:42", "remaining_time": "8:24:08"} +{"current_steps": 2573, "total_steps": 4118, "loss": 1.5783, "learning_rate": 0.0001, "epoch": 0.624817872753764, "percentage": 62.48, "elapsed_time": "13:59:01", "remaining_time": "8:23:48"} +{"current_steps": 2574, "total_steps": 4118, "loss": 1.7435, "learning_rate": 0.0001, "epoch": 0.6250607090820787, "percentage": 62.51, "elapsed_time": "13:59:21", "remaining_time": "8:23:28"} +{"current_steps": 2575, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.6253035454103933, "percentage": 62.53, "elapsed_time": "13:59:40", "remaining_time": "8:23:09"} +{"current_steps": 2576, "total_steps": 4118, "loss": 1.7363, "learning_rate": 0.0001, "epoch": 0.6255463817387081, "percentage": 62.55, "elapsed_time": "14:00:00", "remaining_time": "8:22:49"} +{"current_steps": 2577, "total_steps": 4118, "loss": 1.6664, "learning_rate": 0.0001, "epoch": 0.6257892180670228, "percentage": 62.58, "elapsed_time": "14:00:19", "remaining_time": "8:22:30"} +{"current_steps": 2578, "total_steps": 4118, "loss": 1.7251, "learning_rate": 0.0001, "epoch": 0.6260320543953375, "percentage": 62.6, "elapsed_time": "14:00:39", "remaining_time": "8:22:10"} +{"current_steps": 2579, "total_steps": 4118, "loss": 1.8687, "learning_rate": 0.0001, "epoch": 0.6262748907236523, "percentage": 62.63, "elapsed_time": "14:00:58", "remaining_time": "8:21:51"} +{"current_steps": 2580, "total_steps": 4118, "loss": 1.624, "learning_rate": 0.0001, "epoch": 0.626517727051967, "percentage": 62.65, "elapsed_time": "14:01:18", "remaining_time": "8:21:31"} +{"current_steps": 2581, "total_steps": 4118, "loss": 1.8018, "learning_rate": 0.0001, "epoch": 0.6267605633802817, "percentage": 62.68, "elapsed_time": "14:01:38", "remaining_time": "8:21:11"} +{"current_steps": 2582, "total_steps": 4118, "loss": 1.7314, "learning_rate": 0.0001, "epoch": 0.6270033997085964, "percentage": 62.7, "elapsed_time": "14:01:57", "remaining_time": "8:20:52"} +{"current_steps": 2583, "total_steps": 4118, "loss": 1.6404, "learning_rate": 0.0001, "epoch": 0.6272462360369111, "percentage": 62.72, "elapsed_time": "14:02:17", "remaining_time": "8:20:32"} +{"current_steps": 2584, "total_steps": 4118, "loss": 1.6067, "learning_rate": 0.0001, "epoch": 0.6274890723652259, "percentage": 62.75, "elapsed_time": "14:02:36", "remaining_time": "8:20:13"} +{"current_steps": 2585, "total_steps": 4118, "loss": 1.7544, "learning_rate": 0.0001, "epoch": 0.6277319086935406, "percentage": 62.77, "elapsed_time": "14:02:56", "remaining_time": "8:19:53"} +{"current_steps": 2586, "total_steps": 4118, "loss": 1.7229, "learning_rate": 0.0001, "epoch": 0.6279747450218552, "percentage": 62.8, "elapsed_time": "14:03:15", "remaining_time": "8:19:34"} +{"current_steps": 2587, "total_steps": 4118, "loss": 1.6707, "learning_rate": 0.0001, "epoch": 0.62821758135017, "percentage": 62.82, "elapsed_time": "14:03:35", "remaining_time": "8:19:14"} +{"current_steps": 2588, "total_steps": 4118, "loss": 1.8133, "learning_rate": 0.0001, "epoch": 0.6284604176784847, "percentage": 62.85, "elapsed_time": "14:03:54", "remaining_time": "8:18:54"} +{"current_steps": 2589, "total_steps": 4118, "loss": 1.781, "learning_rate": 0.0001, "epoch": 0.6287032540067994, "percentage": 62.87, "elapsed_time": "14:04:14", "remaining_time": "8:18:35"} +{"current_steps": 2590, "total_steps": 4118, "loss": 1.8164, "learning_rate": 0.0001, "epoch": 0.6289460903351142, "percentage": 62.89, "elapsed_time": "14:04:34", "remaining_time": "8:18:15"} +{"current_steps": 2591, "total_steps": 4118, "loss": 1.7574, "learning_rate": 0.0001, "epoch": 0.6291889266634288, "percentage": 62.92, "elapsed_time": "14:04:53", "remaining_time": "8:17:56"} +{"current_steps": 2592, "total_steps": 4118, "loss": 1.7434, "learning_rate": 0.0001, "epoch": 0.6294317629917435, "percentage": 62.94, "elapsed_time": "14:05:13", "remaining_time": "8:17:36"} +{"current_steps": 2593, "total_steps": 4118, "loss": 1.9011, "learning_rate": 0.0001, "epoch": 0.6296745993200583, "percentage": 62.97, "elapsed_time": "14:05:32", "remaining_time": "8:17:17"} +{"current_steps": 2594, "total_steps": 4118, "loss": 1.6896, "learning_rate": 0.0001, "epoch": 0.629917435648373, "percentage": 62.99, "elapsed_time": "14:05:52", "remaining_time": "8:16:57"} +{"current_steps": 2595, "total_steps": 4118, "loss": 1.5159, "learning_rate": 0.0001, "epoch": 0.6301602719766877, "percentage": 63.02, "elapsed_time": "14:06:11", "remaining_time": "8:16:37"} +{"current_steps": 2596, "total_steps": 4118, "loss": 1.7002, "learning_rate": 0.0001, "epoch": 0.6304031083050025, "percentage": 63.04, "elapsed_time": "14:06:31", "remaining_time": "8:16:18"} +{"current_steps": 2597, "total_steps": 4118, "loss": 1.8019, "learning_rate": 0.0001, "epoch": 0.6306459446333171, "percentage": 63.06, "elapsed_time": "14:06:50", "remaining_time": "8:15:58"} +{"current_steps": 2598, "total_steps": 4118, "loss": 1.863, "learning_rate": 0.0001, "epoch": 0.6308887809616318, "percentage": 63.09, "elapsed_time": "14:07:10", "remaining_time": "8:15:39"} +{"current_steps": 2599, "total_steps": 4118, "loss": 1.6395, "learning_rate": 0.0001, "epoch": 0.6311316172899466, "percentage": 63.11, "elapsed_time": "14:07:30", "remaining_time": "8:15:19"} +{"current_steps": 2600, "total_steps": 4118, "loss": 1.8188, "learning_rate": 0.0001, "epoch": 0.6313744536182613, "percentage": 63.14, "elapsed_time": "14:07:49", "remaining_time": "8:14:59"} +{"current_steps": 2601, "total_steps": 4118, "loss": 1.7701, "learning_rate": 0.0001, "epoch": 0.631617289946576, "percentage": 63.16, "elapsed_time": "14:08:09", "remaining_time": "8:14:40"} +{"current_steps": 2602, "total_steps": 4118, "loss": 1.7545, "learning_rate": 0.0001, "epoch": 0.6318601262748907, "percentage": 63.19, "elapsed_time": "14:08:28", "remaining_time": "8:14:20"} +{"current_steps": 2603, "total_steps": 4118, "loss": 1.8769, "learning_rate": 0.0001, "epoch": 0.6321029626032054, "percentage": 63.21, "elapsed_time": "14:08:48", "remaining_time": "8:14:01"} +{"current_steps": 2604, "total_steps": 4118, "loss": 1.7714, "learning_rate": 0.0001, "epoch": 0.6323457989315202, "percentage": 63.23, "elapsed_time": "14:09:07", "remaining_time": "8:13:41"} +{"current_steps": 2605, "total_steps": 4118, "loss": 1.3808, "learning_rate": 0.0001, "epoch": 0.6325886352598349, "percentage": 63.26, "elapsed_time": "14:09:27", "remaining_time": "8:13:22"} +{"current_steps": 2606, "total_steps": 4118, "loss": 1.8951, "learning_rate": 0.0001, "epoch": 0.6328314715881496, "percentage": 63.28, "elapsed_time": "14:09:46", "remaining_time": "8:13:02"} +{"current_steps": 2607, "total_steps": 4118, "loss": 1.7829, "learning_rate": 0.0001, "epoch": 0.6330743079164644, "percentage": 63.31, "elapsed_time": "14:10:06", "remaining_time": "8:12:42"} +{"current_steps": 2608, "total_steps": 4118, "loss": 1.7845, "learning_rate": 0.0001, "epoch": 0.633317144244779, "percentage": 63.33, "elapsed_time": "14:10:25", "remaining_time": "8:12:23"} +{"current_steps": 2609, "total_steps": 4118, "loss": 1.7534, "learning_rate": 0.0001, "epoch": 0.6335599805730937, "percentage": 63.36, "elapsed_time": "14:10:45", "remaining_time": "8:12:03"} +{"current_steps": 2610, "total_steps": 4118, "loss": 1.6922, "learning_rate": 0.0001, "epoch": 0.6338028169014085, "percentage": 63.38, "elapsed_time": "14:11:05", "remaining_time": "8:11:44"} +{"current_steps": 2611, "total_steps": 4118, "loss": 1.6907, "learning_rate": 0.0001, "epoch": 0.6340456532297232, "percentage": 63.4, "elapsed_time": "14:11:24", "remaining_time": "8:11:24"} +{"current_steps": 2612, "total_steps": 4118, "loss": 1.6514, "learning_rate": 0.0001, "epoch": 0.6342884895580378, "percentage": 63.43, "elapsed_time": "14:11:44", "remaining_time": "8:11:05"} +{"current_steps": 2613, "total_steps": 4118, "loss": 1.8173, "learning_rate": 0.0001, "epoch": 0.6345313258863526, "percentage": 63.45, "elapsed_time": "14:12:03", "remaining_time": "8:10:45"} +{"current_steps": 2614, "total_steps": 4118, "loss": 1.8575, "learning_rate": 0.0001, "epoch": 0.6347741622146673, "percentage": 63.48, "elapsed_time": "14:12:23", "remaining_time": "8:10:25"} +{"current_steps": 2615, "total_steps": 4118, "loss": 1.8192, "learning_rate": 0.0001, "epoch": 0.635016998542982, "percentage": 63.5, "elapsed_time": "14:12:42", "remaining_time": "8:10:06"} +{"current_steps": 2616, "total_steps": 4118, "loss": 1.8031, "learning_rate": 0.0001, "epoch": 0.6352598348712968, "percentage": 63.53, "elapsed_time": "14:13:02", "remaining_time": "8:09:46"} +{"current_steps": 2617, "total_steps": 4118, "loss": 1.6221, "learning_rate": 0.0001, "epoch": 0.6355026711996115, "percentage": 63.55, "elapsed_time": "14:13:21", "remaining_time": "8:09:27"} +{"current_steps": 2618, "total_steps": 4118, "loss": 1.7812, "learning_rate": 0.0001, "epoch": 0.6357455075279261, "percentage": 63.57, "elapsed_time": "14:13:41", "remaining_time": "8:09:07"} +{"current_steps": 2619, "total_steps": 4118, "loss": 1.6619, "learning_rate": 0.0001, "epoch": 0.6359883438562409, "percentage": 63.6, "elapsed_time": "14:14:01", "remaining_time": "8:08:48"} +{"current_steps": 2620, "total_steps": 4118, "loss": 1.6847, "learning_rate": 0.0001, "epoch": 0.6362311801845556, "percentage": 63.62, "elapsed_time": "14:14:20", "remaining_time": "8:08:28"} +{"current_steps": 2621, "total_steps": 4118, "loss": 1.7344, "learning_rate": 0.0001, "epoch": 0.6364740165128703, "percentage": 63.65, "elapsed_time": "14:14:40", "remaining_time": "8:08:08"} +{"current_steps": 2622, "total_steps": 4118, "loss": 1.9791, "learning_rate": 0.0001, "epoch": 0.6367168528411851, "percentage": 63.67, "elapsed_time": "14:14:59", "remaining_time": "8:07:49"} +{"current_steps": 2623, "total_steps": 4118, "loss": 1.6362, "learning_rate": 0.0001, "epoch": 0.6369596891694997, "percentage": 63.7, "elapsed_time": "14:15:19", "remaining_time": "8:07:29"} +{"current_steps": 2624, "total_steps": 4118, "loss": 1.8426, "learning_rate": 0.0001, "epoch": 0.6372025254978144, "percentage": 63.72, "elapsed_time": "14:15:38", "remaining_time": "8:07:10"} +{"current_steps": 2625, "total_steps": 4118, "loss": 1.633, "learning_rate": 0.0001, "epoch": 0.6374453618261292, "percentage": 63.74, "elapsed_time": "14:15:58", "remaining_time": "8:06:50"} +{"current_steps": 2626, "total_steps": 4118, "loss": 1.8477, "learning_rate": 0.0001, "epoch": 0.6376881981544439, "percentage": 63.77, "elapsed_time": "14:16:17", "remaining_time": "8:06:31"} +{"current_steps": 2627, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.6379310344827587, "percentage": 63.79, "elapsed_time": "14:16:37", "remaining_time": "8:06:11"} +{"current_steps": 2628, "total_steps": 4118, "loss": 1.8148, "learning_rate": 0.0001, "epoch": 0.6381738708110734, "percentage": 63.82, "elapsed_time": "14:16:57", "remaining_time": "8:05:52"} +{"current_steps": 2629, "total_steps": 4118, "loss": 1.6899, "learning_rate": 0.0001, "epoch": 0.638416707139388, "percentage": 63.84, "elapsed_time": "14:17:16", "remaining_time": "8:05:32"} +{"current_steps": 2630, "total_steps": 4118, "loss": 1.764, "learning_rate": 0.0001, "epoch": 0.6386595434677028, "percentage": 63.87, "elapsed_time": "14:17:36", "remaining_time": "8:05:12"} +{"current_steps": 2631, "total_steps": 4118, "loss": 1.7531, "learning_rate": 0.0001, "epoch": 0.6389023797960175, "percentage": 63.89, "elapsed_time": "14:17:55", "remaining_time": "8:04:53"} +{"current_steps": 2632, "total_steps": 4118, "loss": 1.7783, "learning_rate": 0.0001, "epoch": 0.6391452161243322, "percentage": 63.91, "elapsed_time": "14:18:15", "remaining_time": "8:04:33"} +{"current_steps": 2633, "total_steps": 4118, "loss": 1.7778, "learning_rate": 0.0001, "epoch": 0.639388052452647, "percentage": 63.94, "elapsed_time": "14:18:34", "remaining_time": "8:04:14"} +{"current_steps": 2634, "total_steps": 4118, "loss": 1.5891, "learning_rate": 0.0001, "epoch": 0.6396308887809616, "percentage": 63.96, "elapsed_time": "14:18:54", "remaining_time": "8:03:54"} +{"current_steps": 2635, "total_steps": 4118, "loss": 1.8175, "learning_rate": 0.0001, "epoch": 0.6398737251092763, "percentage": 63.99, "elapsed_time": "14:19:13", "remaining_time": "8:03:35"} +{"current_steps": 2636, "total_steps": 4118, "loss": 1.6799, "learning_rate": 0.0001, "epoch": 0.6401165614375911, "percentage": 64.01, "elapsed_time": "14:19:33", "remaining_time": "8:03:15"} +{"current_steps": 2637, "total_steps": 4118, "loss": 1.6808, "learning_rate": 0.0001, "epoch": 0.6403593977659058, "percentage": 64.04, "elapsed_time": "14:19:53", "remaining_time": "8:02:55"} +{"current_steps": 2638, "total_steps": 4118, "loss": 1.602, "learning_rate": 0.0001, "epoch": 0.6406022340942205, "percentage": 64.06, "elapsed_time": "14:20:12", "remaining_time": "8:02:36"} +{"current_steps": 2639, "total_steps": 4118, "loss": 1.7995, "learning_rate": 0.0001, "epoch": 0.6408450704225352, "percentage": 64.08, "elapsed_time": "14:20:32", "remaining_time": "8:02:16"} +{"current_steps": 2640, "total_steps": 4118, "loss": 1.6896, "learning_rate": 0.0001, "epoch": 0.6410879067508499, "percentage": 64.11, "elapsed_time": "14:20:51", "remaining_time": "8:01:57"} +{"current_steps": 2641, "total_steps": 4118, "loss": 1.7495, "learning_rate": 0.0001, "epoch": 0.6413307430791646, "percentage": 64.13, "elapsed_time": "14:21:11", "remaining_time": "8:01:37"} +{"current_steps": 2642, "total_steps": 4118, "loss": 1.7584, "learning_rate": 0.0001, "epoch": 0.6415735794074794, "percentage": 64.16, "elapsed_time": "14:21:30", "remaining_time": "8:01:17"} +{"current_steps": 2643, "total_steps": 4118, "loss": 1.776, "learning_rate": 0.0001, "epoch": 0.6418164157357941, "percentage": 64.18, "elapsed_time": "14:21:50", "remaining_time": "8:00:58"} +{"current_steps": 2644, "total_steps": 4118, "loss": 1.6817, "learning_rate": 0.0001, "epoch": 0.6420592520641087, "percentage": 64.21, "elapsed_time": "14:22:09", "remaining_time": "8:00:38"} +{"current_steps": 2645, "total_steps": 4118, "loss": 1.7891, "learning_rate": 0.0001, "epoch": 0.6423020883924235, "percentage": 64.23, "elapsed_time": "14:22:29", "remaining_time": "8:00:19"} +{"current_steps": 2646, "total_steps": 4118, "loss": 1.8251, "learning_rate": 0.0001, "epoch": 0.6425449247207382, "percentage": 64.25, "elapsed_time": "14:22:48", "remaining_time": "7:59:59"} +{"current_steps": 2647, "total_steps": 4118, "loss": 1.6878, "learning_rate": 0.0001, "epoch": 0.6427877610490529, "percentage": 64.28, "elapsed_time": "14:23:08", "remaining_time": "7:59:40"} +{"current_steps": 2648, "total_steps": 4118, "loss": 1.9097, "learning_rate": 0.0001, "epoch": 0.6430305973773677, "percentage": 64.3, "elapsed_time": "14:23:28", "remaining_time": "7:59:20"} +{"current_steps": 2649, "total_steps": 4118, "loss": 1.7589, "learning_rate": 0.0001, "epoch": 0.6432734337056824, "percentage": 64.33, "elapsed_time": "14:23:47", "remaining_time": "7:59:00"} +{"current_steps": 2650, "total_steps": 4118, "loss": 1.8101, "learning_rate": 0.0001, "epoch": 0.6435162700339971, "percentage": 64.35, "elapsed_time": "14:24:07", "remaining_time": "7:58:41"} +{"current_steps": 2651, "total_steps": 4118, "loss": 1.7392, "learning_rate": 0.0001, "epoch": 0.6437591063623118, "percentage": 64.38, "elapsed_time": "14:24:26", "remaining_time": "7:58:21"} +{"current_steps": 2652, "total_steps": 4118, "loss": 1.695, "learning_rate": 0.0001, "epoch": 0.6440019426906265, "percentage": 64.4, "elapsed_time": "14:24:46", "remaining_time": "7:58:02"} +{"current_steps": 2653, "total_steps": 4118, "loss": 1.8565, "learning_rate": 0.0001, "epoch": 0.6442447790189413, "percentage": 64.42, "elapsed_time": "14:25:05", "remaining_time": "7:57:42"} +{"current_steps": 2654, "total_steps": 4118, "loss": 1.8046, "learning_rate": 0.0001, "epoch": 0.644487615347256, "percentage": 64.45, "elapsed_time": "14:25:25", "remaining_time": "7:57:23"} +{"current_steps": 2655, "total_steps": 4118, "loss": 1.7282, "learning_rate": 0.0001, "epoch": 0.6447304516755706, "percentage": 64.47, "elapsed_time": "14:25:44", "remaining_time": "7:57:03"} +{"current_steps": 2656, "total_steps": 4118, "loss": 1.6259, "learning_rate": 0.0001, "epoch": 0.6449732880038854, "percentage": 64.5, "elapsed_time": "14:26:04", "remaining_time": "7:56:43"} +{"current_steps": 2657, "total_steps": 4118, "loss": 1.7535, "learning_rate": 0.0001, "epoch": 0.6452161243322001, "percentage": 64.52, "elapsed_time": "14:26:24", "remaining_time": "7:56:24"} +{"current_steps": 2658, "total_steps": 4118, "loss": 1.5403, "learning_rate": 0.0001, "epoch": 0.6454589606605148, "percentage": 64.55, "elapsed_time": "14:26:43", "remaining_time": "7:56:04"} +{"current_steps": 2659, "total_steps": 4118, "loss": 1.6467, "learning_rate": 0.0001, "epoch": 0.6457017969888296, "percentage": 64.57, "elapsed_time": "14:27:03", "remaining_time": "7:55:45"} +{"current_steps": 2660, "total_steps": 4118, "loss": 1.7181, "learning_rate": 0.0001, "epoch": 0.6459446333171442, "percentage": 64.59, "elapsed_time": "14:27:22", "remaining_time": "7:55:25"} +{"current_steps": 2661, "total_steps": 4118, "loss": 1.7429, "learning_rate": 0.0001, "epoch": 0.6461874696454589, "percentage": 64.62, "elapsed_time": "14:27:42", "remaining_time": "7:55:06"} +{"current_steps": 2662, "total_steps": 4118, "loss": 1.7846, "learning_rate": 0.0001, "epoch": 0.6464303059737737, "percentage": 64.64, "elapsed_time": "14:28:01", "remaining_time": "7:54:46"} +{"current_steps": 2663, "total_steps": 4118, "loss": 1.7243, "learning_rate": 0.0001, "epoch": 0.6466731423020884, "percentage": 64.67, "elapsed_time": "14:28:21", "remaining_time": "7:54:26"} +{"current_steps": 2664, "total_steps": 4118, "loss": 1.5944, "learning_rate": 0.0001, "epoch": 0.6469159786304031, "percentage": 64.69, "elapsed_time": "14:28:40", "remaining_time": "7:54:07"} +{"current_steps": 2665, "total_steps": 4118, "loss": 1.7974, "learning_rate": 0.0001, "epoch": 0.6471588149587179, "percentage": 64.72, "elapsed_time": "14:29:00", "remaining_time": "7:53:47"} +{"current_steps": 2666, "total_steps": 4118, "loss": 1.7614, "learning_rate": 0.0001, "epoch": 0.6474016512870325, "percentage": 64.74, "elapsed_time": "14:29:20", "remaining_time": "7:53:28"} +{"current_steps": 2667, "total_steps": 4118, "loss": 1.7064, "learning_rate": 0.0001, "epoch": 0.6476444876153472, "percentage": 64.76, "elapsed_time": "14:29:39", "remaining_time": "7:53:08"} +{"current_steps": 2668, "total_steps": 4118, "loss": 1.6126, "learning_rate": 0.0001, "epoch": 0.647887323943662, "percentage": 64.79, "elapsed_time": "14:29:59", "remaining_time": "7:52:49"} +{"current_steps": 2669, "total_steps": 4118, "loss": 1.7787, "learning_rate": 0.0001, "epoch": 0.6481301602719767, "percentage": 64.81, "elapsed_time": "14:30:18", "remaining_time": "7:52:29"} +{"current_steps": 2670, "total_steps": 4118, "loss": 1.7812, "learning_rate": 0.0001, "epoch": 0.6483729966002914, "percentage": 64.84, "elapsed_time": "14:30:38", "remaining_time": "7:52:09"} +{"current_steps": 2671, "total_steps": 4118, "loss": 1.7021, "learning_rate": 0.0001, "epoch": 0.6486158329286061, "percentage": 64.86, "elapsed_time": "14:30:57", "remaining_time": "7:51:50"} +{"current_steps": 2672, "total_steps": 4118, "loss": 1.833, "learning_rate": 0.0001, "epoch": 0.6488586692569208, "percentage": 64.89, "elapsed_time": "14:31:17", "remaining_time": "7:51:30"} +{"current_steps": 2673, "total_steps": 4118, "loss": 1.7231, "learning_rate": 0.0001, "epoch": 0.6491015055852356, "percentage": 64.91, "elapsed_time": "14:31:36", "remaining_time": "7:51:11"} +{"current_steps": 2674, "total_steps": 4118, "loss": 1.7271, "learning_rate": 0.0001, "epoch": 0.6493443419135503, "percentage": 64.93, "elapsed_time": "14:31:56", "remaining_time": "7:50:51"} +{"current_steps": 2675, "total_steps": 4118, "loss": 1.8542, "learning_rate": 0.0001, "epoch": 0.649587178241865, "percentage": 64.96, "elapsed_time": "14:32:15", "remaining_time": "7:50:32"} +{"current_steps": 2676, "total_steps": 4118, "loss": 1.8296, "learning_rate": 0.0001, "epoch": 0.6498300145701797, "percentage": 64.98, "elapsed_time": "14:32:35", "remaining_time": "7:50:12"} +{"current_steps": 2677, "total_steps": 4118, "loss": 1.8426, "learning_rate": 0.0001, "epoch": 0.6500728508984944, "percentage": 65.01, "elapsed_time": "14:32:55", "remaining_time": "7:49:52"} +{"current_steps": 2678, "total_steps": 4118, "loss": 1.7581, "learning_rate": 0.0001, "epoch": 0.6503156872268091, "percentage": 65.03, "elapsed_time": "14:33:14", "remaining_time": "7:49:33"} +{"current_steps": 2679, "total_steps": 4118, "loss": 1.7851, "learning_rate": 0.0001, "epoch": 0.6505585235551239, "percentage": 65.06, "elapsed_time": "14:33:34", "remaining_time": "7:49:13"} +{"current_steps": 2680, "total_steps": 4118, "loss": 1.6163, "learning_rate": 0.0001, "epoch": 0.6508013598834386, "percentage": 65.08, "elapsed_time": "14:33:53", "remaining_time": "7:48:54"} +{"current_steps": 2681, "total_steps": 4118, "loss": 1.667, "learning_rate": 0.0001, "epoch": 0.6510441962117532, "percentage": 65.1, "elapsed_time": "14:34:13", "remaining_time": "7:48:34"} +{"current_steps": 2682, "total_steps": 4118, "loss": 1.9708, "learning_rate": 0.0001, "epoch": 0.651287032540068, "percentage": 65.13, "elapsed_time": "14:34:32", "remaining_time": "7:48:15"} +{"current_steps": 2683, "total_steps": 4118, "loss": 1.6734, "learning_rate": 0.0001, "epoch": 0.6515298688683827, "percentage": 65.15, "elapsed_time": "14:34:52", "remaining_time": "7:47:55"} +{"current_steps": 2684, "total_steps": 4118, "loss": 1.4981, "learning_rate": 0.0001, "epoch": 0.6517727051966974, "percentage": 65.18, "elapsed_time": "14:35:11", "remaining_time": "7:47:35"} +{"current_steps": 2685, "total_steps": 4118, "loss": 1.8909, "learning_rate": 0.0001, "epoch": 0.6520155415250122, "percentage": 65.2, "elapsed_time": "14:35:31", "remaining_time": "7:47:16"} +{"current_steps": 2686, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.6522583778533269, "percentage": 65.23, "elapsed_time": "14:35:51", "remaining_time": "7:46:56"} +{"current_steps": 2687, "total_steps": 4118, "loss": 1.8036, "learning_rate": 0.0001, "epoch": 0.6525012141816415, "percentage": 65.25, "elapsed_time": "14:36:10", "remaining_time": "7:46:37"} +{"current_steps": 2688, "total_steps": 4118, "loss": 1.705, "learning_rate": 0.0001, "epoch": 0.6527440505099563, "percentage": 65.27, "elapsed_time": "14:36:30", "remaining_time": "7:46:17"} +{"current_steps": 2689, "total_steps": 4118, "loss": 1.6548, "learning_rate": 0.0001, "epoch": 0.652986886838271, "percentage": 65.3, "elapsed_time": "14:36:49", "remaining_time": "7:45:58"} +{"current_steps": 2690, "total_steps": 4118, "loss": 1.8489, "learning_rate": 0.0001, "epoch": 0.6532297231665857, "percentage": 65.32, "elapsed_time": "14:37:09", "remaining_time": "7:45:38"} +{"current_steps": 2691, "total_steps": 4118, "loss": 1.7967, "learning_rate": 0.0001, "epoch": 0.6534725594949005, "percentage": 65.35, "elapsed_time": "14:37:28", "remaining_time": "7:45:18"} +{"current_steps": 2692, "total_steps": 4118, "loss": 1.7925, "learning_rate": 0.0001, "epoch": 0.6537153958232151, "percentage": 65.37, "elapsed_time": "14:37:48", "remaining_time": "7:44:59"} +{"current_steps": 2693, "total_steps": 4118, "loss": 1.5928, "learning_rate": 0.0001, "epoch": 0.6539582321515298, "percentage": 65.4, "elapsed_time": "14:38:07", "remaining_time": "7:44:39"} +{"current_steps": 2694, "total_steps": 4118, "loss": 1.6741, "learning_rate": 0.0001, "epoch": 0.6542010684798446, "percentage": 65.42, "elapsed_time": "14:38:27", "remaining_time": "7:44:20"} +{"current_steps": 2695, "total_steps": 4118, "loss": 1.607, "learning_rate": 0.0001, "epoch": 0.6544439048081593, "percentage": 65.44, "elapsed_time": "14:38:47", "remaining_time": "7:44:00"} +{"current_steps": 2696, "total_steps": 4118, "loss": 1.6812, "learning_rate": 0.0001, "epoch": 0.6546867411364741, "percentage": 65.47, "elapsed_time": "14:39:06", "remaining_time": "7:43:41"} +{"current_steps": 2697, "total_steps": 4118, "loss": 1.7782, "learning_rate": 0.0001, "epoch": 0.6549295774647887, "percentage": 65.49, "elapsed_time": "14:39:26", "remaining_time": "7:43:21"} +{"current_steps": 2698, "total_steps": 4118, "loss": 1.7264, "learning_rate": 0.0001, "epoch": 0.6551724137931034, "percentage": 65.52, "elapsed_time": "14:39:45", "remaining_time": "7:43:01"} +{"current_steps": 2699, "total_steps": 4118, "loss": 1.7981, "learning_rate": 0.0001, "epoch": 0.6554152501214182, "percentage": 65.54, "elapsed_time": "14:40:05", "remaining_time": "7:42:42"} +{"current_steps": 2700, "total_steps": 4118, "loss": 1.7969, "learning_rate": 0.0001, "epoch": 0.6556580864497329, "percentage": 65.57, "elapsed_time": "14:40:24", "remaining_time": "7:42:22"} +{"current_steps": 2701, "total_steps": 4118, "loss": 1.6377, "learning_rate": 0.0001, "epoch": 0.6559009227780476, "percentage": 65.59, "elapsed_time": "14:40:44", "remaining_time": "7:42:03"} +{"current_steps": 2702, "total_steps": 4118, "loss": 1.6032, "learning_rate": 0.0001, "epoch": 0.6561437591063624, "percentage": 65.61, "elapsed_time": "14:41:03", "remaining_time": "7:41:43"} +{"current_steps": 2703, "total_steps": 4118, "loss": 1.9363, "learning_rate": 0.0001, "epoch": 0.656386595434677, "percentage": 65.64, "elapsed_time": "14:41:23", "remaining_time": "7:41:24"} +{"current_steps": 2704, "total_steps": 4118, "loss": 1.7985, "learning_rate": 0.0001, "epoch": 0.6566294317629917, "percentage": 65.66, "elapsed_time": "14:41:43", "remaining_time": "7:41:04"} +{"current_steps": 2705, "total_steps": 4118, "loss": 1.8202, "learning_rate": 0.0001, "epoch": 0.6568722680913065, "percentage": 65.69, "elapsed_time": "14:42:02", "remaining_time": "7:40:44"} +{"current_steps": 2706, "total_steps": 4118, "loss": 1.6566, "learning_rate": 0.0001, "epoch": 0.6571151044196212, "percentage": 65.71, "elapsed_time": "14:42:22", "remaining_time": "7:40:25"} +{"current_steps": 2707, "total_steps": 4118, "loss": 1.7221, "learning_rate": 0.0001, "epoch": 0.6573579407479359, "percentage": 65.74, "elapsed_time": "14:42:41", "remaining_time": "7:40:05"} +{"current_steps": 2708, "total_steps": 4118, "loss": 1.7066, "learning_rate": 0.0001, "epoch": 0.6576007770762506, "percentage": 65.76, "elapsed_time": "14:43:01", "remaining_time": "7:39:46"} +{"current_steps": 2709, "total_steps": 4118, "loss": 1.7497, "learning_rate": 0.0001, "epoch": 0.6578436134045653, "percentage": 65.78, "elapsed_time": "14:43:20", "remaining_time": "7:39:26"} +{"current_steps": 2710, "total_steps": 4118, "loss": 1.743, "learning_rate": 0.0001, "epoch": 0.65808644973288, "percentage": 65.81, "elapsed_time": "14:43:40", "remaining_time": "7:39:07"} +{"current_steps": 2711, "total_steps": 4118, "loss": 1.9078, "learning_rate": 0.0001, "epoch": 0.6583292860611948, "percentage": 65.83, "elapsed_time": "14:44:00", "remaining_time": "7:38:47"} +{"current_steps": 2712, "total_steps": 4118, "loss": 1.7259, "learning_rate": 0.0001, "epoch": 0.6585721223895095, "percentage": 65.86, "elapsed_time": "14:44:19", "remaining_time": "7:38:28"} +{"current_steps": 2713, "total_steps": 4118, "loss": 1.5968, "learning_rate": 0.0001, "epoch": 0.6588149587178241, "percentage": 65.88, "elapsed_time": "14:44:39", "remaining_time": "7:38:08"} +{"current_steps": 2714, "total_steps": 4118, "loss": 1.6289, "learning_rate": 0.0001, "epoch": 0.6590577950461389, "percentage": 65.91, "elapsed_time": "14:44:58", "remaining_time": "7:37:48"} +{"current_steps": 2715, "total_steps": 4118, "loss": 1.7011, "learning_rate": 0.0001, "epoch": 0.6593006313744536, "percentage": 65.93, "elapsed_time": "14:45:18", "remaining_time": "7:37:29"} +{"current_steps": 2716, "total_steps": 4118, "loss": 1.676, "learning_rate": 0.0001, "epoch": 0.6595434677027683, "percentage": 65.95, "elapsed_time": "14:45:37", "remaining_time": "7:37:09"} +{"current_steps": 2717, "total_steps": 4118, "loss": 1.7014, "learning_rate": 0.0001, "epoch": 0.6597863040310831, "percentage": 65.98, "elapsed_time": "14:45:57", "remaining_time": "7:36:50"} +{"current_steps": 2718, "total_steps": 4118, "loss": 1.8205, "learning_rate": 0.0001, "epoch": 0.6600291403593977, "percentage": 66.0, "elapsed_time": "14:46:16", "remaining_time": "7:36:30"} +{"current_steps": 2719, "total_steps": 4118, "loss": 1.7937, "learning_rate": 0.0001, "epoch": 0.6602719766877125, "percentage": 66.03, "elapsed_time": "14:46:36", "remaining_time": "7:36:11"} +{"current_steps": 2720, "total_steps": 4118, "loss": 1.6573, "learning_rate": 0.0001, "epoch": 0.6605148130160272, "percentage": 66.05, "elapsed_time": "14:46:56", "remaining_time": "7:35:51"} +{"current_steps": 2721, "total_steps": 4118, "loss": 1.6482, "learning_rate": 0.0001, "epoch": 0.6607576493443419, "percentage": 66.08, "elapsed_time": "14:47:15", "remaining_time": "7:35:31"} +{"current_steps": 2722, "total_steps": 4118, "loss": 1.9104, "learning_rate": 0.0001, "epoch": 0.6610004856726567, "percentage": 66.1, "elapsed_time": "14:47:35", "remaining_time": "7:35:12"} +{"current_steps": 2723, "total_steps": 4118, "loss": 1.6115, "learning_rate": 0.0001, "epoch": 0.6612433220009714, "percentage": 66.12, "elapsed_time": "14:47:54", "remaining_time": "7:34:52"} +{"current_steps": 2724, "total_steps": 4118, "loss": 1.7382, "learning_rate": 0.0001, "epoch": 0.661486158329286, "percentage": 66.15, "elapsed_time": "14:48:14", "remaining_time": "7:34:33"} +{"current_steps": 2725, "total_steps": 4118, "loss": 1.6651, "learning_rate": 0.0001, "epoch": 0.6617289946576008, "percentage": 66.17, "elapsed_time": "14:48:33", "remaining_time": "7:34:13"} +{"current_steps": 2726, "total_steps": 4118, "loss": 1.7021, "learning_rate": 0.0001, "epoch": 0.6619718309859155, "percentage": 66.2, "elapsed_time": "14:48:53", "remaining_time": "7:33:54"} +{"current_steps": 2727, "total_steps": 4118, "loss": 1.8219, "learning_rate": 0.0001, "epoch": 0.6622146673142302, "percentage": 66.22, "elapsed_time": "14:49:13", "remaining_time": "7:33:34"} +{"current_steps": 2728, "total_steps": 4118, "loss": 1.476, "learning_rate": 0.0001, "epoch": 0.662457503642545, "percentage": 66.25, "elapsed_time": "14:49:32", "remaining_time": "7:33:14"} +{"current_steps": 2729, "total_steps": 4118, "loss": 1.7249, "learning_rate": 0.0001, "epoch": 0.6627003399708596, "percentage": 66.27, "elapsed_time": "14:49:52", "remaining_time": "7:32:55"} +{"current_steps": 2730, "total_steps": 4118, "loss": 1.736, "learning_rate": 0.0001, "epoch": 0.6629431762991743, "percentage": 66.29, "elapsed_time": "14:50:11", "remaining_time": "7:32:35"} +{"current_steps": 2731, "total_steps": 4118, "loss": 1.7291, "learning_rate": 0.0001, "epoch": 0.6631860126274891, "percentage": 66.32, "elapsed_time": "14:50:31", "remaining_time": "7:32:16"} +{"current_steps": 2732, "total_steps": 4118, "loss": 1.6558, "learning_rate": 0.0001, "epoch": 0.6634288489558038, "percentage": 66.34, "elapsed_time": "14:50:50", "remaining_time": "7:31:56"} +{"current_steps": 2733, "total_steps": 4118, "loss": 1.6821, "learning_rate": 0.0001, "epoch": 0.6636716852841185, "percentage": 66.37, "elapsed_time": "14:51:10", "remaining_time": "7:31:37"} +{"current_steps": 2734, "total_steps": 4118, "loss": 1.8418, "learning_rate": 0.0001, "epoch": 0.6639145216124333, "percentage": 66.39, "elapsed_time": "14:51:29", "remaining_time": "7:31:17"} +{"current_steps": 2735, "total_steps": 4118, "loss": 1.6363, "learning_rate": 0.0001, "epoch": 0.6641573579407479, "percentage": 66.42, "elapsed_time": "14:51:49", "remaining_time": "7:30:58"} +{"current_steps": 2736, "total_steps": 4118, "loss": 1.637, "learning_rate": 0.0001, "epoch": 0.6644001942690626, "percentage": 66.44, "elapsed_time": "14:52:09", "remaining_time": "7:30:38"} +{"current_steps": 2737, "total_steps": 4118, "loss": 1.8214, "learning_rate": 0.0001, "epoch": 0.6646430305973774, "percentage": 66.46, "elapsed_time": "14:52:28", "remaining_time": "7:30:18"} +{"current_steps": 2738, "total_steps": 4118, "loss": 1.8553, "learning_rate": 0.0001, "epoch": 0.6648858669256921, "percentage": 66.49, "elapsed_time": "14:52:48", "remaining_time": "7:29:59"} +{"current_steps": 2739, "total_steps": 4118, "loss": 1.7512, "learning_rate": 0.0001, "epoch": 0.6651287032540067, "percentage": 66.51, "elapsed_time": "14:53:07", "remaining_time": "7:29:39"} +{"current_steps": 2740, "total_steps": 4118, "loss": 1.7128, "learning_rate": 0.0001, "epoch": 0.6653715395823215, "percentage": 66.54, "elapsed_time": "14:53:27", "remaining_time": "7:29:20"} +{"current_steps": 2741, "total_steps": 4118, "loss": 1.8902, "learning_rate": 0.0001, "epoch": 0.6656143759106362, "percentage": 66.56, "elapsed_time": "14:53:46", "remaining_time": "7:29:00"} +{"current_steps": 2742, "total_steps": 4118, "loss": 1.7698, "learning_rate": 0.0001, "epoch": 0.665857212238951, "percentage": 66.59, "elapsed_time": "14:54:06", "remaining_time": "7:28:41"} +{"current_steps": 2743, "total_steps": 4118, "loss": 1.6901, "learning_rate": 0.0001, "epoch": 0.6661000485672657, "percentage": 66.61, "elapsed_time": "14:54:25", "remaining_time": "7:28:21"} +{"current_steps": 2744, "total_steps": 4118, "loss": 1.7141, "learning_rate": 0.0001, "epoch": 0.6663428848955804, "percentage": 66.63, "elapsed_time": "14:54:45", "remaining_time": "7:28:01"} +{"current_steps": 2745, "total_steps": 4118, "loss": 1.6828, "learning_rate": 0.0001, "epoch": 0.6665857212238951, "percentage": 66.66, "elapsed_time": "14:55:05", "remaining_time": "7:27:42"} +{"current_steps": 2746, "total_steps": 4118, "loss": 1.836, "learning_rate": 0.0001, "epoch": 0.6668285575522098, "percentage": 66.68, "elapsed_time": "14:55:24", "remaining_time": "7:27:22"} +{"current_steps": 2747, "total_steps": 4118, "loss": 1.6577, "learning_rate": 0.0001, "epoch": 0.6670713938805245, "percentage": 66.71, "elapsed_time": "14:55:44", "remaining_time": "7:27:03"} +{"current_steps": 2748, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.6673142302088393, "percentage": 66.73, "elapsed_time": "14:56:03", "remaining_time": "7:26:43"} +{"current_steps": 2749, "total_steps": 4118, "loss": 1.8467, "learning_rate": 0.0001, "epoch": 0.667557066537154, "percentage": 66.76, "elapsed_time": "14:56:23", "remaining_time": "7:26:24"} +{"current_steps": 2750, "total_steps": 4118, "loss": 1.7781, "learning_rate": 0.0001, "epoch": 0.6677999028654686, "percentage": 66.78, "elapsed_time": "14:56:42", "remaining_time": "7:26:04"} +{"current_steps": 2751, "total_steps": 4118, "loss": 1.7189, "learning_rate": 0.0001, "epoch": 0.6680427391937834, "percentage": 66.8, "elapsed_time": "14:57:02", "remaining_time": "7:25:44"} +{"current_steps": 2752, "total_steps": 4118, "loss": 1.6984, "learning_rate": 0.0001, "epoch": 0.6682855755220981, "percentage": 66.83, "elapsed_time": "14:57:22", "remaining_time": "7:25:25"} +{"current_steps": 2753, "total_steps": 4118, "loss": 1.7711, "learning_rate": 0.0001, "epoch": 0.6685284118504128, "percentage": 66.85, "elapsed_time": "14:57:41", "remaining_time": "7:25:05"} +{"current_steps": 2754, "total_steps": 4118, "loss": 1.69, "learning_rate": 0.0001, "epoch": 0.6687712481787276, "percentage": 66.88, "elapsed_time": "14:58:01", "remaining_time": "7:24:46"} +{"current_steps": 2755, "total_steps": 4118, "loss": 1.3654, "learning_rate": 0.0001, "epoch": 0.6690140845070423, "percentage": 66.9, "elapsed_time": "14:58:20", "remaining_time": "7:24:26"} +{"current_steps": 2756, "total_steps": 4118, "loss": 1.7889, "learning_rate": 0.0001, "epoch": 0.6692569208353569, "percentage": 66.93, "elapsed_time": "14:58:40", "remaining_time": "7:24:07"} +{"current_steps": 2757, "total_steps": 4118, "loss": 1.6747, "learning_rate": 0.0001, "epoch": 0.6694997571636717, "percentage": 66.95, "elapsed_time": "14:58:59", "remaining_time": "7:23:47"} +{"current_steps": 2758, "total_steps": 4118, "loss": 1.761, "learning_rate": 0.0001, "epoch": 0.6697425934919864, "percentage": 66.97, "elapsed_time": "14:59:19", "remaining_time": "7:23:27"} +{"current_steps": 2759, "total_steps": 4118, "loss": 1.8046, "learning_rate": 0.0001, "epoch": 0.6699854298203011, "percentage": 67.0, "elapsed_time": "14:59:38", "remaining_time": "7:23:08"} +{"current_steps": 2760, "total_steps": 4118, "loss": 1.9189, "learning_rate": 0.0001, "epoch": 0.6702282661486159, "percentage": 67.02, "elapsed_time": "14:59:58", "remaining_time": "7:22:48"} +{"current_steps": 2761, "total_steps": 4118, "loss": 1.9457, "learning_rate": 0.0001, "epoch": 0.6704711024769305, "percentage": 67.05, "elapsed_time": "15:00:18", "remaining_time": "7:22:29"} +{"current_steps": 2762, "total_steps": 4118, "loss": 1.7561, "learning_rate": 0.0001, "epoch": 0.6707139388052452, "percentage": 67.07, "elapsed_time": "15:00:37", "remaining_time": "7:22:09"} +{"current_steps": 2763, "total_steps": 4118, "loss": 1.8517, "learning_rate": 0.0001, "epoch": 0.67095677513356, "percentage": 67.1, "elapsed_time": "15:00:57", "remaining_time": "7:21:50"} +{"current_steps": 2764, "total_steps": 4118, "loss": 1.6253, "learning_rate": 0.0001, "epoch": 0.6711996114618747, "percentage": 67.12, "elapsed_time": "15:01:16", "remaining_time": "7:21:30"} +{"current_steps": 2765, "total_steps": 4118, "loss": 1.8093, "learning_rate": 0.0001, "epoch": 0.6714424477901895, "percentage": 67.14, "elapsed_time": "15:01:36", "remaining_time": "7:21:10"} +{"current_steps": 2766, "total_steps": 4118, "loss": 1.9085, "learning_rate": 0.0001, "epoch": 0.6716852841185041, "percentage": 67.17, "elapsed_time": "15:01:55", "remaining_time": "7:20:51"} +{"current_steps": 2767, "total_steps": 4118, "loss": 1.6889, "learning_rate": 0.0001, "epoch": 0.6719281204468188, "percentage": 67.19, "elapsed_time": "15:02:15", "remaining_time": "7:20:31"} +{"current_steps": 2768, "total_steps": 4118, "loss": 1.7069, "learning_rate": 0.0001, "epoch": 0.6721709567751336, "percentage": 67.22, "elapsed_time": "15:02:34", "remaining_time": "7:20:12"} +{"current_steps": 2769, "total_steps": 4118, "loss": 1.7135, "learning_rate": 0.0001, "epoch": 0.6724137931034483, "percentage": 67.24, "elapsed_time": "15:02:54", "remaining_time": "7:19:52"} +{"current_steps": 2770, "total_steps": 4118, "loss": 1.8324, "learning_rate": 0.0001, "epoch": 0.672656629431763, "percentage": 67.27, "elapsed_time": "15:03:14", "remaining_time": "7:19:33"} +{"current_steps": 2771, "total_steps": 4118, "loss": 1.5955, "learning_rate": 0.0001, "epoch": 0.6728994657600778, "percentage": 67.29, "elapsed_time": "15:03:33", "remaining_time": "7:19:13"} +{"current_steps": 2772, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.6731423020883924, "percentage": 67.31, "elapsed_time": "15:03:53", "remaining_time": "7:18:54"} +{"current_steps": 2773, "total_steps": 4118, "loss": 1.636, "learning_rate": 0.0001, "epoch": 0.6733851384167071, "percentage": 67.34, "elapsed_time": "15:04:12", "remaining_time": "7:18:34"} +{"current_steps": 2774, "total_steps": 4118, "loss": 1.8059, "learning_rate": 0.0001, "epoch": 0.6736279747450219, "percentage": 67.36, "elapsed_time": "15:04:32", "remaining_time": "7:18:14"} +{"current_steps": 2775, "total_steps": 4118, "loss": 1.9028, "learning_rate": 0.0001, "epoch": 0.6738708110733366, "percentage": 67.39, "elapsed_time": "15:04:51", "remaining_time": "7:17:55"} +{"current_steps": 2776, "total_steps": 4118, "loss": 1.8641, "learning_rate": 0.0001, "epoch": 0.6741136474016513, "percentage": 67.41, "elapsed_time": "15:05:11", "remaining_time": "7:17:35"} +{"current_steps": 2777, "total_steps": 4118, "loss": 1.7234, "learning_rate": 0.0001, "epoch": 0.674356483729966, "percentage": 67.44, "elapsed_time": "15:05:30", "remaining_time": "7:17:16"} +{"current_steps": 2778, "total_steps": 4118, "loss": 1.7674, "learning_rate": 0.0001, "epoch": 0.6745993200582807, "percentage": 67.46, "elapsed_time": "15:05:50", "remaining_time": "7:16:56"} +{"current_steps": 2779, "total_steps": 4118, "loss": 1.7072, "learning_rate": 0.0001, "epoch": 0.6748421563865954, "percentage": 67.48, "elapsed_time": "15:06:10", "remaining_time": "7:16:37"} +{"current_steps": 2780, "total_steps": 4118, "loss": 1.6211, "learning_rate": 0.0001, "epoch": 0.6750849927149102, "percentage": 67.51, "elapsed_time": "15:06:29", "remaining_time": "7:16:17"} +{"current_steps": 2781, "total_steps": 4118, "loss": 1.8791, "learning_rate": 0.0001, "epoch": 0.6753278290432249, "percentage": 67.53, "elapsed_time": "15:06:49", "remaining_time": "7:15:57"} +{"current_steps": 2782, "total_steps": 4118, "loss": 1.6775, "learning_rate": 0.0001, "epoch": 0.6755706653715395, "percentage": 67.56, "elapsed_time": "15:07:08", "remaining_time": "7:15:38"} +{"current_steps": 2783, "total_steps": 4118, "loss": 1.7438, "learning_rate": 0.0001, "epoch": 0.6758135016998543, "percentage": 67.58, "elapsed_time": "15:07:28", "remaining_time": "7:15:18"} +{"current_steps": 2784, "total_steps": 4118, "loss": 1.4817, "learning_rate": 0.0001, "epoch": 0.676056338028169, "percentage": 67.61, "elapsed_time": "15:07:47", "remaining_time": "7:14:59"} +{"current_steps": 2785, "total_steps": 4118, "loss": 1.6642, "learning_rate": 0.0001, "epoch": 0.6762991743564837, "percentage": 67.63, "elapsed_time": "15:08:07", "remaining_time": "7:14:39"} +{"current_steps": 2786, "total_steps": 4118, "loss": 1.6339, "learning_rate": 0.0001, "epoch": 0.6765420106847985, "percentage": 67.65, "elapsed_time": "15:08:26", "remaining_time": "7:14:20"} +{"current_steps": 2787, "total_steps": 4118, "loss": 1.7468, "learning_rate": 0.0001, "epoch": 0.6767848470131131, "percentage": 67.68, "elapsed_time": "15:08:46", "remaining_time": "7:14:00"} +{"current_steps": 2788, "total_steps": 4118, "loss": 1.8245, "learning_rate": 0.0001, "epoch": 0.6770276833414279, "percentage": 67.7, "elapsed_time": "15:09:06", "remaining_time": "7:13:40"} +{"current_steps": 2789, "total_steps": 4118, "loss": 1.6302, "learning_rate": 0.0001, "epoch": 0.6772705196697426, "percentage": 67.73, "elapsed_time": "15:09:25", "remaining_time": "7:13:21"} +{"current_steps": 2790, "total_steps": 4118, "loss": 1.5022, "learning_rate": 0.0001, "epoch": 0.6775133559980573, "percentage": 67.75, "elapsed_time": "15:09:45", "remaining_time": "7:13:01"} +{"current_steps": 2791, "total_steps": 4118, "loss": 1.73, "learning_rate": 0.0001, "epoch": 0.6777561923263721, "percentage": 67.78, "elapsed_time": "15:10:04", "remaining_time": "7:12:42"} +{"current_steps": 2792, "total_steps": 4118, "loss": 1.9982, "learning_rate": 0.0001, "epoch": 0.6779990286546868, "percentage": 67.8, "elapsed_time": "15:10:24", "remaining_time": "7:12:22"} +{"current_steps": 2793, "total_steps": 4118, "loss": 1.5975, "learning_rate": 0.0001, "epoch": 0.6782418649830014, "percentage": 67.82, "elapsed_time": "15:10:43", "remaining_time": "7:12:03"} +{"current_steps": 2794, "total_steps": 4118, "loss": 1.5994, "learning_rate": 0.0001, "epoch": 0.6784847013113162, "percentage": 67.85, "elapsed_time": "15:11:03", "remaining_time": "7:11:43"} +{"current_steps": 2795, "total_steps": 4118, "loss": 1.7429, "learning_rate": 0.0001, "epoch": 0.6787275376396309, "percentage": 67.87, "elapsed_time": "15:11:22", "remaining_time": "7:11:23"} +{"current_steps": 2796, "total_steps": 4118, "loss": 1.5315, "learning_rate": 0.0001, "epoch": 0.6789703739679456, "percentage": 67.9, "elapsed_time": "15:11:42", "remaining_time": "7:11:04"} +{"current_steps": 2797, "total_steps": 4118, "loss": 1.7652, "learning_rate": 0.0001, "epoch": 0.6792132102962604, "percentage": 67.92, "elapsed_time": "15:12:02", "remaining_time": "7:10:44"} +{"current_steps": 2798, "total_steps": 4118, "loss": 1.7473, "learning_rate": 0.0001, "epoch": 0.679456046624575, "percentage": 67.95, "elapsed_time": "15:12:21", "remaining_time": "7:10:25"} +{"current_steps": 2799, "total_steps": 4118, "loss": 1.5989, "learning_rate": 0.0001, "epoch": 0.6796988829528897, "percentage": 67.97, "elapsed_time": "15:12:41", "remaining_time": "7:10:05"} +{"current_steps": 2800, "total_steps": 4118, "loss": 1.6209, "learning_rate": 0.0001, "epoch": 0.6799417192812045, "percentage": 67.99, "elapsed_time": "15:13:00", "remaining_time": "7:09:46"} +{"current_steps": 2801, "total_steps": 4118, "loss": 1.6368, "learning_rate": 0.0001, "epoch": 0.6801845556095192, "percentage": 68.02, "elapsed_time": "15:13:20", "remaining_time": "7:09:26"} +{"current_steps": 2802, "total_steps": 4118, "loss": 1.7557, "learning_rate": 0.0001, "epoch": 0.6804273919378339, "percentage": 68.04, "elapsed_time": "15:13:39", "remaining_time": "7:09:06"} +{"current_steps": 2803, "total_steps": 4118, "loss": 1.6756, "learning_rate": 0.0001, "epoch": 0.6806702282661486, "percentage": 68.07, "elapsed_time": "15:13:59", "remaining_time": "7:08:47"} +{"current_steps": 2804, "total_steps": 4118, "loss": 1.5336, "learning_rate": 0.0001, "epoch": 0.6809130645944633, "percentage": 68.09, "elapsed_time": "15:14:18", "remaining_time": "7:08:27"} +{"current_steps": 2805, "total_steps": 4118, "loss": 1.8656, "learning_rate": 0.0001, "epoch": 0.681155900922778, "percentage": 68.12, "elapsed_time": "15:14:38", "remaining_time": "7:08:08"} +{"current_steps": 2806, "total_steps": 4118, "loss": 1.6831, "learning_rate": 0.0001, "epoch": 0.6813987372510928, "percentage": 68.14, "elapsed_time": "15:14:58", "remaining_time": "7:07:48"} +{"current_steps": 2807, "total_steps": 4118, "loss": 1.8043, "learning_rate": 0.0001, "epoch": 0.6816415735794075, "percentage": 68.16, "elapsed_time": "15:15:17", "remaining_time": "7:07:29"} +{"current_steps": 2808, "total_steps": 4118, "loss": 1.7525, "learning_rate": 0.0001, "epoch": 0.6818844099077221, "percentage": 68.19, "elapsed_time": "15:15:37", "remaining_time": "7:07:09"} +{"current_steps": 2809, "total_steps": 4118, "loss": 1.7397, "learning_rate": 0.0001, "epoch": 0.6821272462360369, "percentage": 68.21, "elapsed_time": "15:15:56", "remaining_time": "7:06:49"} +{"current_steps": 2810, "total_steps": 4118, "loss": 1.7558, "learning_rate": 0.0001, "epoch": 0.6823700825643516, "percentage": 68.24, "elapsed_time": "15:16:16", "remaining_time": "7:06:30"} +{"current_steps": 2811, "total_steps": 4118, "loss": 1.979, "learning_rate": 0.0001, "epoch": 0.6826129188926664, "percentage": 68.26, "elapsed_time": "15:16:35", "remaining_time": "7:06:10"} +{"current_steps": 2812, "total_steps": 4118, "loss": 1.8943, "learning_rate": 0.0001, "epoch": 0.6828557552209811, "percentage": 68.29, "elapsed_time": "15:16:55", "remaining_time": "7:05:51"} +{"current_steps": 2813, "total_steps": 4118, "loss": 1.6549, "learning_rate": 0.0001, "epoch": 0.6830985915492958, "percentage": 68.31, "elapsed_time": "15:17:14", "remaining_time": "7:05:31"} +{"current_steps": 2814, "total_steps": 4118, "loss": 1.7353, "learning_rate": 0.0001, "epoch": 0.6833414278776105, "percentage": 68.33, "elapsed_time": "15:17:34", "remaining_time": "7:05:12"} +{"current_steps": 2815, "total_steps": 4118, "loss": 1.846, "learning_rate": 0.0001, "epoch": 0.6835842642059252, "percentage": 68.36, "elapsed_time": "15:17:54", "remaining_time": "7:04:52"} +{"current_steps": 2816, "total_steps": 4118, "loss": 1.6208, "learning_rate": 0.0001, "epoch": 0.6838271005342399, "percentage": 68.38, "elapsed_time": "15:18:13", "remaining_time": "7:04:32"} +{"current_steps": 2817, "total_steps": 4118, "loss": 1.8607, "learning_rate": 0.0001, "epoch": 0.6840699368625547, "percentage": 68.41, "elapsed_time": "15:18:33", "remaining_time": "7:04:13"} +{"current_steps": 2818, "total_steps": 4118, "loss": 1.8197, "learning_rate": 0.0001, "epoch": 0.6843127731908694, "percentage": 68.43, "elapsed_time": "15:18:52", "remaining_time": "7:03:53"} +{"current_steps": 2819, "total_steps": 4118, "loss": 1.804, "learning_rate": 0.0001, "epoch": 0.684555609519184, "percentage": 68.46, "elapsed_time": "15:19:12", "remaining_time": "7:03:34"} +{"current_steps": 2820, "total_steps": 4118, "loss": 1.6639, "learning_rate": 0.0001, "epoch": 0.6847984458474988, "percentage": 68.48, "elapsed_time": "15:19:31", "remaining_time": "7:03:14"} +{"current_steps": 2821, "total_steps": 4118, "loss": 1.728, "learning_rate": 0.0001, "epoch": 0.6850412821758135, "percentage": 68.5, "elapsed_time": "15:19:51", "remaining_time": "7:02:55"} +{"current_steps": 2822, "total_steps": 4118, "loss": 1.7572, "learning_rate": 0.0001, "epoch": 0.6852841185041282, "percentage": 68.53, "elapsed_time": "15:20:10", "remaining_time": "7:02:35"} +{"current_steps": 2823, "total_steps": 4118, "loss": 1.7514, "learning_rate": 0.0001, "epoch": 0.685526954832443, "percentage": 68.55, "elapsed_time": "15:20:30", "remaining_time": "7:02:15"} +{"current_steps": 2824, "total_steps": 4118, "loss": 1.7767, "learning_rate": 0.0001, "epoch": 0.6857697911607576, "percentage": 68.58, "elapsed_time": "15:20:50", "remaining_time": "7:01:56"} +{"current_steps": 2825, "total_steps": 4118, "loss": 1.6182, "learning_rate": 0.0001, "epoch": 0.6860126274890723, "percentage": 68.6, "elapsed_time": "15:21:09", "remaining_time": "7:01:36"} +{"current_steps": 2826, "total_steps": 4118, "loss": 1.8898, "learning_rate": 0.0001, "epoch": 0.6862554638173871, "percentage": 68.63, "elapsed_time": "15:21:29", "remaining_time": "7:01:17"} +{"current_steps": 2827, "total_steps": 4118, "loss": 1.8712, "learning_rate": 0.0001, "epoch": 0.6864983001457018, "percentage": 68.65, "elapsed_time": "15:21:48", "remaining_time": "7:00:57"} +{"current_steps": 2828, "total_steps": 4118, "loss": 1.7167, "learning_rate": 0.0001, "epoch": 0.6867411364740165, "percentage": 68.67, "elapsed_time": "15:22:08", "remaining_time": "7:00:38"} +{"current_steps": 2829, "total_steps": 4118, "loss": 1.6289, "learning_rate": 0.0001, "epoch": 0.6869839728023313, "percentage": 68.7, "elapsed_time": "15:22:27", "remaining_time": "7:00:18"} +{"current_steps": 2830, "total_steps": 4118, "loss": 1.6585, "learning_rate": 0.0001, "epoch": 0.6872268091306459, "percentage": 68.72, "elapsed_time": "15:22:47", "remaining_time": "6:59:59"} +{"current_steps": 2831, "total_steps": 4118, "loss": 1.7267, "learning_rate": 0.0001, "epoch": 0.6874696454589606, "percentage": 68.75, "elapsed_time": "15:23:07", "remaining_time": "6:59:39"} +{"current_steps": 2832, "total_steps": 4118, "loss": 1.7293, "learning_rate": 0.0001, "epoch": 0.6877124817872754, "percentage": 68.77, "elapsed_time": "15:23:26", "remaining_time": "6:59:19"} +{"current_steps": 2833, "total_steps": 4118, "loss": 1.7528, "learning_rate": 0.0001, "epoch": 0.6879553181155901, "percentage": 68.8, "elapsed_time": "15:23:46", "remaining_time": "6:59:00"} +{"current_steps": 2834, "total_steps": 4118, "loss": 1.7233, "learning_rate": 0.0001, "epoch": 0.6881981544439048, "percentage": 68.82, "elapsed_time": "15:24:05", "remaining_time": "6:58:40"} +{"current_steps": 2835, "total_steps": 4118, "loss": 1.7574, "learning_rate": 0.0001, "epoch": 0.6884409907722195, "percentage": 68.84, "elapsed_time": "15:24:25", "remaining_time": "6:58:21"} +{"current_steps": 2836, "total_steps": 4118, "loss": 1.6174, "learning_rate": 0.0001, "epoch": 0.6886838271005342, "percentage": 68.87, "elapsed_time": "15:24:44", "remaining_time": "6:58:01"} +{"current_steps": 2837, "total_steps": 4118, "loss": 1.6541, "learning_rate": 0.0001, "epoch": 0.688926663428849, "percentage": 68.89, "elapsed_time": "15:25:04", "remaining_time": "6:57:42"} +{"current_steps": 2838, "total_steps": 4118, "loss": 1.802, "learning_rate": 0.0001, "epoch": 0.6891694997571637, "percentage": 68.92, "elapsed_time": "15:25:24", "remaining_time": "6:57:22"} +{"current_steps": 2839, "total_steps": 4118, "loss": 1.6725, "learning_rate": 0.0001, "epoch": 0.6894123360854784, "percentage": 68.94, "elapsed_time": "15:25:43", "remaining_time": "6:57:02"} +{"current_steps": 2840, "total_steps": 4118, "loss": 1.7234, "learning_rate": 0.0001, "epoch": 0.6896551724137931, "percentage": 68.97, "elapsed_time": "15:26:03", "remaining_time": "6:56:43"} +{"current_steps": 2841, "total_steps": 4118, "loss": 1.7309, "learning_rate": 0.0001, "epoch": 0.6898980087421078, "percentage": 68.99, "elapsed_time": "15:26:22", "remaining_time": "6:56:23"} +{"current_steps": 2842, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.6901408450704225, "percentage": 69.01, "elapsed_time": "15:26:42", "remaining_time": "6:56:04"} +{"current_steps": 2843, "total_steps": 4118, "loss": 1.8504, "learning_rate": 0.0001, "epoch": 0.6903836813987373, "percentage": 69.04, "elapsed_time": "15:27:01", "remaining_time": "6:55:44"} +{"current_steps": 2844, "total_steps": 4118, "loss": 1.7663, "learning_rate": 0.0001, "epoch": 0.690626517727052, "percentage": 69.06, "elapsed_time": "15:27:21", "remaining_time": "6:55:25"} +{"current_steps": 2845, "total_steps": 4118, "loss": 1.6458, "learning_rate": 0.0001, "epoch": 0.6908693540553666, "percentage": 69.09, "elapsed_time": "15:27:41", "remaining_time": "6:55:05"} +{"current_steps": 2846, "total_steps": 4118, "loss": 1.8237, "learning_rate": 0.0001, "epoch": 0.6911121903836814, "percentage": 69.11, "elapsed_time": "15:28:00", "remaining_time": "6:54:46"} +{"current_steps": 2847, "total_steps": 4118, "loss": 1.7601, "learning_rate": 0.0001, "epoch": 0.6913550267119961, "percentage": 69.14, "elapsed_time": "15:28:20", "remaining_time": "6:54:26"} +{"current_steps": 2848, "total_steps": 4118, "loss": 1.6164, "learning_rate": 0.0001, "epoch": 0.6915978630403108, "percentage": 69.16, "elapsed_time": "15:28:39", "remaining_time": "6:54:06"} +{"current_steps": 2849, "total_steps": 4118, "loss": 1.7287, "learning_rate": 0.0001, "epoch": 0.6918406993686256, "percentage": 69.18, "elapsed_time": "15:28:59", "remaining_time": "6:53:47"} +{"current_steps": 2850, "total_steps": 4118, "loss": 1.6277, "learning_rate": 0.0001, "epoch": 0.6920835356969403, "percentage": 69.21, "elapsed_time": "15:29:18", "remaining_time": "6:53:27"} +{"current_steps": 2851, "total_steps": 4118, "loss": 1.7651, "learning_rate": 0.0001, "epoch": 0.6923263720252549, "percentage": 69.23, "elapsed_time": "15:29:38", "remaining_time": "6:53:08"} +{"current_steps": 2852, "total_steps": 4118, "loss": 1.6533, "learning_rate": 0.0001, "epoch": 0.6925692083535697, "percentage": 69.26, "elapsed_time": "15:29:57", "remaining_time": "6:52:48"} +{"current_steps": 2853, "total_steps": 4118, "loss": 1.6387, "learning_rate": 0.0001, "epoch": 0.6928120446818844, "percentage": 69.28, "elapsed_time": "15:30:17", "remaining_time": "6:52:29"} +{"current_steps": 2854, "total_steps": 4118, "loss": 1.6371, "learning_rate": 0.0001, "epoch": 0.6930548810101991, "percentage": 69.31, "elapsed_time": "15:30:37", "remaining_time": "6:52:09"} +{"current_steps": 2855, "total_steps": 4118, "loss": 1.7494, "learning_rate": 0.0001, "epoch": 0.6932977173385139, "percentage": 69.33, "elapsed_time": "15:30:56", "remaining_time": "6:51:49"} +{"current_steps": 2856, "total_steps": 4118, "loss": 1.6755, "learning_rate": 0.0001, "epoch": 0.6935405536668285, "percentage": 69.35, "elapsed_time": "15:31:16", "remaining_time": "6:51:30"} +{"current_steps": 2857, "total_steps": 4118, "loss": 1.673, "learning_rate": 0.0001, "epoch": 0.6937833899951432, "percentage": 69.38, "elapsed_time": "15:31:35", "remaining_time": "6:51:10"} +{"current_steps": 2858, "total_steps": 4118, "loss": 1.6292, "learning_rate": 0.0001, "epoch": 0.694026226323458, "percentage": 69.4, "elapsed_time": "15:31:55", "remaining_time": "6:50:51"} +{"current_steps": 2859, "total_steps": 4118, "loss": 1.6493, "learning_rate": 0.0001, "epoch": 0.6942690626517727, "percentage": 69.43, "elapsed_time": "15:32:14", "remaining_time": "6:50:31"} +{"current_steps": 2860, "total_steps": 4118, "loss": 1.6483, "learning_rate": 0.0001, "epoch": 0.6945118989800875, "percentage": 69.45, "elapsed_time": "15:32:34", "remaining_time": "6:50:12"} +{"current_steps": 2861, "total_steps": 4118, "loss": 1.7305, "learning_rate": 0.0001, "epoch": 0.6947547353084021, "percentage": 69.48, "elapsed_time": "15:32:53", "remaining_time": "6:49:52"} +{"current_steps": 2862, "total_steps": 4118, "loss": 1.8187, "learning_rate": 0.0001, "epoch": 0.6949975716367168, "percentage": 69.5, "elapsed_time": "15:33:13", "remaining_time": "6:49:32"} +{"current_steps": 2863, "total_steps": 4118, "loss": 1.6591, "learning_rate": 0.0001, "epoch": 0.6952404079650316, "percentage": 69.52, "elapsed_time": "15:33:33", "remaining_time": "6:49:13"} +{"current_steps": 2864, "total_steps": 4118, "loss": 1.6362, "learning_rate": 0.0001, "epoch": 0.6954832442933463, "percentage": 69.55, "elapsed_time": "15:33:52", "remaining_time": "6:48:53"} +{"current_steps": 2865, "total_steps": 4118, "loss": 1.65, "learning_rate": 0.0001, "epoch": 0.695726080621661, "percentage": 69.57, "elapsed_time": "15:34:12", "remaining_time": "6:48:34"} +{"current_steps": 2866, "total_steps": 4118, "loss": 1.6152, "learning_rate": 0.0001, "epoch": 0.6959689169499758, "percentage": 69.6, "elapsed_time": "15:34:31", "remaining_time": "6:48:14"} +{"current_steps": 2867, "total_steps": 4118, "loss": 1.6005, "learning_rate": 0.0001, "epoch": 0.6962117532782904, "percentage": 69.62, "elapsed_time": "15:34:51", "remaining_time": "6:47:55"} +{"current_steps": 2868, "total_steps": 4118, "loss": 1.6354, "learning_rate": 0.0001, "epoch": 0.6964545896066051, "percentage": 69.65, "elapsed_time": "15:35:10", "remaining_time": "6:47:35"} +{"current_steps": 2869, "total_steps": 4118, "loss": 1.6685, "learning_rate": 0.0001, "epoch": 0.6966974259349199, "percentage": 69.67, "elapsed_time": "15:35:30", "remaining_time": "6:47:16"} +{"current_steps": 2870, "total_steps": 4118, "loss": 1.6389, "learning_rate": 0.0001, "epoch": 0.6969402622632346, "percentage": 69.69, "elapsed_time": "15:35:50", "remaining_time": "6:46:56"} +{"current_steps": 2871, "total_steps": 4118, "loss": 1.5563, "learning_rate": 0.0001, "epoch": 0.6971830985915493, "percentage": 69.72, "elapsed_time": "15:36:09", "remaining_time": "6:46:36"} +{"current_steps": 2872, "total_steps": 4118, "loss": 1.6713, "learning_rate": 0.0001, "epoch": 0.697425934919864, "percentage": 69.74, "elapsed_time": "15:36:29", "remaining_time": "6:46:17"} +{"current_steps": 2873, "total_steps": 4118, "loss": 1.7278, "learning_rate": 0.0001, "epoch": 0.6976687712481787, "percentage": 69.77, "elapsed_time": "15:36:48", "remaining_time": "6:45:57"} +{"current_steps": 2874, "total_steps": 4118, "loss": 1.8605, "learning_rate": 0.0001, "epoch": 0.6979116075764934, "percentage": 69.79, "elapsed_time": "15:37:08", "remaining_time": "6:45:38"} +{"current_steps": 2875, "total_steps": 4118, "loss": 1.8146, "learning_rate": 0.0001, "epoch": 0.6981544439048082, "percentage": 69.82, "elapsed_time": "15:37:27", "remaining_time": "6:45:18"} +{"current_steps": 2876, "total_steps": 4118, "loss": 1.6717, "learning_rate": 0.0001, "epoch": 0.6983972802331229, "percentage": 69.84, "elapsed_time": "15:37:47", "remaining_time": "6:44:59"} +{"current_steps": 2877, "total_steps": 4118, "loss": 1.7757, "learning_rate": 0.0001, "epoch": 0.6986401165614375, "percentage": 69.86, "elapsed_time": "15:38:06", "remaining_time": "6:44:39"} +{"current_steps": 2878, "total_steps": 4118, "loss": 1.7037, "learning_rate": 0.0001, "epoch": 0.6988829528897523, "percentage": 69.89, "elapsed_time": "15:38:26", "remaining_time": "6:44:19"} +{"current_steps": 2879, "total_steps": 4118, "loss": 1.6787, "learning_rate": 0.0001, "epoch": 0.699125789218067, "percentage": 69.91, "elapsed_time": "15:38:46", "remaining_time": "6:44:00"} +{"current_steps": 2880, "total_steps": 4118, "loss": 1.7925, "learning_rate": 0.0001, "epoch": 0.6993686255463817, "percentage": 69.94, "elapsed_time": "15:39:05", "remaining_time": "6:43:40"} +{"current_steps": 2881, "total_steps": 4118, "loss": 1.6632, "learning_rate": 0.0001, "epoch": 0.6996114618746965, "percentage": 69.96, "elapsed_time": "15:39:25", "remaining_time": "6:43:21"} +{"current_steps": 2882, "total_steps": 4118, "loss": 1.6596, "learning_rate": 0.0001, "epoch": 0.6998542982030111, "percentage": 69.99, "elapsed_time": "15:39:44", "remaining_time": "6:43:01"} +{"current_steps": 2883, "total_steps": 4118, "loss": 1.6598, "learning_rate": 0.0001, "epoch": 0.7000971345313259, "percentage": 70.01, "elapsed_time": "15:40:04", "remaining_time": "6:42:42"} +{"current_steps": 2884, "total_steps": 4118, "loss": 1.5089, "learning_rate": 0.0001, "epoch": 0.7003399708596406, "percentage": 70.03, "elapsed_time": "15:40:23", "remaining_time": "6:42:22"} +{"current_steps": 2885, "total_steps": 4118, "loss": 1.8005, "learning_rate": 0.0001, "epoch": 0.7005828071879553, "percentage": 70.06, "elapsed_time": "15:40:43", "remaining_time": "6:42:02"} +{"current_steps": 2886, "total_steps": 4118, "loss": 1.7273, "learning_rate": 0.0001, "epoch": 0.7008256435162701, "percentage": 70.08, "elapsed_time": "15:41:03", "remaining_time": "6:41:43"} +{"current_steps": 2887, "total_steps": 4118, "loss": 1.67, "learning_rate": 0.0001, "epoch": 0.7010684798445848, "percentage": 70.11, "elapsed_time": "15:41:22", "remaining_time": "6:41:23"} +{"current_steps": 2888, "total_steps": 4118, "loss": 1.6065, "learning_rate": 0.0001, "epoch": 0.7013113161728994, "percentage": 70.13, "elapsed_time": "15:41:42", "remaining_time": "6:41:04"} +{"current_steps": 2889, "total_steps": 4118, "loss": 1.8232, "learning_rate": 0.0001, "epoch": 0.7015541525012142, "percentage": 70.16, "elapsed_time": "15:42:01", "remaining_time": "6:40:44"} +{"current_steps": 2890, "total_steps": 4118, "loss": 1.7137, "learning_rate": 0.0001, "epoch": 0.7017969888295289, "percentage": 70.18, "elapsed_time": "15:42:21", "remaining_time": "6:40:25"} +{"current_steps": 2891, "total_steps": 4118, "loss": 1.7464, "learning_rate": 0.0001, "epoch": 0.7020398251578436, "percentage": 70.2, "elapsed_time": "15:42:40", "remaining_time": "6:40:05"} +{"current_steps": 2892, "total_steps": 4118, "loss": 1.7176, "learning_rate": 0.0001, "epoch": 0.7022826614861584, "percentage": 70.23, "elapsed_time": "15:43:00", "remaining_time": "6:39:46"} +{"current_steps": 2893, "total_steps": 4118, "loss": 1.6477, "learning_rate": 0.0001, "epoch": 0.702525497814473, "percentage": 70.25, "elapsed_time": "15:43:19", "remaining_time": "6:39:26"} +{"current_steps": 2894, "total_steps": 4118, "loss": 1.3547, "learning_rate": 0.0001, "epoch": 0.7027683341427877, "percentage": 70.28, "elapsed_time": "15:43:39", "remaining_time": "6:39:06"} +{"current_steps": 2895, "total_steps": 4118, "loss": 1.7606, "learning_rate": 0.0001, "epoch": 0.7030111704711025, "percentage": 70.3, "elapsed_time": "15:43:59", "remaining_time": "6:38:47"} +{"current_steps": 2896, "total_steps": 4118, "loss": 1.5857, "learning_rate": 0.0001, "epoch": 0.7032540067994172, "percentage": 70.33, "elapsed_time": "15:44:18", "remaining_time": "6:38:27"} +{"current_steps": 2897, "total_steps": 4118, "loss": 1.6534, "learning_rate": 0.0001, "epoch": 0.7034968431277319, "percentage": 70.35, "elapsed_time": "15:44:38", "remaining_time": "6:38:08"} +{"current_steps": 2898, "total_steps": 4118, "loss": 1.748, "learning_rate": 0.0001, "epoch": 0.7037396794560467, "percentage": 70.37, "elapsed_time": "15:44:57", "remaining_time": "6:37:48"} +{"current_steps": 2899, "total_steps": 4118, "loss": 1.7049, "learning_rate": 0.0001, "epoch": 0.7039825157843613, "percentage": 70.4, "elapsed_time": "15:45:17", "remaining_time": "6:37:29"} +{"current_steps": 2900, "total_steps": 4118, "loss": 1.6982, "learning_rate": 0.0001, "epoch": 0.704225352112676, "percentage": 70.42, "elapsed_time": "15:45:36", "remaining_time": "6:37:09"} +{"current_steps": 2901, "total_steps": 4118, "loss": 1.6809, "learning_rate": 0.0001, "epoch": 0.7044681884409908, "percentage": 70.45, "elapsed_time": "15:45:56", "remaining_time": "6:36:49"} +{"current_steps": 2902, "total_steps": 4118, "loss": 1.764, "learning_rate": 0.0001, "epoch": 0.7047110247693055, "percentage": 70.47, "elapsed_time": "15:46:15", "remaining_time": "6:36:30"} +{"current_steps": 2903, "total_steps": 4118, "loss": 1.5979, "learning_rate": 0.0001, "epoch": 0.7049538610976201, "percentage": 70.5, "elapsed_time": "15:46:35", "remaining_time": "6:36:10"} +{"current_steps": 2904, "total_steps": 4118, "loss": 1.7848, "learning_rate": 0.0001, "epoch": 0.7051966974259349, "percentage": 70.52, "elapsed_time": "15:46:55", "remaining_time": "6:35:51"} +{"current_steps": 2905, "total_steps": 4118, "loss": 1.8078, "learning_rate": 0.0001, "epoch": 0.7054395337542496, "percentage": 70.54, "elapsed_time": "15:47:14", "remaining_time": "6:35:31"} +{"current_steps": 2906, "total_steps": 4118, "loss": 1.7858, "learning_rate": 0.0001, "epoch": 0.7056823700825644, "percentage": 70.57, "elapsed_time": "15:47:34", "remaining_time": "6:35:12"} +{"current_steps": 2907, "total_steps": 4118, "loss": 1.5457, "learning_rate": 0.0001, "epoch": 0.7059252064108791, "percentage": 70.59, "elapsed_time": "15:47:53", "remaining_time": "6:34:52"} +{"current_steps": 2908, "total_steps": 4118, "loss": 1.6281, "learning_rate": 0.0001, "epoch": 0.7061680427391938, "percentage": 70.62, "elapsed_time": "15:48:13", "remaining_time": "6:34:32"} +{"current_steps": 2909, "total_steps": 4118, "loss": 1.8381, "learning_rate": 0.0001, "epoch": 0.7064108790675085, "percentage": 70.64, "elapsed_time": "15:48:32", "remaining_time": "6:34:13"} +{"current_steps": 2910, "total_steps": 4118, "loss": 1.8493, "learning_rate": 0.0001, "epoch": 0.7066537153958232, "percentage": 70.67, "elapsed_time": "15:48:52", "remaining_time": "6:33:53"} +{"current_steps": 2911, "total_steps": 4118, "loss": 1.8729, "learning_rate": 0.0001, "epoch": 0.7068965517241379, "percentage": 70.69, "elapsed_time": "15:49:11", "remaining_time": "6:33:34"} +{"current_steps": 2912, "total_steps": 4118, "loss": 1.8072, "learning_rate": 0.0001, "epoch": 0.7071393880524527, "percentage": 70.71, "elapsed_time": "15:49:31", "remaining_time": "6:33:14"} +{"current_steps": 2913, "total_steps": 4118, "loss": 1.612, "learning_rate": 0.0001, "epoch": 0.7073822243807674, "percentage": 70.74, "elapsed_time": "15:49:51", "remaining_time": "6:32:55"} +{"current_steps": 2914, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.707625060709082, "percentage": 70.76, "elapsed_time": "15:50:10", "remaining_time": "6:32:35"} +{"current_steps": 2915, "total_steps": 4118, "loss": 1.8809, "learning_rate": 0.0001, "epoch": 0.7078678970373968, "percentage": 70.79, "elapsed_time": "15:50:30", "remaining_time": "6:32:15"} +{"current_steps": 2916, "total_steps": 4118, "loss": 1.7442, "learning_rate": 0.0001, "epoch": 0.7081107333657115, "percentage": 70.81, "elapsed_time": "15:50:49", "remaining_time": "6:31:56"} +{"current_steps": 2917, "total_steps": 4118, "loss": 1.7682, "learning_rate": 0.0001, "epoch": 0.7083535696940262, "percentage": 70.84, "elapsed_time": "15:51:09", "remaining_time": "6:31:36"} +{"current_steps": 2918, "total_steps": 4118, "loss": 1.7396, "learning_rate": 0.0001, "epoch": 0.708596406022341, "percentage": 70.86, "elapsed_time": "15:51:28", "remaining_time": "6:31:17"} +{"current_steps": 2919, "total_steps": 4118, "loss": 1.918, "learning_rate": 0.0001, "epoch": 0.7088392423506557, "percentage": 70.88, "elapsed_time": "15:51:48", "remaining_time": "6:30:57"} +{"current_steps": 2920, "total_steps": 4118, "loss": 1.7405, "learning_rate": 0.0001, "epoch": 0.7090820786789703, "percentage": 70.91, "elapsed_time": "15:52:07", "remaining_time": "6:30:38"} +{"current_steps": 2921, "total_steps": 4118, "loss": 1.8899, "learning_rate": 0.0001, "epoch": 0.7093249150072851, "percentage": 70.93, "elapsed_time": "15:52:27", "remaining_time": "6:30:18"} +{"current_steps": 2922, "total_steps": 4118, "loss": 1.8111, "learning_rate": 0.0001, "epoch": 0.7095677513355998, "percentage": 70.96, "elapsed_time": "15:52:47", "remaining_time": "6:29:58"} +{"current_steps": 2923, "total_steps": 4118, "loss": 1.809, "learning_rate": 0.0001, "epoch": 0.7098105876639145, "percentage": 70.98, "elapsed_time": "15:53:06", "remaining_time": "6:29:39"} +{"current_steps": 2924, "total_steps": 4118, "loss": 1.7494, "learning_rate": 0.0001, "epoch": 0.7100534239922293, "percentage": 71.01, "elapsed_time": "15:53:26", "remaining_time": "6:29:19"} +{"current_steps": 2925, "total_steps": 4118, "loss": 1.6745, "learning_rate": 0.0001, "epoch": 0.7102962603205439, "percentage": 71.03, "elapsed_time": "15:53:45", "remaining_time": "6:29:00"} +{"current_steps": 2926, "total_steps": 4118, "loss": 1.7144, "learning_rate": 0.0001, "epoch": 0.7105390966488586, "percentage": 71.05, "elapsed_time": "15:54:05", "remaining_time": "6:28:40"} +{"current_steps": 2927, "total_steps": 4118, "loss": 1.7912, "learning_rate": 0.0001, "epoch": 0.7107819329771734, "percentage": 71.08, "elapsed_time": "15:54:24", "remaining_time": "6:28:21"} +{"current_steps": 2928, "total_steps": 4118, "loss": 1.6123, "learning_rate": 0.0001, "epoch": 0.7110247693054881, "percentage": 71.1, "elapsed_time": "15:54:44", "remaining_time": "6:28:01"} +{"current_steps": 2929, "total_steps": 4118, "loss": 1.7891, "learning_rate": 0.0001, "epoch": 0.7112676056338029, "percentage": 71.13, "elapsed_time": "15:55:04", "remaining_time": "6:27:42"} +{"current_steps": 2930, "total_steps": 4118, "loss": 1.7173, "learning_rate": 0.0001, "epoch": 0.7115104419621175, "percentage": 71.15, "elapsed_time": "15:55:23", "remaining_time": "6:27:22"} +{"current_steps": 2931, "total_steps": 4118, "loss": 1.83, "learning_rate": 0.0001, "epoch": 0.7117532782904322, "percentage": 71.18, "elapsed_time": "15:55:43", "remaining_time": "6:27:02"} +{"current_steps": 2932, "total_steps": 4118, "loss": 1.6631, "learning_rate": 0.0001, "epoch": 0.711996114618747, "percentage": 71.2, "elapsed_time": "15:56:02", "remaining_time": "6:26:43"} +{"current_steps": 2933, "total_steps": 4118, "loss": 1.5301, "learning_rate": 0.0001, "epoch": 0.7122389509470617, "percentage": 71.22, "elapsed_time": "15:56:22", "remaining_time": "6:26:23"} +{"current_steps": 2934, "total_steps": 4118, "loss": 1.848, "learning_rate": 0.0001, "epoch": 0.7124817872753764, "percentage": 71.25, "elapsed_time": "15:56:41", "remaining_time": "6:26:04"} +{"current_steps": 2935, "total_steps": 4118, "loss": 1.8814, "learning_rate": 0.0001, "epoch": 0.7127246236036912, "percentage": 71.27, "elapsed_time": "15:57:01", "remaining_time": "6:25:44"} +{"current_steps": 2936, "total_steps": 4118, "loss": 1.7001, "learning_rate": 0.0001, "epoch": 0.7129674599320058, "percentage": 71.3, "elapsed_time": "15:57:20", "remaining_time": "6:25:25"} +{"current_steps": 2937, "total_steps": 4118, "loss": 1.8752, "learning_rate": 0.0001, "epoch": 0.7132102962603205, "percentage": 71.32, "elapsed_time": "15:57:40", "remaining_time": "6:25:05"} +{"current_steps": 2938, "total_steps": 4118, "loss": 1.7549, "learning_rate": 0.0001, "epoch": 0.7134531325886353, "percentage": 71.35, "elapsed_time": "15:58:00", "remaining_time": "6:24:45"} +{"current_steps": 2939, "total_steps": 4118, "loss": 1.6277, "learning_rate": 0.0001, "epoch": 0.71369596891695, "percentage": 71.37, "elapsed_time": "15:58:19", "remaining_time": "6:24:26"} +{"current_steps": 2940, "total_steps": 4118, "loss": 1.6458, "learning_rate": 0.0001, "epoch": 0.7139388052452647, "percentage": 71.39, "elapsed_time": "15:58:39", "remaining_time": "6:24:06"} +{"current_steps": 2941, "total_steps": 4118, "loss": 1.8682, "learning_rate": 0.0001, "epoch": 0.7141816415735794, "percentage": 71.42, "elapsed_time": "15:58:58", "remaining_time": "6:23:47"} +{"current_steps": 2942, "total_steps": 4118, "loss": 1.5874, "learning_rate": 0.0001, "epoch": 0.7144244779018941, "percentage": 71.44, "elapsed_time": "15:59:18", "remaining_time": "6:23:27"} +{"current_steps": 2943, "total_steps": 4118, "loss": 1.7232, "learning_rate": 0.0001, "epoch": 0.7146673142302088, "percentage": 71.47, "elapsed_time": "15:59:37", "remaining_time": "6:23:08"} +{"current_steps": 2944, "total_steps": 4118, "loss": 1.8265, "learning_rate": 0.0001, "epoch": 0.7149101505585236, "percentage": 71.49, "elapsed_time": "15:59:57", "remaining_time": "6:22:48"} +{"current_steps": 2945, "total_steps": 4118, "loss": 1.6404, "learning_rate": 0.0001, "epoch": 0.7151529868868383, "percentage": 71.52, "elapsed_time": "16:00:16", "remaining_time": "6:22:28"} +{"current_steps": 2946, "total_steps": 4118, "loss": 1.606, "learning_rate": 0.0001, "epoch": 0.7153958232151529, "percentage": 71.54, "elapsed_time": "16:00:36", "remaining_time": "6:22:09"} +{"current_steps": 2947, "total_steps": 4118, "loss": 1.6483, "learning_rate": 0.0001, "epoch": 0.7156386595434677, "percentage": 71.56, "elapsed_time": "16:00:56", "remaining_time": "6:21:49"} +{"current_steps": 2948, "total_steps": 4118, "loss": 1.9231, "learning_rate": 0.0001, "epoch": 0.7158814958717824, "percentage": 71.59, "elapsed_time": "16:01:15", "remaining_time": "6:21:30"} +{"current_steps": 2949, "total_steps": 4118, "loss": 1.7163, "learning_rate": 0.0001, "epoch": 0.7161243322000971, "percentage": 71.61, "elapsed_time": "16:01:35", "remaining_time": "6:21:10"} +{"current_steps": 2950, "total_steps": 4118, "loss": 1.7304, "learning_rate": 0.0001, "epoch": 0.7163671685284119, "percentage": 71.64, "elapsed_time": "16:01:54", "remaining_time": "6:20:51"} +{"current_steps": 2951, "total_steps": 4118, "loss": 1.6038, "learning_rate": 0.0001, "epoch": 0.7166100048567265, "percentage": 71.66, "elapsed_time": "16:02:14", "remaining_time": "6:20:31"} +{"current_steps": 2952, "total_steps": 4118, "loss": 1.6551, "learning_rate": 0.0001, "epoch": 0.7168528411850413, "percentage": 71.69, "elapsed_time": "16:02:33", "remaining_time": "6:20:11"} +{"current_steps": 2953, "total_steps": 4118, "loss": 1.5577, "learning_rate": 0.0001, "epoch": 0.717095677513356, "percentage": 71.71, "elapsed_time": "16:02:53", "remaining_time": "6:19:52"} +{"current_steps": 2954, "total_steps": 4118, "loss": 1.6013, "learning_rate": 0.0001, "epoch": 0.7173385138416707, "percentage": 71.73, "elapsed_time": "16:03:12", "remaining_time": "6:19:32"} +{"current_steps": 2955, "total_steps": 4118, "loss": 1.5818, "learning_rate": 0.0001, "epoch": 0.7175813501699855, "percentage": 71.76, "elapsed_time": "16:03:32", "remaining_time": "6:19:13"} +{"current_steps": 2956, "total_steps": 4118, "loss": 1.7887, "learning_rate": 0.0001, "epoch": 0.7178241864983002, "percentage": 71.78, "elapsed_time": "16:03:52", "remaining_time": "6:18:53"} +{"current_steps": 2957, "total_steps": 4118, "loss": 1.7936, "learning_rate": 0.0001, "epoch": 0.7180670228266148, "percentage": 71.81, "elapsed_time": "16:04:11", "remaining_time": "6:18:34"} +{"current_steps": 2958, "total_steps": 4118, "loss": 1.7204, "learning_rate": 0.0001, "epoch": 0.7183098591549296, "percentage": 71.83, "elapsed_time": "16:04:31", "remaining_time": "6:18:14"} +{"current_steps": 2959, "total_steps": 4118, "loss": 1.8105, "learning_rate": 0.0001, "epoch": 0.7185526954832443, "percentage": 71.86, "elapsed_time": "16:04:50", "remaining_time": "6:17:54"} +{"current_steps": 2960, "total_steps": 4118, "loss": 1.684, "learning_rate": 0.0001, "epoch": 0.718795531811559, "percentage": 71.88, "elapsed_time": "16:05:10", "remaining_time": "6:17:35"} +{"current_steps": 2961, "total_steps": 4118, "loss": 1.6875, "learning_rate": 0.0001, "epoch": 0.7190383681398738, "percentage": 71.9, "elapsed_time": "16:05:29", "remaining_time": "6:17:15"} +{"current_steps": 2962, "total_steps": 4118, "loss": 1.6599, "learning_rate": 0.0001, "epoch": 0.7192812044681884, "percentage": 71.93, "elapsed_time": "16:05:49", "remaining_time": "6:16:56"} +{"current_steps": 2963, "total_steps": 4118, "loss": 2.0623, "learning_rate": 0.0001, "epoch": 0.7195240407965031, "percentage": 71.95, "elapsed_time": "16:06:08", "remaining_time": "6:16:36"} +{"current_steps": 2964, "total_steps": 4118, "loss": 1.8137, "learning_rate": 0.0001, "epoch": 0.7197668771248179, "percentage": 71.98, "elapsed_time": "16:06:28", "remaining_time": "6:16:17"} +{"current_steps": 2965, "total_steps": 4118, "loss": 1.6375, "learning_rate": 0.0001, "epoch": 0.7200097134531326, "percentage": 72.0, "elapsed_time": "16:06:48", "remaining_time": "6:15:57"} +{"current_steps": 2966, "total_steps": 4118, "loss": 1.6225, "learning_rate": 0.0001, "epoch": 0.7202525497814473, "percentage": 72.03, "elapsed_time": "16:07:07", "remaining_time": "6:15:38"} +{"current_steps": 2967, "total_steps": 4118, "loss": 1.8171, "learning_rate": 0.0001, "epoch": 0.720495386109762, "percentage": 72.05, "elapsed_time": "16:07:27", "remaining_time": "6:15:18"} +{"current_steps": 2968, "total_steps": 4118, "loss": 1.8919, "learning_rate": 0.0001, "epoch": 0.7207382224380767, "percentage": 72.07, "elapsed_time": "16:07:46", "remaining_time": "6:14:58"} +{"current_steps": 2969, "total_steps": 4118, "loss": 1.7337, "learning_rate": 0.0001, "epoch": 0.7209810587663914, "percentage": 72.1, "elapsed_time": "16:08:06", "remaining_time": "6:14:39"} +{"current_steps": 2970, "total_steps": 4118, "loss": 1.8727, "learning_rate": 0.0001, "epoch": 0.7212238950947062, "percentage": 72.12, "elapsed_time": "16:08:25", "remaining_time": "6:14:19"} +{"current_steps": 2971, "total_steps": 4118, "loss": 1.6624, "learning_rate": 0.0001, "epoch": 0.7214667314230209, "percentage": 72.15, "elapsed_time": "16:08:45", "remaining_time": "6:14:00"} +{"current_steps": 2972, "total_steps": 4118, "loss": 1.7232, "learning_rate": 0.0001, "epoch": 0.7217095677513355, "percentage": 72.17, "elapsed_time": "16:09:05", "remaining_time": "6:13:40"} +{"current_steps": 2973, "total_steps": 4118, "loss": 1.6607, "learning_rate": 0.0001, "epoch": 0.7219524040796503, "percentage": 72.2, "elapsed_time": "16:09:24", "remaining_time": "6:13:21"} +{"current_steps": 2974, "total_steps": 4118, "loss": 1.6849, "learning_rate": 0.0001, "epoch": 0.722195240407965, "percentage": 72.22, "elapsed_time": "16:09:44", "remaining_time": "6:13:01"} +{"current_steps": 2975, "total_steps": 4118, "loss": 1.8265, "learning_rate": 0.0001, "epoch": 0.7224380767362798, "percentage": 72.24, "elapsed_time": "16:10:03", "remaining_time": "6:12:42"} +{"current_steps": 2976, "total_steps": 4118, "loss": 1.653, "learning_rate": 0.0001, "epoch": 0.7226809130645945, "percentage": 72.27, "elapsed_time": "16:10:23", "remaining_time": "6:12:22"} +{"current_steps": 2977, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.7229237493929092, "percentage": 72.29, "elapsed_time": "16:10:42", "remaining_time": "6:12:02"} +{"current_steps": 2978, "total_steps": 4118, "loss": 1.7346, "learning_rate": 0.0001, "epoch": 0.7231665857212239, "percentage": 72.32, "elapsed_time": "16:11:02", "remaining_time": "6:11:43"} +{"current_steps": 2979, "total_steps": 4118, "loss": 1.7539, "learning_rate": 0.0001, "epoch": 0.7234094220495386, "percentage": 72.34, "elapsed_time": "16:11:22", "remaining_time": "6:11:23"} +{"current_steps": 2980, "total_steps": 4118, "loss": 1.6859, "learning_rate": 0.0001, "epoch": 0.7236522583778533, "percentage": 72.37, "elapsed_time": "16:11:41", "remaining_time": "6:11:04"} +{"current_steps": 2981, "total_steps": 4118, "loss": 1.6193, "learning_rate": 0.0001, "epoch": 0.7238950947061681, "percentage": 72.39, "elapsed_time": "16:12:01", "remaining_time": "6:10:44"} +{"current_steps": 2982, "total_steps": 4118, "loss": 1.8407, "learning_rate": 0.0001, "epoch": 0.7241379310344828, "percentage": 72.41, "elapsed_time": "16:12:20", "remaining_time": "6:10:25"} +{"current_steps": 2983, "total_steps": 4118, "loss": 1.688, "learning_rate": 0.0001, "epoch": 0.7243807673627974, "percentage": 72.44, "elapsed_time": "16:12:40", "remaining_time": "6:10:05"} +{"current_steps": 2984, "total_steps": 4118, "loss": 1.7554, "learning_rate": 0.0001, "epoch": 0.7246236036911122, "percentage": 72.46, "elapsed_time": "16:12:59", "remaining_time": "6:09:45"} +{"current_steps": 2985, "total_steps": 4118, "loss": 1.6716, "learning_rate": 0.0001, "epoch": 0.7248664400194269, "percentage": 72.49, "elapsed_time": "16:13:19", "remaining_time": "6:09:26"} +{"current_steps": 2986, "total_steps": 4118, "loss": 1.887, "learning_rate": 0.0001, "epoch": 0.7251092763477416, "percentage": 72.51, "elapsed_time": "16:13:39", "remaining_time": "6:09:06"} +{"current_steps": 2987, "total_steps": 4118, "loss": 1.7307, "learning_rate": 0.0001, "epoch": 0.7253521126760564, "percentage": 72.54, "elapsed_time": "16:13:58", "remaining_time": "6:08:47"} +{"current_steps": 2988, "total_steps": 4118, "loss": 1.6809, "learning_rate": 0.0001, "epoch": 0.725594949004371, "percentage": 72.56, "elapsed_time": "16:14:18", "remaining_time": "6:08:27"} +{"current_steps": 2989, "total_steps": 4118, "loss": 1.724, "learning_rate": 0.0001, "epoch": 0.7258377853326857, "percentage": 72.58, "elapsed_time": "16:14:37", "remaining_time": "6:08:08"} +{"current_steps": 2990, "total_steps": 4118, "loss": 1.8012, "learning_rate": 0.0001, "epoch": 0.7260806216610005, "percentage": 72.61, "elapsed_time": "16:14:57", "remaining_time": "6:07:48"} +{"current_steps": 2991, "total_steps": 4118, "loss": 1.7704, "learning_rate": 0.0001, "epoch": 0.7263234579893152, "percentage": 72.63, "elapsed_time": "16:15:16", "remaining_time": "6:07:28"} +{"current_steps": 2992, "total_steps": 4118, "loss": 1.6558, "learning_rate": 0.0001, "epoch": 0.7265662943176299, "percentage": 72.66, "elapsed_time": "16:15:36", "remaining_time": "6:07:09"} +{"current_steps": 2993, "total_steps": 4118, "loss": 1.6509, "learning_rate": 0.0001, "epoch": 0.7268091306459447, "percentage": 72.68, "elapsed_time": "16:15:55", "remaining_time": "6:06:49"} +{"current_steps": 2994, "total_steps": 4118, "loss": 1.7338, "learning_rate": 0.0001, "epoch": 0.7270519669742593, "percentage": 72.71, "elapsed_time": "16:16:15", "remaining_time": "6:06:30"} +{"current_steps": 2995, "total_steps": 4118, "loss": 1.6392, "learning_rate": 0.0001, "epoch": 0.727294803302574, "percentage": 72.73, "elapsed_time": "16:16:34", "remaining_time": "6:06:10"} +{"current_steps": 2996, "total_steps": 4118, "loss": 1.5274, "learning_rate": 0.0001, "epoch": 0.7275376396308888, "percentage": 72.75, "elapsed_time": "16:16:54", "remaining_time": "6:05:51"} +{"current_steps": 2997, "total_steps": 4118, "loss": 1.7112, "learning_rate": 0.0001, "epoch": 0.7277804759592035, "percentage": 72.78, "elapsed_time": "16:17:14", "remaining_time": "6:05:31"} +{"current_steps": 2998, "total_steps": 4118, "loss": 1.7491, "learning_rate": 0.0001, "epoch": 0.7280233122875183, "percentage": 72.8, "elapsed_time": "16:17:33", "remaining_time": "6:05:11"} +{"current_steps": 2999, "total_steps": 4118, "loss": 1.7755, "learning_rate": 0.0001, "epoch": 0.7282661486158329, "percentage": 72.83, "elapsed_time": "16:17:53", "remaining_time": "6:04:52"} +{"current_steps": 3000, "total_steps": 4118, "loss": 1.8855, "learning_rate": 0.0001, "epoch": 0.7285089849441476, "percentage": 72.85, "elapsed_time": "16:18:12", "remaining_time": "6:04:32"} +{"current_steps": 3001, "total_steps": 4118, "loss": 1.6346, "learning_rate": 0.0001, "epoch": 0.7287518212724624, "percentage": 72.88, "elapsed_time": "16:18:34", "remaining_time": "6:04:14"} +{"current_steps": 3002, "total_steps": 4118, "loss": 1.7953, "learning_rate": 0.0001, "epoch": 0.7289946576007771, "percentage": 72.9, "elapsed_time": "16:18:54", "remaining_time": "6:03:54"} +{"current_steps": 3003, "total_steps": 4118, "loss": 1.8166, "learning_rate": 0.0001, "epoch": 0.7292374939290918, "percentage": 72.92, "elapsed_time": "16:19:13", "remaining_time": "6:03:34"} +{"current_steps": 3004, "total_steps": 4118, "loss": 1.6098, "learning_rate": 0.0001, "epoch": 0.7294803302574066, "percentage": 72.95, "elapsed_time": "16:19:33", "remaining_time": "6:03:15"} +{"current_steps": 3005, "total_steps": 4118, "loss": 1.7192, "learning_rate": 0.0001, "epoch": 0.7297231665857212, "percentage": 72.97, "elapsed_time": "16:19:52", "remaining_time": "6:02:55"} +{"current_steps": 3006, "total_steps": 4118, "loss": 1.6833, "learning_rate": 0.0001, "epoch": 0.7299660029140359, "percentage": 73.0, "elapsed_time": "16:20:12", "remaining_time": "6:02:36"} +{"current_steps": 3007, "total_steps": 4118, "loss": 1.8071, "learning_rate": 0.0001, "epoch": 0.7302088392423507, "percentage": 73.02, "elapsed_time": "16:20:31", "remaining_time": "6:02:16"} +{"current_steps": 3008, "total_steps": 4118, "loss": 1.6636, "learning_rate": 0.0001, "epoch": 0.7304516755706654, "percentage": 73.05, "elapsed_time": "16:20:51", "remaining_time": "6:01:57"} +{"current_steps": 3009, "total_steps": 4118, "loss": 1.915, "learning_rate": 0.0001, "epoch": 0.73069451189898, "percentage": 73.07, "elapsed_time": "16:21:11", "remaining_time": "6:01:37"} +{"current_steps": 3010, "total_steps": 4118, "loss": 1.8065, "learning_rate": 0.0001, "epoch": 0.7309373482272948, "percentage": 73.09, "elapsed_time": "16:21:30", "remaining_time": "6:01:18"} +{"current_steps": 3011, "total_steps": 4118, "loss": 1.8111, "learning_rate": 0.0001, "epoch": 0.7311801845556095, "percentage": 73.12, "elapsed_time": "16:21:50", "remaining_time": "6:00:58"} +{"current_steps": 3012, "total_steps": 4118, "loss": 1.513, "learning_rate": 0.0001, "epoch": 0.7314230208839242, "percentage": 73.14, "elapsed_time": "16:22:09", "remaining_time": "6:00:38"} +{"current_steps": 3013, "total_steps": 4118, "loss": 1.6819, "learning_rate": 0.0001, "epoch": 0.731665857212239, "percentage": 73.17, "elapsed_time": "16:22:29", "remaining_time": "6:00:19"} +{"current_steps": 3014, "total_steps": 4118, "loss": 1.5912, "learning_rate": 0.0001, "epoch": 0.7319086935405537, "percentage": 73.19, "elapsed_time": "16:22:48", "remaining_time": "5:59:59"} +{"current_steps": 3015, "total_steps": 4118, "loss": 1.7098, "learning_rate": 0.0001, "epoch": 0.7321515298688683, "percentage": 73.22, "elapsed_time": "16:23:08", "remaining_time": "5:59:40"} +{"current_steps": 3016, "total_steps": 4118, "loss": 1.6901, "learning_rate": 0.0001, "epoch": 0.7323943661971831, "percentage": 73.24, "elapsed_time": "16:23:27", "remaining_time": "5:59:20"} +{"current_steps": 3017, "total_steps": 4118, "loss": 1.5327, "learning_rate": 0.0001, "epoch": 0.7326372025254978, "percentage": 73.26, "elapsed_time": "16:23:47", "remaining_time": "5:59:01"} +{"current_steps": 3018, "total_steps": 4118, "loss": 1.7174, "learning_rate": 0.0001, "epoch": 0.7328800388538125, "percentage": 73.29, "elapsed_time": "16:24:07", "remaining_time": "5:58:41"} +{"current_steps": 3019, "total_steps": 4118, "loss": 1.5847, "learning_rate": 0.0001, "epoch": 0.7331228751821273, "percentage": 73.31, "elapsed_time": "16:24:26", "remaining_time": "5:58:21"} +{"current_steps": 3020, "total_steps": 4118, "loss": 1.6185, "learning_rate": 0.0001, "epoch": 0.7333657115104419, "percentage": 73.34, "elapsed_time": "16:24:46", "remaining_time": "5:58:02"} +{"current_steps": 3021, "total_steps": 4118, "loss": 1.7903, "learning_rate": 0.0001, "epoch": 0.7336085478387567, "percentage": 73.36, "elapsed_time": "16:25:05", "remaining_time": "5:57:42"} +{"current_steps": 3022, "total_steps": 4118, "loss": 1.8925, "learning_rate": 0.0001, "epoch": 0.7338513841670714, "percentage": 73.39, "elapsed_time": "16:25:25", "remaining_time": "5:57:23"} +{"current_steps": 3023, "total_steps": 4118, "loss": 1.666, "learning_rate": 0.0001, "epoch": 0.7340942204953861, "percentage": 73.41, "elapsed_time": "16:25:44", "remaining_time": "5:57:03"} +{"current_steps": 3024, "total_steps": 4118, "loss": 1.7754, "learning_rate": 0.0001, "epoch": 0.7343370568237009, "percentage": 73.43, "elapsed_time": "16:26:04", "remaining_time": "5:56:44"} +{"current_steps": 3025, "total_steps": 4118, "loss": 1.769, "learning_rate": 0.0001, "epoch": 0.7345798931520156, "percentage": 73.46, "elapsed_time": "16:26:24", "remaining_time": "5:56:24"} +{"current_steps": 3026, "total_steps": 4118, "loss": 1.6996, "learning_rate": 0.0001, "epoch": 0.7348227294803302, "percentage": 73.48, "elapsed_time": "16:26:43", "remaining_time": "5:56:04"} +{"current_steps": 3027, "total_steps": 4118, "loss": 1.4816, "learning_rate": 0.0001, "epoch": 0.735065565808645, "percentage": 73.51, "elapsed_time": "16:27:03", "remaining_time": "5:55:45"} +{"current_steps": 3028, "total_steps": 4118, "loss": 1.6657, "learning_rate": 0.0001, "epoch": 0.7353084021369597, "percentage": 73.53, "elapsed_time": "16:27:22", "remaining_time": "5:55:25"} +{"current_steps": 3029, "total_steps": 4118, "loss": 1.8207, "learning_rate": 0.0001, "epoch": 0.7355512384652744, "percentage": 73.56, "elapsed_time": "16:27:42", "remaining_time": "5:55:06"} +{"current_steps": 3030, "total_steps": 4118, "loss": 1.5538, "learning_rate": 0.0001, "epoch": 0.7357940747935892, "percentage": 73.58, "elapsed_time": "16:28:01", "remaining_time": "5:54:46"} +{"current_steps": 3031, "total_steps": 4118, "loss": 1.7829, "learning_rate": 0.0001, "epoch": 0.7360369111219038, "percentage": 73.6, "elapsed_time": "16:28:21", "remaining_time": "5:54:27"} +{"current_steps": 3032, "total_steps": 4118, "loss": 1.7405, "learning_rate": 0.0001, "epoch": 0.7362797474502185, "percentage": 73.63, "elapsed_time": "16:28:40", "remaining_time": "5:54:07"} +{"current_steps": 3033, "total_steps": 4118, "loss": 1.6263, "learning_rate": 0.0001, "epoch": 0.7365225837785333, "percentage": 73.65, "elapsed_time": "16:29:00", "remaining_time": "5:53:47"} +{"current_steps": 3034, "total_steps": 4118, "loss": 1.7005, "learning_rate": 0.0001, "epoch": 0.736765420106848, "percentage": 73.68, "elapsed_time": "16:29:20", "remaining_time": "5:53:28"} +{"current_steps": 3035, "total_steps": 4118, "loss": 1.6534, "learning_rate": 0.0001, "epoch": 0.7370082564351627, "percentage": 73.7, "elapsed_time": "16:29:39", "remaining_time": "5:53:08"} +{"current_steps": 3036, "total_steps": 4118, "loss": 1.7861, "learning_rate": 0.0001, "epoch": 0.7372510927634774, "percentage": 73.73, "elapsed_time": "16:29:59", "remaining_time": "5:52:49"} +{"current_steps": 3037, "total_steps": 4118, "loss": 1.6539, "learning_rate": 0.0001, "epoch": 0.7374939290917921, "percentage": 73.75, "elapsed_time": "16:30:18", "remaining_time": "5:52:29"} +{"current_steps": 3038, "total_steps": 4118, "loss": 1.7005, "learning_rate": 0.0001, "epoch": 0.7377367654201068, "percentage": 73.77, "elapsed_time": "16:30:38", "remaining_time": "5:52:10"} +{"current_steps": 3039, "total_steps": 4118, "loss": 1.642, "learning_rate": 0.0001, "epoch": 0.7379796017484216, "percentage": 73.8, "elapsed_time": "16:30:57", "remaining_time": "5:51:50"} +{"current_steps": 3040, "total_steps": 4118, "loss": 1.6971, "learning_rate": 0.0001, "epoch": 0.7382224380767363, "percentage": 73.82, "elapsed_time": "16:31:17", "remaining_time": "5:51:31"} +{"current_steps": 3041, "total_steps": 4118, "loss": 1.7295, "learning_rate": 0.0001, "epoch": 0.7384652744050509, "percentage": 73.85, "elapsed_time": "16:31:37", "remaining_time": "5:51:11"} +{"current_steps": 3042, "total_steps": 4118, "loss": 1.8619, "learning_rate": 0.0001, "epoch": 0.7387081107333657, "percentage": 73.87, "elapsed_time": "16:31:56", "remaining_time": "5:50:51"} +{"current_steps": 3043, "total_steps": 4118, "loss": 1.696, "learning_rate": 0.0001, "epoch": 0.7389509470616804, "percentage": 73.9, "elapsed_time": "16:32:16", "remaining_time": "5:50:32"} +{"current_steps": 3044, "total_steps": 4118, "loss": 1.7388, "learning_rate": 0.0001, "epoch": 0.7391937833899952, "percentage": 73.92, "elapsed_time": "16:32:35", "remaining_time": "5:50:12"} +{"current_steps": 3045, "total_steps": 4118, "loss": 1.7617, "learning_rate": 0.0001, "epoch": 0.7394366197183099, "percentage": 73.94, "elapsed_time": "16:32:55", "remaining_time": "5:49:53"} +{"current_steps": 3046, "total_steps": 4118, "loss": 1.7067, "learning_rate": 0.0001, "epoch": 0.7396794560466246, "percentage": 73.97, "elapsed_time": "16:33:14", "remaining_time": "5:49:33"} +{"current_steps": 3047, "total_steps": 4118, "loss": 1.6444, "learning_rate": 0.0001, "epoch": 0.7399222923749393, "percentage": 73.99, "elapsed_time": "16:33:34", "remaining_time": "5:49:14"} +{"current_steps": 3048, "total_steps": 4118, "loss": 1.6807, "learning_rate": 0.0001, "epoch": 0.740165128703254, "percentage": 74.02, "elapsed_time": "16:33:53", "remaining_time": "5:48:54"} +{"current_steps": 3049, "total_steps": 4118, "loss": 1.7067, "learning_rate": 0.0001, "epoch": 0.7404079650315687, "percentage": 74.04, "elapsed_time": "16:34:13", "remaining_time": "5:48:34"} +{"current_steps": 3050, "total_steps": 4118, "loss": 1.7388, "learning_rate": 0.0001, "epoch": 0.7406508013598835, "percentage": 74.07, "elapsed_time": "16:34:33", "remaining_time": "5:48:15"} +{"current_steps": 3051, "total_steps": 4118, "loss": 1.7541, "learning_rate": 0.0001, "epoch": 0.7408936376881982, "percentage": 74.09, "elapsed_time": "16:34:52", "remaining_time": "5:47:55"} +{"current_steps": 3052, "total_steps": 4118, "loss": 1.7458, "learning_rate": 0.0001, "epoch": 0.7411364740165128, "percentage": 74.11, "elapsed_time": "16:35:12", "remaining_time": "5:47:36"} +{"current_steps": 3053, "total_steps": 4118, "loss": 1.7227, "learning_rate": 0.0001, "epoch": 0.7413793103448276, "percentage": 74.14, "elapsed_time": "16:35:31", "remaining_time": "5:47:16"} +{"current_steps": 3054, "total_steps": 4118, "loss": 1.8576, "learning_rate": 0.0001, "epoch": 0.7416221466731423, "percentage": 74.16, "elapsed_time": "16:35:51", "remaining_time": "5:46:57"} +{"current_steps": 3055, "total_steps": 4118, "loss": 1.7807, "learning_rate": 0.0001, "epoch": 0.741864983001457, "percentage": 74.19, "elapsed_time": "16:36:10", "remaining_time": "5:46:37"} +{"current_steps": 3056, "total_steps": 4118, "loss": 1.62, "learning_rate": 0.0001, "epoch": 0.7421078193297718, "percentage": 74.21, "elapsed_time": "16:36:30", "remaining_time": "5:46:17"} +{"current_steps": 3057, "total_steps": 4118, "loss": 1.6172, "learning_rate": 0.0001, "epoch": 0.7423506556580864, "percentage": 74.24, "elapsed_time": "16:36:50", "remaining_time": "5:45:58"} +{"current_steps": 3058, "total_steps": 4118, "loss": 1.6043, "learning_rate": 0.0001, "epoch": 0.7425934919864011, "percentage": 74.26, "elapsed_time": "16:37:09", "remaining_time": "5:45:38"} +{"current_steps": 3059, "total_steps": 4118, "loss": 1.6892, "learning_rate": 0.0001, "epoch": 0.7428363283147159, "percentage": 74.28, "elapsed_time": "16:37:29", "remaining_time": "5:45:19"} +{"current_steps": 3060, "total_steps": 4118, "loss": 1.91, "learning_rate": 0.0001, "epoch": 0.7430791646430306, "percentage": 74.31, "elapsed_time": "16:37:48", "remaining_time": "5:44:59"} +{"current_steps": 3061, "total_steps": 4118, "loss": 1.7233, "learning_rate": 0.0001, "epoch": 0.7433220009713453, "percentage": 74.33, "elapsed_time": "16:38:08", "remaining_time": "5:44:40"} +{"current_steps": 3062, "total_steps": 4118, "loss": 1.7267, "learning_rate": 0.0001, "epoch": 0.74356483729966, "percentage": 74.36, "elapsed_time": "16:38:27", "remaining_time": "5:44:20"} +{"current_steps": 3063, "total_steps": 4118, "loss": 1.5864, "learning_rate": 0.0001, "epoch": 0.7438076736279747, "percentage": 74.38, "elapsed_time": "16:38:47", "remaining_time": "5:44:01"} +{"current_steps": 3064, "total_steps": 4118, "loss": 1.7029, "learning_rate": 0.0001, "epoch": 0.7440505099562894, "percentage": 74.41, "elapsed_time": "16:39:06", "remaining_time": "5:43:41"} +{"current_steps": 3065, "total_steps": 4118, "loss": 1.6738, "learning_rate": 0.0001, "epoch": 0.7442933462846042, "percentage": 74.43, "elapsed_time": "16:39:26", "remaining_time": "5:43:21"} +{"current_steps": 3066, "total_steps": 4118, "loss": 1.7315, "learning_rate": 0.0001, "epoch": 0.7445361826129189, "percentage": 74.45, "elapsed_time": "16:39:46", "remaining_time": "5:43:02"} +{"current_steps": 3067, "total_steps": 4118, "loss": 1.6156, "learning_rate": 0.0001, "epoch": 0.7447790189412337, "percentage": 74.48, "elapsed_time": "16:40:05", "remaining_time": "5:42:42"} +{"current_steps": 3068, "total_steps": 4118, "loss": 1.5897, "learning_rate": 0.0001, "epoch": 0.7450218552695483, "percentage": 74.5, "elapsed_time": "16:40:25", "remaining_time": "5:42:23"} +{"current_steps": 3069, "total_steps": 4118, "loss": 1.7079, "learning_rate": 0.0001, "epoch": 0.745264691597863, "percentage": 74.53, "elapsed_time": "16:40:44", "remaining_time": "5:42:03"} +{"current_steps": 3070, "total_steps": 4118, "loss": 1.7077, "learning_rate": 0.0001, "epoch": 0.7455075279261778, "percentage": 74.55, "elapsed_time": "16:41:04", "remaining_time": "5:41:44"} +{"current_steps": 3071, "total_steps": 4118, "loss": 1.5284, "learning_rate": 0.0001, "epoch": 0.7457503642544925, "percentage": 74.58, "elapsed_time": "16:41:23", "remaining_time": "5:41:24"} +{"current_steps": 3072, "total_steps": 4118, "loss": 1.7189, "learning_rate": 0.0001, "epoch": 0.7459932005828072, "percentage": 74.6, "elapsed_time": "16:41:43", "remaining_time": "5:41:04"} +{"current_steps": 3073, "total_steps": 4118, "loss": 1.8296, "learning_rate": 0.0001, "epoch": 0.746236036911122, "percentage": 74.62, "elapsed_time": "16:42:03", "remaining_time": "5:40:45"} +{"current_steps": 3074, "total_steps": 4118, "loss": 1.6699, "learning_rate": 0.0001, "epoch": 0.7464788732394366, "percentage": 74.65, "elapsed_time": "16:42:22", "remaining_time": "5:40:25"} +{"current_steps": 3075, "total_steps": 4118, "loss": 1.6844, "learning_rate": 0.0001, "epoch": 0.7467217095677513, "percentage": 74.67, "elapsed_time": "16:42:42", "remaining_time": "5:40:06"} +{"current_steps": 3076, "total_steps": 4118, "loss": 1.723, "learning_rate": 0.0001, "epoch": 0.7469645458960661, "percentage": 74.7, "elapsed_time": "16:43:01", "remaining_time": "5:39:46"} +{"current_steps": 3077, "total_steps": 4118, "loss": 1.7067, "learning_rate": 0.0001, "epoch": 0.7472073822243808, "percentage": 74.72, "elapsed_time": "16:43:21", "remaining_time": "5:39:27"} +{"current_steps": 3078, "total_steps": 4118, "loss": 1.6334, "learning_rate": 0.0001, "epoch": 0.7474502185526954, "percentage": 74.75, "elapsed_time": "16:43:40", "remaining_time": "5:39:07"} +{"current_steps": 3079, "total_steps": 4118, "loss": 1.7543, "learning_rate": 0.0001, "epoch": 0.7476930548810102, "percentage": 74.77, "elapsed_time": "16:44:00", "remaining_time": "5:38:47"} +{"current_steps": 3080, "total_steps": 4118, "loss": 1.7106, "learning_rate": 0.0001, "epoch": 0.7479358912093249, "percentage": 74.79, "elapsed_time": "16:44:20", "remaining_time": "5:38:28"} +{"current_steps": 3081, "total_steps": 4118, "loss": 1.7322, "learning_rate": 0.0001, "epoch": 0.7481787275376396, "percentage": 74.82, "elapsed_time": "16:44:39", "remaining_time": "5:38:08"} +{"current_steps": 3082, "total_steps": 4118, "loss": 1.733, "learning_rate": 0.0001, "epoch": 0.7484215638659544, "percentage": 74.84, "elapsed_time": "16:44:59", "remaining_time": "5:37:49"} +{"current_steps": 3083, "total_steps": 4118, "loss": 1.6061, "learning_rate": 0.0001, "epoch": 0.748664400194269, "percentage": 74.87, "elapsed_time": "16:45:18", "remaining_time": "5:37:29"} +{"current_steps": 3084, "total_steps": 4118, "loss": 1.7411, "learning_rate": 0.0001, "epoch": 0.7489072365225837, "percentage": 74.89, "elapsed_time": "16:45:38", "remaining_time": "5:37:10"} +{"current_steps": 3085, "total_steps": 4118, "loss": 1.6446, "learning_rate": 0.0001, "epoch": 0.7491500728508985, "percentage": 74.92, "elapsed_time": "16:45:57", "remaining_time": "5:36:50"} +{"current_steps": 3086, "total_steps": 4118, "loss": 1.7233, "learning_rate": 0.0001, "epoch": 0.7493929091792132, "percentage": 74.94, "elapsed_time": "16:46:17", "remaining_time": "5:36:31"} +{"current_steps": 3087, "total_steps": 4118, "loss": 1.765, "learning_rate": 0.0001, "epoch": 0.7496357455075279, "percentage": 74.96, "elapsed_time": "16:46:36", "remaining_time": "5:36:11"} +{"current_steps": 3088, "total_steps": 4118, "loss": 1.7101, "learning_rate": 0.0001, "epoch": 0.7498785818358427, "percentage": 74.99, "elapsed_time": "16:46:56", "remaining_time": "5:35:51"} +{"current_steps": 3089, "total_steps": 4118, "loss": 1.8116, "learning_rate": 0.0001, "epoch": 0.7501214181641573, "percentage": 75.01, "elapsed_time": "16:47:16", "remaining_time": "5:35:32"} +{"current_steps": 3090, "total_steps": 4118, "loss": 1.8171, "learning_rate": 0.0001, "epoch": 0.7503642544924721, "percentage": 75.04, "elapsed_time": "16:47:35", "remaining_time": "5:35:12"} +{"current_steps": 3091, "total_steps": 4118, "loss": 1.7708, "learning_rate": 0.0001, "epoch": 0.7506070908207868, "percentage": 75.06, "elapsed_time": "16:47:55", "remaining_time": "5:34:53"} +{"current_steps": 3092, "total_steps": 4118, "loss": 1.6541, "learning_rate": 0.0001, "epoch": 0.7508499271491015, "percentage": 75.08, "elapsed_time": "16:48:14", "remaining_time": "5:34:33"} +{"current_steps": 3093, "total_steps": 4118, "loss": 1.6693, "learning_rate": 0.0001, "epoch": 0.7510927634774163, "percentage": 75.11, "elapsed_time": "16:48:34", "remaining_time": "5:34:14"} +{"current_steps": 3094, "total_steps": 4118, "loss": 1.7172, "learning_rate": 0.0001, "epoch": 0.751335599805731, "percentage": 75.13, "elapsed_time": "16:48:54", "remaining_time": "5:33:54"} +{"current_steps": 3095, "total_steps": 4118, "loss": 1.7188, "learning_rate": 0.0001, "epoch": 0.7515784361340456, "percentage": 75.16, "elapsed_time": "16:49:13", "remaining_time": "5:33:34"} +{"current_steps": 3096, "total_steps": 4118, "loss": 1.5887, "learning_rate": 0.0001, "epoch": 0.7518212724623604, "percentage": 75.18, "elapsed_time": "16:49:33", "remaining_time": "5:33:15"} +{"current_steps": 3097, "total_steps": 4118, "loss": 1.7014, "learning_rate": 0.0001, "epoch": 0.7520641087906751, "percentage": 75.21, "elapsed_time": "16:49:52", "remaining_time": "5:32:55"} +{"current_steps": 3098, "total_steps": 4118, "loss": 1.7363, "learning_rate": 0.0001, "epoch": 0.7523069451189898, "percentage": 75.23, "elapsed_time": "16:50:12", "remaining_time": "5:32:36"} +{"current_steps": 3099, "total_steps": 4118, "loss": 1.8408, "learning_rate": 0.0001, "epoch": 0.7525497814473046, "percentage": 75.25, "elapsed_time": "16:50:31", "remaining_time": "5:32:16"} +{"current_steps": 3100, "total_steps": 4118, "loss": 1.8563, "learning_rate": 0.0001, "epoch": 0.7527926177756192, "percentage": 75.28, "elapsed_time": "16:50:51", "remaining_time": "5:31:57"} +{"current_steps": 3101, "total_steps": 4118, "loss": 1.5559, "learning_rate": 0.0001, "epoch": 0.7530354541039339, "percentage": 75.3, "elapsed_time": "16:51:10", "remaining_time": "5:31:37"} +{"current_steps": 3102, "total_steps": 4118, "loss": 1.7321, "learning_rate": 0.0001, "epoch": 0.7532782904322487, "percentage": 75.33, "elapsed_time": "16:51:30", "remaining_time": "5:31:17"} +{"current_steps": 3103, "total_steps": 4118, "loss": 1.7106, "learning_rate": 0.0001, "epoch": 0.7535211267605634, "percentage": 75.35, "elapsed_time": "16:51:50", "remaining_time": "5:30:58"} +{"current_steps": 3104, "total_steps": 4118, "loss": 1.7852, "learning_rate": 0.0001, "epoch": 0.753763963088878, "percentage": 75.38, "elapsed_time": "16:52:09", "remaining_time": "5:30:38"} +{"current_steps": 3105, "total_steps": 4118, "loss": 1.7942, "learning_rate": 0.0001, "epoch": 0.7540067994171928, "percentage": 75.4, "elapsed_time": "16:52:29", "remaining_time": "5:30:19"} +{"current_steps": 3106, "total_steps": 4118, "loss": 1.9088, "learning_rate": 0.0001, "epoch": 0.7542496357455075, "percentage": 75.42, "elapsed_time": "16:52:48", "remaining_time": "5:29:59"} +{"current_steps": 3107, "total_steps": 4118, "loss": 1.6574, "learning_rate": 0.0001, "epoch": 0.7544924720738222, "percentage": 75.45, "elapsed_time": "16:53:08", "remaining_time": "5:29:40"} +{"current_steps": 3108, "total_steps": 4118, "loss": 1.8266, "learning_rate": 0.0001, "epoch": 0.754735308402137, "percentage": 75.47, "elapsed_time": "16:53:27", "remaining_time": "5:29:20"} +{"current_steps": 3109, "total_steps": 4118, "loss": 1.6532, "learning_rate": 0.0001, "epoch": 0.7549781447304517, "percentage": 75.5, "elapsed_time": "16:53:47", "remaining_time": "5:29:01"} +{"current_steps": 3110, "total_steps": 4118, "loss": 1.6563, "learning_rate": 0.0001, "epoch": 0.7552209810587663, "percentage": 75.52, "elapsed_time": "16:54:06", "remaining_time": "5:28:41"} +{"current_steps": 3111, "total_steps": 4118, "loss": 1.7415, "learning_rate": 0.0001, "epoch": 0.7554638173870811, "percentage": 75.55, "elapsed_time": "16:54:26", "remaining_time": "5:28:21"} +{"current_steps": 3112, "total_steps": 4118, "loss": 1.6814, "learning_rate": 0.0001, "epoch": 0.7557066537153958, "percentage": 75.57, "elapsed_time": "16:54:46", "remaining_time": "5:28:02"} +{"current_steps": 3113, "total_steps": 4118, "loss": 1.7116, "learning_rate": 0.0001, "epoch": 0.7559494900437106, "percentage": 75.59, "elapsed_time": "16:55:05", "remaining_time": "5:27:42"} +{"current_steps": 3114, "total_steps": 4118, "loss": 1.8194, "learning_rate": 0.0001, "epoch": 0.7561923263720253, "percentage": 75.62, "elapsed_time": "16:55:25", "remaining_time": "5:27:23"} +{"current_steps": 3115, "total_steps": 4118, "loss": 1.5595, "learning_rate": 0.0001, "epoch": 0.75643516270034, "percentage": 75.64, "elapsed_time": "16:55:44", "remaining_time": "5:27:03"} +{"current_steps": 3116, "total_steps": 4118, "loss": 1.8912, "learning_rate": 0.0001, "epoch": 0.7566779990286547, "percentage": 75.67, "elapsed_time": "16:56:04", "remaining_time": "5:26:44"} +{"current_steps": 3117, "total_steps": 4118, "loss": 1.7154, "learning_rate": 0.0001, "epoch": 0.7569208353569694, "percentage": 75.69, "elapsed_time": "16:56:23", "remaining_time": "5:26:24"} +{"current_steps": 3118, "total_steps": 4118, "loss": 1.7075, "learning_rate": 0.0001, "epoch": 0.7571636716852841, "percentage": 75.72, "elapsed_time": "16:56:43", "remaining_time": "5:26:04"} +{"current_steps": 3119, "total_steps": 4118, "loss": 1.7085, "learning_rate": 0.0001, "epoch": 0.7574065080135989, "percentage": 75.74, "elapsed_time": "16:57:02", "remaining_time": "5:25:45"} +{"current_steps": 3120, "total_steps": 4118, "loss": 1.6773, "learning_rate": 0.0001, "epoch": 0.7576493443419136, "percentage": 75.76, "elapsed_time": "16:57:22", "remaining_time": "5:25:25"} +{"current_steps": 3121, "total_steps": 4118, "loss": 1.6314, "learning_rate": 0.0001, "epoch": 0.7578921806702282, "percentage": 75.79, "elapsed_time": "16:57:42", "remaining_time": "5:25:06"} +{"current_steps": 3122, "total_steps": 4118, "loss": 1.6349, "learning_rate": 0.0001, "epoch": 0.758135016998543, "percentage": 75.81, "elapsed_time": "16:58:01", "remaining_time": "5:24:46"} +{"current_steps": 3123, "total_steps": 4118, "loss": 1.6673, "learning_rate": 0.0001, "epoch": 0.7583778533268577, "percentage": 75.84, "elapsed_time": "16:58:21", "remaining_time": "5:24:27"} +{"current_steps": 3124, "total_steps": 4118, "loss": 1.7189, "learning_rate": 0.0001, "epoch": 0.7586206896551724, "percentage": 75.86, "elapsed_time": "16:58:40", "remaining_time": "5:24:07"} +{"current_steps": 3125, "total_steps": 4118, "loss": 1.7291, "learning_rate": 0.0001, "epoch": 0.7588635259834872, "percentage": 75.89, "elapsed_time": "16:59:00", "remaining_time": "5:23:47"} +{"current_steps": 3126, "total_steps": 4118, "loss": 1.758, "learning_rate": 0.0001, "epoch": 0.7591063623118018, "percentage": 75.91, "elapsed_time": "16:59:19", "remaining_time": "5:23:28"} +{"current_steps": 3127, "total_steps": 4118, "loss": 1.8147, "learning_rate": 0.0001, "epoch": 0.7593491986401165, "percentage": 75.93, "elapsed_time": "16:59:39", "remaining_time": "5:23:08"} +{"current_steps": 3128, "total_steps": 4118, "loss": 1.8987, "learning_rate": 0.0001, "epoch": 0.7595920349684313, "percentage": 75.96, "elapsed_time": "16:59:59", "remaining_time": "5:22:49"} +{"current_steps": 3129, "total_steps": 4118, "loss": 1.758, "learning_rate": 0.0001, "epoch": 0.759834871296746, "percentage": 75.98, "elapsed_time": "17:00:18", "remaining_time": "5:22:29"} +{"current_steps": 3130, "total_steps": 4118, "loss": 1.6945, "learning_rate": 0.0001, "epoch": 0.7600777076250607, "percentage": 76.01, "elapsed_time": "17:00:38", "remaining_time": "5:22:10"} +{"current_steps": 3131, "total_steps": 4118, "loss": 1.6786, "learning_rate": 0.0001, "epoch": 0.7603205439533754, "percentage": 76.03, "elapsed_time": "17:00:57", "remaining_time": "5:21:50"} +{"current_steps": 3132, "total_steps": 4118, "loss": 1.7443, "learning_rate": 0.0001, "epoch": 0.7605633802816901, "percentage": 76.06, "elapsed_time": "17:01:17", "remaining_time": "5:21:30"} +{"current_steps": 3133, "total_steps": 4118, "loss": 1.7166, "learning_rate": 0.0001, "epoch": 0.7608062166100048, "percentage": 76.08, "elapsed_time": "17:01:36", "remaining_time": "5:21:11"} +{"current_steps": 3134, "total_steps": 4118, "loss": 1.9331, "learning_rate": 0.0001, "epoch": 0.7610490529383196, "percentage": 76.1, "elapsed_time": "17:01:56", "remaining_time": "5:20:51"} +{"current_steps": 3135, "total_steps": 4118, "loss": 1.6392, "learning_rate": 0.0001, "epoch": 0.7612918892666343, "percentage": 76.13, "elapsed_time": "17:02:15", "remaining_time": "5:20:32"} +{"current_steps": 3136, "total_steps": 4118, "loss": 1.6142, "learning_rate": 0.0001, "epoch": 0.7615347255949491, "percentage": 76.15, "elapsed_time": "17:02:35", "remaining_time": "5:20:12"} +{"current_steps": 3137, "total_steps": 4118, "loss": 1.7286, "learning_rate": 0.0001, "epoch": 0.7617775619232637, "percentage": 76.18, "elapsed_time": "17:02:54", "remaining_time": "5:19:53"} +{"current_steps": 3138, "total_steps": 4118, "loss": 1.7708, "learning_rate": 0.0001, "epoch": 0.7620203982515784, "percentage": 76.2, "elapsed_time": "17:03:14", "remaining_time": "5:19:33"} +{"current_steps": 3139, "total_steps": 4118, "loss": 1.7217, "learning_rate": 0.0001, "epoch": 0.7622632345798932, "percentage": 76.23, "elapsed_time": "17:03:34", "remaining_time": "5:19:14"} +{"current_steps": 3140, "total_steps": 4118, "loss": 1.8104, "learning_rate": 0.0001, "epoch": 0.7625060709082079, "percentage": 76.25, "elapsed_time": "17:03:53", "remaining_time": "5:18:54"} +{"current_steps": 3141, "total_steps": 4118, "loss": 1.7221, "learning_rate": 0.0001, "epoch": 0.7627489072365226, "percentage": 76.27, "elapsed_time": "17:04:13", "remaining_time": "5:18:34"} +{"current_steps": 3142, "total_steps": 4118, "loss": 1.761, "learning_rate": 0.0001, "epoch": 0.7629917435648373, "percentage": 76.3, "elapsed_time": "17:04:32", "remaining_time": "5:18:15"} +{"current_steps": 3143, "total_steps": 4118, "loss": 1.682, "learning_rate": 0.0001, "epoch": 0.763234579893152, "percentage": 76.32, "elapsed_time": "17:04:52", "remaining_time": "5:17:55"} +{"current_steps": 3144, "total_steps": 4118, "loss": 1.7527, "learning_rate": 0.0001, "epoch": 0.7634774162214667, "percentage": 76.35, "elapsed_time": "17:05:11", "remaining_time": "5:17:36"} +{"current_steps": 3145, "total_steps": 4118, "loss": 1.83, "learning_rate": 0.0001, "epoch": 0.7637202525497815, "percentage": 76.37, "elapsed_time": "17:05:31", "remaining_time": "5:17:16"} +{"current_steps": 3146, "total_steps": 4118, "loss": 1.6565, "learning_rate": 0.0001, "epoch": 0.7639630888780962, "percentage": 76.4, "elapsed_time": "17:05:51", "remaining_time": "5:16:57"} +{"current_steps": 3147, "total_steps": 4118, "loss": 1.661, "learning_rate": 0.0001, "epoch": 0.7642059252064108, "percentage": 76.42, "elapsed_time": "17:06:10", "remaining_time": "5:16:37"} +{"current_steps": 3148, "total_steps": 4118, "loss": 1.7076, "learning_rate": 0.0001, "epoch": 0.7644487615347256, "percentage": 76.44, "elapsed_time": "17:06:30", "remaining_time": "5:16:17"} +{"current_steps": 3149, "total_steps": 4118, "loss": 1.7808, "learning_rate": 0.0001, "epoch": 0.7646915978630403, "percentage": 76.47, "elapsed_time": "17:06:49", "remaining_time": "5:15:58"} +{"current_steps": 3150, "total_steps": 4118, "loss": 1.753, "learning_rate": 0.0001, "epoch": 0.764934434191355, "percentage": 76.49, "elapsed_time": "17:07:09", "remaining_time": "5:15:38"} +{"current_steps": 3151, "total_steps": 4118, "loss": 1.7637, "learning_rate": 0.0001, "epoch": 0.7651772705196698, "percentage": 76.52, "elapsed_time": "17:07:28", "remaining_time": "5:15:19"} +{"current_steps": 3152, "total_steps": 4118, "loss": 1.7152, "learning_rate": 0.0001, "epoch": 0.7654201068479844, "percentage": 76.54, "elapsed_time": "17:07:48", "remaining_time": "5:14:59"} +{"current_steps": 3153, "total_steps": 4118, "loss": 1.6306, "learning_rate": 0.0001, "epoch": 0.7656629431762991, "percentage": 76.57, "elapsed_time": "17:08:07", "remaining_time": "5:14:40"} +{"current_steps": 3154, "total_steps": 4118, "loss": 1.6602, "learning_rate": 0.0001, "epoch": 0.7659057795046139, "percentage": 76.59, "elapsed_time": "17:08:27", "remaining_time": "5:14:20"} +{"current_steps": 3155, "total_steps": 4118, "loss": 1.7429, "learning_rate": 0.0001, "epoch": 0.7661486158329286, "percentage": 76.61, "elapsed_time": "17:08:47", "remaining_time": "5:14:00"} +{"current_steps": 3156, "total_steps": 4118, "loss": 1.7826, "learning_rate": 0.0001, "epoch": 0.7663914521612433, "percentage": 76.64, "elapsed_time": "17:09:06", "remaining_time": "5:13:41"} +{"current_steps": 3157, "total_steps": 4118, "loss": 1.5595, "learning_rate": 0.0001, "epoch": 0.7666342884895581, "percentage": 76.66, "elapsed_time": "17:09:26", "remaining_time": "5:13:21"} +{"current_steps": 3158, "total_steps": 4118, "loss": 1.6426, "learning_rate": 0.0001, "epoch": 0.7668771248178727, "percentage": 76.69, "elapsed_time": "17:09:45", "remaining_time": "5:13:02"} +{"current_steps": 3159, "total_steps": 4118, "loss": 1.778, "learning_rate": 0.0001, "epoch": 0.7671199611461875, "percentage": 76.71, "elapsed_time": "17:10:05", "remaining_time": "5:12:42"} +{"current_steps": 3160, "total_steps": 4118, "loss": 1.6909, "learning_rate": 0.0001, "epoch": 0.7673627974745022, "percentage": 76.74, "elapsed_time": "17:10:24", "remaining_time": "5:12:23"} +{"current_steps": 3161, "total_steps": 4118, "loss": 1.6844, "learning_rate": 0.0001, "epoch": 0.7676056338028169, "percentage": 76.76, "elapsed_time": "17:10:44", "remaining_time": "5:12:03"} +{"current_steps": 3162, "total_steps": 4118, "loss": 1.7137, "learning_rate": 0.0001, "epoch": 0.7678484701311317, "percentage": 76.78, "elapsed_time": "17:11:04", "remaining_time": "5:11:44"} +{"current_steps": 3163, "total_steps": 4118, "loss": 1.6954, "learning_rate": 0.0001, "epoch": 0.7680913064594463, "percentage": 76.81, "elapsed_time": "17:11:23", "remaining_time": "5:11:24"} +{"current_steps": 3164, "total_steps": 4118, "loss": 1.8798, "learning_rate": 0.0001, "epoch": 0.768334142787761, "percentage": 76.83, "elapsed_time": "17:11:43", "remaining_time": "5:11:04"} +{"current_steps": 3165, "total_steps": 4118, "loss": 1.8241, "learning_rate": 0.0001, "epoch": 0.7685769791160758, "percentage": 76.86, "elapsed_time": "17:12:02", "remaining_time": "5:10:45"} +{"current_steps": 3166, "total_steps": 4118, "loss": 1.6678, "learning_rate": 0.0001, "epoch": 0.7688198154443905, "percentage": 76.88, "elapsed_time": "17:12:22", "remaining_time": "5:10:25"} +{"current_steps": 3167, "total_steps": 4118, "loss": 1.7706, "learning_rate": 0.0001, "epoch": 0.7690626517727052, "percentage": 76.91, "elapsed_time": "17:12:41", "remaining_time": "5:10:06"} +{"current_steps": 3168, "total_steps": 4118, "loss": 1.7462, "learning_rate": 0.0001, "epoch": 0.76930548810102, "percentage": 76.93, "elapsed_time": "17:13:01", "remaining_time": "5:09:46"} +{"current_steps": 3169, "total_steps": 4118, "loss": 1.6719, "learning_rate": 0.0001, "epoch": 0.7695483244293346, "percentage": 76.95, "elapsed_time": "17:13:20", "remaining_time": "5:09:27"} +{"current_steps": 3170, "total_steps": 4118, "loss": 1.7047, "learning_rate": 0.0001, "epoch": 0.7697911607576493, "percentage": 76.98, "elapsed_time": "17:13:40", "remaining_time": "5:09:07"} +{"current_steps": 3171, "total_steps": 4118, "loss": 1.7673, "learning_rate": 0.0001, "epoch": 0.7700339970859641, "percentage": 77.0, "elapsed_time": "17:14:00", "remaining_time": "5:08:47"} +{"current_steps": 3172, "total_steps": 4118, "loss": 1.7475, "learning_rate": 0.0001, "epoch": 0.7702768334142788, "percentage": 77.03, "elapsed_time": "17:14:19", "remaining_time": "5:08:28"} +{"current_steps": 3173, "total_steps": 4118, "loss": 1.6449, "learning_rate": 0.0001, "epoch": 0.7705196697425934, "percentage": 77.05, "elapsed_time": "17:14:39", "remaining_time": "5:08:08"} +{"current_steps": 3174, "total_steps": 4118, "loss": 1.6898, "learning_rate": 0.0001, "epoch": 0.7707625060709082, "percentage": 77.08, "elapsed_time": "17:14:58", "remaining_time": "5:07:49"} +{"current_steps": 3175, "total_steps": 4118, "loss": 1.7284, "learning_rate": 0.0001, "epoch": 0.7710053423992229, "percentage": 77.1, "elapsed_time": "17:15:18", "remaining_time": "5:07:29"} +{"current_steps": 3176, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.7712481787275376, "percentage": 77.12, "elapsed_time": "17:15:37", "remaining_time": "5:07:10"} +{"current_steps": 3177, "total_steps": 4118, "loss": 1.7998, "learning_rate": 0.0001, "epoch": 0.7714910150558524, "percentage": 77.15, "elapsed_time": "17:15:57", "remaining_time": "5:06:50"} +{"current_steps": 3178, "total_steps": 4118, "loss": 1.6769, "learning_rate": 0.0001, "epoch": 0.7717338513841671, "percentage": 77.17, "elapsed_time": "17:16:17", "remaining_time": "5:06:30"} +{"current_steps": 3179, "total_steps": 4118, "loss": 1.7069, "learning_rate": 0.0001, "epoch": 0.7719766877124817, "percentage": 77.2, "elapsed_time": "17:16:36", "remaining_time": "5:06:11"} +{"current_steps": 3180, "total_steps": 4118, "loss": 1.6059, "learning_rate": 0.0001, "epoch": 0.7722195240407965, "percentage": 77.22, "elapsed_time": "17:16:56", "remaining_time": "5:05:51"} +{"current_steps": 3181, "total_steps": 4118, "loss": 1.6007, "learning_rate": 0.0001, "epoch": 0.7724623603691112, "percentage": 77.25, "elapsed_time": "17:17:15", "remaining_time": "5:05:32"} +{"current_steps": 3182, "total_steps": 4118, "loss": 1.7131, "learning_rate": 0.0001, "epoch": 0.772705196697426, "percentage": 77.27, "elapsed_time": "17:17:35", "remaining_time": "5:05:12"} +{"current_steps": 3183, "total_steps": 4118, "loss": 1.6375, "learning_rate": 0.0001, "epoch": 0.7729480330257407, "percentage": 77.29, "elapsed_time": "17:17:54", "remaining_time": "5:04:53"} +{"current_steps": 3184, "total_steps": 4118, "loss": 1.8812, "learning_rate": 0.0001, "epoch": 0.7731908693540553, "percentage": 77.32, "elapsed_time": "17:18:14", "remaining_time": "5:04:33"} +{"current_steps": 3185, "total_steps": 4118, "loss": 1.6699, "learning_rate": 0.0001, "epoch": 0.7734337056823701, "percentage": 77.34, "elapsed_time": "17:18:34", "remaining_time": "5:04:14"} +{"current_steps": 3186, "total_steps": 4118, "loss": 1.7835, "learning_rate": 0.0001, "epoch": 0.7736765420106848, "percentage": 77.37, "elapsed_time": "17:18:53", "remaining_time": "5:03:54"} +{"current_steps": 3187, "total_steps": 4118, "loss": 1.6613, "learning_rate": 0.0001, "epoch": 0.7739193783389995, "percentage": 77.39, "elapsed_time": "17:19:13", "remaining_time": "5:03:34"} +{"current_steps": 3188, "total_steps": 4118, "loss": 1.5596, "learning_rate": 0.0001, "epoch": 0.7741622146673143, "percentage": 77.42, "elapsed_time": "17:19:32", "remaining_time": "5:03:15"} +{"current_steps": 3189, "total_steps": 4118, "loss": 1.7536, "learning_rate": 0.0001, "epoch": 0.774405050995629, "percentage": 77.44, "elapsed_time": "17:19:52", "remaining_time": "5:02:55"} +{"current_steps": 3190, "total_steps": 4118, "loss": 1.7563, "learning_rate": 0.0001, "epoch": 0.7746478873239436, "percentage": 77.46, "elapsed_time": "17:20:11", "remaining_time": "5:02:36"} +{"current_steps": 3191, "total_steps": 4118, "loss": 1.6958, "learning_rate": 0.0001, "epoch": 0.7748907236522584, "percentage": 77.49, "elapsed_time": "17:20:31", "remaining_time": "5:02:16"} +{"current_steps": 3192, "total_steps": 4118, "loss": 1.7502, "learning_rate": 0.0001, "epoch": 0.7751335599805731, "percentage": 77.51, "elapsed_time": "17:20:51", "remaining_time": "5:01:57"} +{"current_steps": 3193, "total_steps": 4118, "loss": 1.9189, "learning_rate": 0.0001, "epoch": 0.7753763963088878, "percentage": 77.54, "elapsed_time": "17:21:10", "remaining_time": "5:01:37"} +{"current_steps": 3194, "total_steps": 4118, "loss": 1.5918, "learning_rate": 0.0001, "epoch": 0.7756192326372026, "percentage": 77.56, "elapsed_time": "17:21:30", "remaining_time": "5:01:17"} +{"current_steps": 3195, "total_steps": 4118, "loss": 1.7974, "learning_rate": 0.0001, "epoch": 0.7758620689655172, "percentage": 77.59, "elapsed_time": "17:21:49", "remaining_time": "5:00:58"} +{"current_steps": 3196, "total_steps": 4118, "loss": 1.8372, "learning_rate": 0.0001, "epoch": 0.7761049052938319, "percentage": 77.61, "elapsed_time": "17:22:09", "remaining_time": "5:00:38"} +{"current_steps": 3197, "total_steps": 4118, "loss": 1.8258, "learning_rate": 0.0001, "epoch": 0.7763477416221467, "percentage": 77.63, "elapsed_time": "17:22:28", "remaining_time": "5:00:19"} +{"current_steps": 3198, "total_steps": 4118, "loss": 1.7996, "learning_rate": 0.0001, "epoch": 0.7765905779504614, "percentage": 77.66, "elapsed_time": "17:22:48", "remaining_time": "4:59:59"} +{"current_steps": 3199, "total_steps": 4118, "loss": 1.7175, "learning_rate": 0.0001, "epoch": 0.7768334142787761, "percentage": 77.68, "elapsed_time": "17:23:07", "remaining_time": "4:59:40"} +{"current_steps": 3200, "total_steps": 4118, "loss": 1.7009, "learning_rate": 0.0001, "epoch": 0.7770762506070908, "percentage": 77.71, "elapsed_time": "17:23:27", "remaining_time": "4:59:20"} +{"current_steps": 3201, "total_steps": 4118, "loss": 1.7568, "learning_rate": 0.0001, "epoch": 0.7773190869354055, "percentage": 77.73, "elapsed_time": "17:23:47", "remaining_time": "4:59:00"} +{"current_steps": 3202, "total_steps": 4118, "loss": 1.8863, "learning_rate": 0.0001, "epoch": 0.7775619232637202, "percentage": 77.76, "elapsed_time": "17:24:06", "remaining_time": "4:58:41"} +{"current_steps": 3203, "total_steps": 4118, "loss": 1.8666, "learning_rate": 0.0001, "epoch": 0.777804759592035, "percentage": 77.78, "elapsed_time": "17:24:26", "remaining_time": "4:58:21"} +{"current_steps": 3204, "total_steps": 4118, "loss": 1.8421, "learning_rate": 0.0001, "epoch": 0.7780475959203497, "percentage": 77.8, "elapsed_time": "17:24:45", "remaining_time": "4:58:02"} +{"current_steps": 3205, "total_steps": 4118, "loss": 1.6231, "learning_rate": 0.0001, "epoch": 0.7782904322486645, "percentage": 77.83, "elapsed_time": "17:25:05", "remaining_time": "4:57:42"} +{"current_steps": 3206, "total_steps": 4118, "loss": 1.7375, "learning_rate": 0.0001, "epoch": 0.7785332685769791, "percentage": 77.85, "elapsed_time": "17:25:24", "remaining_time": "4:57:23"} +{"current_steps": 3207, "total_steps": 4118, "loss": 1.8088, "learning_rate": 0.0001, "epoch": 0.7787761049052938, "percentage": 77.88, "elapsed_time": "17:25:44", "remaining_time": "4:57:03"} +{"current_steps": 3208, "total_steps": 4118, "loss": 1.7628, "learning_rate": 0.0001, "epoch": 0.7790189412336086, "percentage": 77.9, "elapsed_time": "17:26:04", "remaining_time": "4:56:44"} +{"current_steps": 3209, "total_steps": 4118, "loss": 1.8119, "learning_rate": 0.0001, "epoch": 0.7792617775619233, "percentage": 77.93, "elapsed_time": "17:26:23", "remaining_time": "4:56:24"} +{"current_steps": 3210, "total_steps": 4118, "loss": 1.7833, "learning_rate": 0.0001, "epoch": 0.779504613890238, "percentage": 77.95, "elapsed_time": "17:26:43", "remaining_time": "4:56:04"} +{"current_steps": 3211, "total_steps": 4118, "loss": 1.6959, "learning_rate": 0.0001, "epoch": 0.7797474502185527, "percentage": 77.97, "elapsed_time": "17:27:02", "remaining_time": "4:55:45"} +{"current_steps": 3212, "total_steps": 4118, "loss": 1.7076, "learning_rate": 0.0001, "epoch": 0.7799902865468674, "percentage": 78.0, "elapsed_time": "17:27:22", "remaining_time": "4:55:25"} +{"current_steps": 3213, "total_steps": 4118, "loss": 1.6012, "learning_rate": 0.0001, "epoch": 0.7802331228751821, "percentage": 78.02, "elapsed_time": "17:27:41", "remaining_time": "4:55:06"} +{"current_steps": 3214, "total_steps": 4118, "loss": 1.7297, "learning_rate": 0.0001, "epoch": 0.7804759592034969, "percentage": 78.05, "elapsed_time": "17:28:01", "remaining_time": "4:54:46"} +{"current_steps": 3215, "total_steps": 4118, "loss": 1.7052, "learning_rate": 0.0001, "epoch": 0.7807187955318116, "percentage": 78.07, "elapsed_time": "17:28:20", "remaining_time": "4:54:27"} +{"current_steps": 3216, "total_steps": 4118, "loss": 1.6343, "learning_rate": 0.0001, "epoch": 0.7809616318601262, "percentage": 78.1, "elapsed_time": "17:28:40", "remaining_time": "4:54:07"} +{"current_steps": 3217, "total_steps": 4118, "loss": 1.9216, "learning_rate": 0.0001, "epoch": 0.781204468188441, "percentage": 78.12, "elapsed_time": "17:29:00", "remaining_time": "4:53:47"} +{"current_steps": 3218, "total_steps": 4118, "loss": 1.7763, "learning_rate": 0.0001, "epoch": 0.7814473045167557, "percentage": 78.14, "elapsed_time": "17:29:19", "remaining_time": "4:53:28"} +{"current_steps": 3219, "total_steps": 4118, "loss": 1.5273, "learning_rate": 0.0001, "epoch": 0.7816901408450704, "percentage": 78.17, "elapsed_time": "17:29:39", "remaining_time": "4:53:08"} +{"current_steps": 3220, "total_steps": 4118, "loss": 1.6079, "learning_rate": 0.0001, "epoch": 0.7819329771733852, "percentage": 78.19, "elapsed_time": "17:29:58", "remaining_time": "4:52:49"} +{"current_steps": 3221, "total_steps": 4118, "loss": 1.6556, "learning_rate": 0.0001, "epoch": 0.7821758135016998, "percentage": 78.22, "elapsed_time": "17:30:18", "remaining_time": "4:52:29"} +{"current_steps": 3222, "total_steps": 4118, "loss": 1.7984, "learning_rate": 0.0001, "epoch": 0.7824186498300145, "percentage": 78.24, "elapsed_time": "17:30:37", "remaining_time": "4:52:10"} +{"current_steps": 3223, "total_steps": 4118, "loss": 1.6671, "learning_rate": 0.0001, "epoch": 0.7826614861583293, "percentage": 78.27, "elapsed_time": "17:30:57", "remaining_time": "4:51:50"} +{"current_steps": 3224, "total_steps": 4118, "loss": 1.6217, "learning_rate": 0.0001, "epoch": 0.782904322486644, "percentage": 78.29, "elapsed_time": "17:31:17", "remaining_time": "4:51:30"} +{"current_steps": 3225, "total_steps": 4118, "loss": 1.7576, "learning_rate": 0.0001, "epoch": 0.7831471588149587, "percentage": 78.31, "elapsed_time": "17:31:36", "remaining_time": "4:51:11"} +{"current_steps": 3226, "total_steps": 4118, "loss": 1.6342, "learning_rate": 0.0001, "epoch": 0.7833899951432735, "percentage": 78.34, "elapsed_time": "17:31:56", "remaining_time": "4:50:51"} +{"current_steps": 3227, "total_steps": 4118, "loss": 1.7071, "learning_rate": 0.0001, "epoch": 0.7836328314715881, "percentage": 78.36, "elapsed_time": "17:32:15", "remaining_time": "4:50:32"} +{"current_steps": 3228, "total_steps": 4118, "loss": 1.793, "learning_rate": 0.0001, "epoch": 0.7838756677999029, "percentage": 78.39, "elapsed_time": "17:32:35", "remaining_time": "4:50:12"} +{"current_steps": 3229, "total_steps": 4118, "loss": 1.6398, "learning_rate": 0.0001, "epoch": 0.7841185041282176, "percentage": 78.41, "elapsed_time": "17:32:54", "remaining_time": "4:49:53"} +{"current_steps": 3230, "total_steps": 4118, "loss": 1.7255, "learning_rate": 0.0001, "epoch": 0.7843613404565323, "percentage": 78.44, "elapsed_time": "17:33:14", "remaining_time": "4:49:33"} +{"current_steps": 3231, "total_steps": 4118, "loss": 1.7774, "learning_rate": 0.0001, "epoch": 0.7846041767848471, "percentage": 78.46, "elapsed_time": "17:33:34", "remaining_time": "4:49:14"} +{"current_steps": 3232, "total_steps": 4118, "loss": 1.6307, "learning_rate": 0.0001, "epoch": 0.7848470131131617, "percentage": 78.48, "elapsed_time": "17:33:53", "remaining_time": "4:48:54"} +{"current_steps": 3233, "total_steps": 4118, "loss": 1.6391, "learning_rate": 0.0001, "epoch": 0.7850898494414764, "percentage": 78.51, "elapsed_time": "17:34:13", "remaining_time": "4:48:34"} +{"current_steps": 3234, "total_steps": 4118, "loss": 1.7187, "learning_rate": 0.0001, "epoch": 0.7853326857697912, "percentage": 78.53, "elapsed_time": "17:34:32", "remaining_time": "4:48:15"} +{"current_steps": 3235, "total_steps": 4118, "loss": 1.7051, "learning_rate": 0.0001, "epoch": 0.7855755220981059, "percentage": 78.56, "elapsed_time": "17:34:52", "remaining_time": "4:47:55"} +{"current_steps": 3236, "total_steps": 4118, "loss": 1.742, "learning_rate": 0.0001, "epoch": 0.7858183584264206, "percentage": 78.58, "elapsed_time": "17:35:11", "remaining_time": "4:47:36"} +{"current_steps": 3237, "total_steps": 4118, "loss": 1.7526, "learning_rate": 0.0001, "epoch": 0.7860611947547353, "percentage": 78.61, "elapsed_time": "17:35:31", "remaining_time": "4:47:16"} +{"current_steps": 3238, "total_steps": 4118, "loss": 1.7003, "learning_rate": 0.0001, "epoch": 0.78630403108305, "percentage": 78.63, "elapsed_time": "17:35:50", "remaining_time": "4:46:57"} +{"current_steps": 3239, "total_steps": 4118, "loss": 1.7509, "learning_rate": 0.0001, "epoch": 0.7865468674113647, "percentage": 78.65, "elapsed_time": "17:36:10", "remaining_time": "4:46:37"} +{"current_steps": 3240, "total_steps": 4118, "loss": 1.8431, "learning_rate": 0.0001, "epoch": 0.7867897037396795, "percentage": 78.68, "elapsed_time": "17:36:30", "remaining_time": "4:46:17"} +{"current_steps": 3241, "total_steps": 4118, "loss": 1.6484, "learning_rate": 0.0001, "epoch": 0.7870325400679942, "percentage": 78.7, "elapsed_time": "17:36:49", "remaining_time": "4:45:58"} +{"current_steps": 3242, "total_steps": 4118, "loss": 1.7988, "learning_rate": 0.0001, "epoch": 0.7872753763963088, "percentage": 78.73, "elapsed_time": "17:37:09", "remaining_time": "4:45:38"} +{"current_steps": 3243, "total_steps": 4118, "loss": 1.6917, "learning_rate": 0.0001, "epoch": 0.7875182127246236, "percentage": 78.75, "elapsed_time": "17:37:28", "remaining_time": "4:45:19"} +{"current_steps": 3244, "total_steps": 4118, "loss": 1.71, "learning_rate": 0.0001, "epoch": 0.7877610490529383, "percentage": 78.78, "elapsed_time": "17:37:48", "remaining_time": "4:44:59"} +{"current_steps": 3245, "total_steps": 4118, "loss": 1.5398, "learning_rate": 0.0001, "epoch": 0.788003885381253, "percentage": 78.8, "elapsed_time": "17:38:07", "remaining_time": "4:44:40"} +{"current_steps": 3246, "total_steps": 4118, "loss": 1.7619, "learning_rate": 0.0001, "epoch": 0.7882467217095678, "percentage": 78.82, "elapsed_time": "17:38:27", "remaining_time": "4:44:20"} +{"current_steps": 3247, "total_steps": 4118, "loss": 1.7535, "learning_rate": 0.0001, "epoch": 0.7884895580378825, "percentage": 78.85, "elapsed_time": "17:38:46", "remaining_time": "4:44:00"} +{"current_steps": 3248, "total_steps": 4118, "loss": 1.6862, "learning_rate": 0.0001, "epoch": 0.7887323943661971, "percentage": 78.87, "elapsed_time": "17:39:06", "remaining_time": "4:43:41"} +{"current_steps": 3249, "total_steps": 4118, "loss": 1.6971, "learning_rate": 0.0001, "epoch": 0.7889752306945119, "percentage": 78.9, "elapsed_time": "17:39:26", "remaining_time": "4:43:21"} +{"current_steps": 3250, "total_steps": 4118, "loss": 1.6047, "learning_rate": 0.0001, "epoch": 0.7892180670228266, "percentage": 78.92, "elapsed_time": "17:39:45", "remaining_time": "4:43:02"} +{"current_steps": 3251, "total_steps": 4118, "loss": 1.7686, "learning_rate": 0.0001, "epoch": 0.7894609033511414, "percentage": 78.95, "elapsed_time": "17:40:05", "remaining_time": "4:42:42"} +{"current_steps": 3252, "total_steps": 4118, "loss": 1.7822, "learning_rate": 0.0001, "epoch": 0.7897037396794561, "percentage": 78.97, "elapsed_time": "17:40:24", "remaining_time": "4:42:23"} +{"current_steps": 3253, "total_steps": 4118, "loss": 1.7837, "learning_rate": 0.0001, "epoch": 0.7899465760077707, "percentage": 78.99, "elapsed_time": "17:40:44", "remaining_time": "4:42:03"} +{"current_steps": 3254, "total_steps": 4118, "loss": 1.7271, "learning_rate": 0.0001, "epoch": 0.7901894123360855, "percentage": 79.02, "elapsed_time": "17:41:03", "remaining_time": "4:41:43"} +{"current_steps": 3255, "total_steps": 4118, "loss": 1.7922, "learning_rate": 0.0001, "epoch": 0.7904322486644002, "percentage": 79.04, "elapsed_time": "17:41:23", "remaining_time": "4:41:24"} +{"current_steps": 3256, "total_steps": 4118, "loss": 1.9356, "learning_rate": 0.0001, "epoch": 0.7906750849927149, "percentage": 79.07, "elapsed_time": "17:41:42", "remaining_time": "4:41:04"} +{"current_steps": 3257, "total_steps": 4118, "loss": 1.6897, "learning_rate": 0.0001, "epoch": 0.7909179213210297, "percentage": 79.09, "elapsed_time": "17:42:02", "remaining_time": "4:40:45"} +{"current_steps": 3258, "total_steps": 4118, "loss": 1.7142, "learning_rate": 0.0001, "epoch": 0.7911607576493443, "percentage": 79.12, "elapsed_time": "17:42:22", "remaining_time": "4:40:25"} +{"current_steps": 3259, "total_steps": 4118, "loss": 1.8275, "learning_rate": 0.0001, "epoch": 0.791403593977659, "percentage": 79.14, "elapsed_time": "17:42:41", "remaining_time": "4:40:06"} +{"current_steps": 3260, "total_steps": 4118, "loss": 1.8003, "learning_rate": 0.0001, "epoch": 0.7916464303059738, "percentage": 79.16, "elapsed_time": "17:43:01", "remaining_time": "4:39:46"} +{"current_steps": 3261, "total_steps": 4118, "loss": 1.8204, "learning_rate": 0.0001, "epoch": 0.7918892666342885, "percentage": 79.19, "elapsed_time": "17:43:20", "remaining_time": "4:39:27"} +{"current_steps": 3262, "total_steps": 4118, "loss": 1.7183, "learning_rate": 0.0001, "epoch": 0.7921321029626032, "percentage": 79.21, "elapsed_time": "17:43:40", "remaining_time": "4:39:07"} +{"current_steps": 3263, "total_steps": 4118, "loss": 2.0105, "learning_rate": 0.0001, "epoch": 0.792374939290918, "percentage": 79.24, "elapsed_time": "17:43:59", "remaining_time": "4:38:47"} +{"current_steps": 3264, "total_steps": 4118, "loss": 1.7082, "learning_rate": 0.0001, "epoch": 0.7926177756192326, "percentage": 79.26, "elapsed_time": "17:44:19", "remaining_time": "4:38:28"} +{"current_steps": 3265, "total_steps": 4118, "loss": 1.7149, "learning_rate": 0.0001, "epoch": 0.7928606119475473, "percentage": 79.29, "elapsed_time": "17:44:38", "remaining_time": "4:38:08"} +{"current_steps": 3266, "total_steps": 4118, "loss": 1.679, "learning_rate": 0.0001, "epoch": 0.7931034482758621, "percentage": 79.31, "elapsed_time": "17:44:58", "remaining_time": "4:37:49"} +{"current_steps": 3267, "total_steps": 4118, "loss": 1.5265, "learning_rate": 0.0001, "epoch": 0.7933462846041768, "percentage": 79.33, "elapsed_time": "17:45:18", "remaining_time": "4:37:29"} +{"current_steps": 3268, "total_steps": 4118, "loss": 1.6274, "learning_rate": 0.0001, "epoch": 0.7935891209324915, "percentage": 79.36, "elapsed_time": "17:45:37", "remaining_time": "4:37:10"} +{"current_steps": 3269, "total_steps": 4118, "loss": 1.8143, "learning_rate": 0.0001, "epoch": 0.7938319572608062, "percentage": 79.38, "elapsed_time": "17:45:57", "remaining_time": "4:36:50"} +{"current_steps": 3270, "total_steps": 4118, "loss": 1.8426, "learning_rate": 0.0001, "epoch": 0.7940747935891209, "percentage": 79.41, "elapsed_time": "17:46:16", "remaining_time": "4:36:30"} +{"current_steps": 3271, "total_steps": 4118, "loss": 1.7238, "learning_rate": 0.0001, "epoch": 0.7943176299174356, "percentage": 79.43, "elapsed_time": "17:46:36", "remaining_time": "4:36:11"} +{"current_steps": 3272, "total_steps": 4118, "loss": 1.6579, "learning_rate": 0.0001, "epoch": 0.7945604662457504, "percentage": 79.46, "elapsed_time": "17:46:55", "remaining_time": "4:35:51"} +{"current_steps": 3273, "total_steps": 4118, "loss": 1.7133, "learning_rate": 0.0001, "epoch": 0.7948033025740651, "percentage": 79.48, "elapsed_time": "17:47:15", "remaining_time": "4:35:32"} +{"current_steps": 3274, "total_steps": 4118, "loss": 1.6262, "learning_rate": 0.0001, "epoch": 0.7950461389023799, "percentage": 79.5, "elapsed_time": "17:47:35", "remaining_time": "4:35:12"} +{"current_steps": 3275, "total_steps": 4118, "loss": 1.9173, "learning_rate": 0.0001, "epoch": 0.7952889752306945, "percentage": 79.53, "elapsed_time": "17:47:54", "remaining_time": "4:34:53"} +{"current_steps": 3276, "total_steps": 4118, "loss": 1.7487, "learning_rate": 0.0001, "epoch": 0.7955318115590092, "percentage": 79.55, "elapsed_time": "17:48:14", "remaining_time": "4:34:33"} +{"current_steps": 3277, "total_steps": 4118, "loss": 1.7422, "learning_rate": 0.0001, "epoch": 0.795774647887324, "percentage": 79.58, "elapsed_time": "17:48:33", "remaining_time": "4:34:13"} +{"current_steps": 3278, "total_steps": 4118, "loss": 1.6029, "learning_rate": 0.0001, "epoch": 0.7960174842156387, "percentage": 79.6, "elapsed_time": "17:48:53", "remaining_time": "4:33:54"} +{"current_steps": 3279, "total_steps": 4118, "loss": 1.7026, "learning_rate": 0.0001, "epoch": 0.7962603205439533, "percentage": 79.63, "elapsed_time": "17:49:12", "remaining_time": "4:33:34"} +{"current_steps": 3280, "total_steps": 4118, "loss": 1.7256, "learning_rate": 0.0001, "epoch": 0.7965031568722681, "percentage": 79.65, "elapsed_time": "17:49:32", "remaining_time": "4:33:15"} +{"current_steps": 3281, "total_steps": 4118, "loss": 1.7722, "learning_rate": 0.0001, "epoch": 0.7967459932005828, "percentage": 79.67, "elapsed_time": "17:49:52", "remaining_time": "4:32:55"} +{"current_steps": 3282, "total_steps": 4118, "loss": 1.8379, "learning_rate": 0.0001, "epoch": 0.7969888295288975, "percentage": 79.7, "elapsed_time": "17:50:11", "remaining_time": "4:32:36"} +{"current_steps": 3283, "total_steps": 4118, "loss": 1.6831, "learning_rate": 0.0001, "epoch": 0.7972316658572123, "percentage": 79.72, "elapsed_time": "17:50:31", "remaining_time": "4:32:16"} +{"current_steps": 3284, "total_steps": 4118, "loss": 1.8552, "learning_rate": 0.0001, "epoch": 0.797474502185527, "percentage": 79.75, "elapsed_time": "17:50:50", "remaining_time": "4:31:57"} +{"current_steps": 3285, "total_steps": 4118, "loss": 1.6622, "learning_rate": 0.0001, "epoch": 0.7977173385138416, "percentage": 79.77, "elapsed_time": "17:51:10", "remaining_time": "4:31:37"} +{"current_steps": 3286, "total_steps": 4118, "loss": 1.7832, "learning_rate": 0.0001, "epoch": 0.7979601748421564, "percentage": 79.8, "elapsed_time": "17:51:29", "remaining_time": "4:31:17"} +{"current_steps": 3287, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.7982030111704711, "percentage": 79.82, "elapsed_time": "17:51:49", "remaining_time": "4:30:58"} +{"current_steps": 3288, "total_steps": 4118, "loss": 1.589, "learning_rate": 0.0001, "epoch": 0.7984458474987858, "percentage": 79.84, "elapsed_time": "17:52:08", "remaining_time": "4:30:38"} +{"current_steps": 3289, "total_steps": 4118, "loss": 1.6746, "learning_rate": 0.0001, "epoch": 0.7986886838271006, "percentage": 79.87, "elapsed_time": "17:52:28", "remaining_time": "4:30:19"} +{"current_steps": 3290, "total_steps": 4118, "loss": 1.7154, "learning_rate": 0.0001, "epoch": 0.7989315201554152, "percentage": 79.89, "elapsed_time": "17:52:48", "remaining_time": "4:29:59"} +{"current_steps": 3291, "total_steps": 4118, "loss": 1.7156, "learning_rate": 0.0001, "epoch": 0.7991743564837299, "percentage": 79.92, "elapsed_time": "17:53:07", "remaining_time": "4:29:40"} +{"current_steps": 3292, "total_steps": 4118, "loss": 1.6816, "learning_rate": 0.0001, "epoch": 0.7994171928120447, "percentage": 79.94, "elapsed_time": "17:53:27", "remaining_time": "4:29:20"} +{"current_steps": 3293, "total_steps": 4118, "loss": 1.8079, "learning_rate": 0.0001, "epoch": 0.7996600291403594, "percentage": 79.97, "elapsed_time": "17:53:46", "remaining_time": "4:29:00"} +{"current_steps": 3294, "total_steps": 4118, "loss": 1.7526, "learning_rate": 0.0001, "epoch": 0.7999028654686741, "percentage": 79.99, "elapsed_time": "17:54:06", "remaining_time": "4:28:41"} +{"current_steps": 3295, "total_steps": 4118, "loss": 1.8159, "learning_rate": 0.0001, "epoch": 0.8001457017969889, "percentage": 80.01, "elapsed_time": "17:54:25", "remaining_time": "4:28:21"} +{"current_steps": 3296, "total_steps": 4118, "loss": 1.6233, "learning_rate": 0.0001, "epoch": 0.8003885381253035, "percentage": 80.04, "elapsed_time": "17:54:45", "remaining_time": "4:28:02"} +{"current_steps": 3297, "total_steps": 4118, "loss": 1.7053, "learning_rate": 0.0001, "epoch": 0.8006313744536183, "percentage": 80.06, "elapsed_time": "17:55:05", "remaining_time": "4:27:42"} +{"current_steps": 3298, "total_steps": 4118, "loss": 1.7013, "learning_rate": 0.0001, "epoch": 0.800874210781933, "percentage": 80.09, "elapsed_time": "17:55:24", "remaining_time": "4:27:23"} +{"current_steps": 3299, "total_steps": 4118, "loss": 1.7511, "learning_rate": 0.0001, "epoch": 0.8011170471102477, "percentage": 80.11, "elapsed_time": "17:55:44", "remaining_time": "4:27:03"} +{"current_steps": 3300, "total_steps": 4118, "loss": 1.8281, "learning_rate": 0.0001, "epoch": 0.8013598834385625, "percentage": 80.14, "elapsed_time": "17:56:03", "remaining_time": "4:26:43"} +{"current_steps": 3301, "total_steps": 4118, "loss": 1.6561, "learning_rate": 0.0001, "epoch": 0.8016027197668771, "percentage": 80.16, "elapsed_time": "17:56:23", "remaining_time": "4:26:24"} +{"current_steps": 3302, "total_steps": 4118, "loss": 1.859, "learning_rate": 0.0001, "epoch": 0.8018455560951918, "percentage": 80.18, "elapsed_time": "17:56:42", "remaining_time": "4:26:04"} +{"current_steps": 3303, "total_steps": 4118, "loss": 1.7348, "learning_rate": 0.0001, "epoch": 0.8020883924235066, "percentage": 80.21, "elapsed_time": "17:57:02", "remaining_time": "4:25:45"} +{"current_steps": 3304, "total_steps": 4118, "loss": 1.7621, "learning_rate": 0.0001, "epoch": 0.8023312287518213, "percentage": 80.23, "elapsed_time": "17:57:21", "remaining_time": "4:25:25"} +{"current_steps": 3305, "total_steps": 4118, "loss": 1.8134, "learning_rate": 0.0001, "epoch": 0.802574065080136, "percentage": 80.26, "elapsed_time": "17:57:41", "remaining_time": "4:25:06"} +{"current_steps": 3306, "total_steps": 4118, "loss": 1.656, "learning_rate": 0.0001, "epoch": 0.8028169014084507, "percentage": 80.28, "elapsed_time": "17:58:01", "remaining_time": "4:24:46"} +{"current_steps": 3307, "total_steps": 4118, "loss": 1.7581, "learning_rate": 0.0001, "epoch": 0.8030597377367654, "percentage": 80.31, "elapsed_time": "17:58:20", "remaining_time": "4:24:27"} +{"current_steps": 3308, "total_steps": 4118, "loss": 1.7315, "learning_rate": 0.0001, "epoch": 0.8033025740650801, "percentage": 80.33, "elapsed_time": "17:58:40", "remaining_time": "4:24:07"} +{"current_steps": 3309, "total_steps": 4118, "loss": 1.68, "learning_rate": 0.0001, "epoch": 0.8035454103933949, "percentage": 80.35, "elapsed_time": "17:58:59", "remaining_time": "4:23:47"} +{"current_steps": 3310, "total_steps": 4118, "loss": 1.7313, "learning_rate": 0.0001, "epoch": 0.8037882467217096, "percentage": 80.38, "elapsed_time": "17:59:19", "remaining_time": "4:23:28"} +{"current_steps": 3311, "total_steps": 4118, "loss": 1.7345, "learning_rate": 0.0001, "epoch": 0.8040310830500242, "percentage": 80.4, "elapsed_time": "17:59:38", "remaining_time": "4:23:08"} +{"current_steps": 3312, "total_steps": 4118, "loss": 1.6162, "learning_rate": 0.0001, "epoch": 0.804273919378339, "percentage": 80.43, "elapsed_time": "17:59:58", "remaining_time": "4:22:49"} +{"current_steps": 3313, "total_steps": 4118, "loss": 1.7002, "learning_rate": 0.0001, "epoch": 0.8045167557066537, "percentage": 80.45, "elapsed_time": "18:00:18", "remaining_time": "4:22:29"} +{"current_steps": 3314, "total_steps": 4118, "loss": 1.7657, "learning_rate": 0.0001, "epoch": 0.8047595920349684, "percentage": 80.48, "elapsed_time": "18:00:37", "remaining_time": "4:22:10"} +{"current_steps": 3315, "total_steps": 4118, "loss": 1.8043, "learning_rate": 0.0001, "epoch": 0.8050024283632832, "percentage": 80.5, "elapsed_time": "18:00:57", "remaining_time": "4:21:50"} +{"current_steps": 3316, "total_steps": 4118, "loss": 1.5579, "learning_rate": 0.0001, "epoch": 0.8052452646915979, "percentage": 80.52, "elapsed_time": "18:01:16", "remaining_time": "4:21:30"} +{"current_steps": 3317, "total_steps": 4118, "loss": 1.7581, "learning_rate": 0.0001, "epoch": 0.8054881010199125, "percentage": 80.55, "elapsed_time": "18:01:36", "remaining_time": "4:21:11"} +{"current_steps": 3318, "total_steps": 4118, "loss": 1.6285, "learning_rate": 0.0001, "epoch": 0.8057309373482273, "percentage": 80.57, "elapsed_time": "18:01:55", "remaining_time": "4:20:51"} +{"current_steps": 3319, "total_steps": 4118, "loss": 1.8467, "learning_rate": 0.0001, "epoch": 0.805973773676542, "percentage": 80.6, "elapsed_time": "18:02:15", "remaining_time": "4:20:32"} +{"current_steps": 3320, "total_steps": 4118, "loss": 1.7842, "learning_rate": 0.0001, "epoch": 0.8062166100048568, "percentage": 80.62, "elapsed_time": "18:02:34", "remaining_time": "4:20:12"} +{"current_steps": 3321, "total_steps": 4118, "loss": 1.754, "learning_rate": 0.0001, "epoch": 0.8064594463331715, "percentage": 80.65, "elapsed_time": "18:02:54", "remaining_time": "4:19:53"} +{"current_steps": 3322, "total_steps": 4118, "loss": 1.6881, "learning_rate": 0.0001, "epoch": 0.8067022826614861, "percentage": 80.67, "elapsed_time": "18:03:14", "remaining_time": "4:19:33"} +{"current_steps": 3323, "total_steps": 4118, "loss": 1.6644, "learning_rate": 0.0001, "epoch": 0.8069451189898009, "percentage": 80.69, "elapsed_time": "18:03:33", "remaining_time": "4:19:13"} +{"current_steps": 3324, "total_steps": 4118, "loss": 1.8324, "learning_rate": 0.0001, "epoch": 0.8071879553181156, "percentage": 80.72, "elapsed_time": "18:03:53", "remaining_time": "4:18:54"} +{"current_steps": 3325, "total_steps": 4118, "loss": 1.9817, "learning_rate": 0.0001, "epoch": 0.8074307916464303, "percentage": 80.74, "elapsed_time": "18:04:12", "remaining_time": "4:18:34"} +{"current_steps": 3326, "total_steps": 4118, "loss": 1.7077, "learning_rate": 0.0001, "epoch": 0.8076736279747451, "percentage": 80.77, "elapsed_time": "18:04:32", "remaining_time": "4:18:15"} +{"current_steps": 3327, "total_steps": 4118, "loss": 1.5986, "learning_rate": 0.0001, "epoch": 0.8079164643030597, "percentage": 80.79, "elapsed_time": "18:04:51", "remaining_time": "4:17:55"} +{"current_steps": 3328, "total_steps": 4118, "loss": 1.6426, "learning_rate": 0.0001, "epoch": 0.8081593006313744, "percentage": 80.82, "elapsed_time": "18:05:11", "remaining_time": "4:17:36"} +{"current_steps": 3329, "total_steps": 4118, "loss": 1.7373, "learning_rate": 0.0001, "epoch": 0.8084021369596892, "percentage": 80.84, "elapsed_time": "18:05:31", "remaining_time": "4:17:16"} +{"current_steps": 3330, "total_steps": 4118, "loss": 1.7404, "learning_rate": 0.0001, "epoch": 0.8086449732880039, "percentage": 80.86, "elapsed_time": "18:05:50", "remaining_time": "4:16:57"} +{"current_steps": 3331, "total_steps": 4118, "loss": 1.6852, "learning_rate": 0.0001, "epoch": 0.8088878096163186, "percentage": 80.89, "elapsed_time": "18:06:10", "remaining_time": "4:16:37"} +{"current_steps": 3332, "total_steps": 4118, "loss": 1.8937, "learning_rate": 0.0001, "epoch": 0.8091306459446334, "percentage": 80.91, "elapsed_time": "18:06:29", "remaining_time": "4:16:17"} +{"current_steps": 3333, "total_steps": 4118, "loss": 1.6654, "learning_rate": 0.0001, "epoch": 0.809373482272948, "percentage": 80.94, "elapsed_time": "18:06:49", "remaining_time": "4:15:58"} +{"current_steps": 3334, "total_steps": 4118, "loss": 1.88, "learning_rate": 0.0001, "epoch": 0.8096163186012627, "percentage": 80.96, "elapsed_time": "18:07:08", "remaining_time": "4:15:38"} +{"current_steps": 3335, "total_steps": 4118, "loss": 1.6951, "learning_rate": 0.0001, "epoch": 0.8098591549295775, "percentage": 80.99, "elapsed_time": "18:07:28", "remaining_time": "4:15:19"} +{"current_steps": 3336, "total_steps": 4118, "loss": 1.4823, "learning_rate": 0.0001, "epoch": 0.8101019912578922, "percentage": 81.01, "elapsed_time": "18:07:48", "remaining_time": "4:14:59"} +{"current_steps": 3337, "total_steps": 4118, "loss": 1.7982, "learning_rate": 0.0001, "epoch": 0.8103448275862069, "percentage": 81.03, "elapsed_time": "18:08:07", "remaining_time": "4:14:40"} +{"current_steps": 3338, "total_steps": 4118, "loss": 1.9694, "learning_rate": 0.0001, "epoch": 0.8105876639145216, "percentage": 81.06, "elapsed_time": "18:08:27", "remaining_time": "4:14:20"} +{"current_steps": 3339, "total_steps": 4118, "loss": 1.7166, "learning_rate": 0.0001, "epoch": 0.8108305002428363, "percentage": 81.08, "elapsed_time": "18:08:46", "remaining_time": "4:14:00"} +{"current_steps": 3340, "total_steps": 4118, "loss": 1.9117, "learning_rate": 0.0001, "epoch": 0.811073336571151, "percentage": 81.11, "elapsed_time": "18:09:06", "remaining_time": "4:13:41"} +{"current_steps": 3341, "total_steps": 4118, "loss": 1.9107, "learning_rate": 0.0001, "epoch": 0.8113161728994658, "percentage": 81.13, "elapsed_time": "18:09:25", "remaining_time": "4:13:21"} +{"current_steps": 3342, "total_steps": 4118, "loss": 1.6885, "learning_rate": 0.0001, "epoch": 0.8115590092277805, "percentage": 81.16, "elapsed_time": "18:09:45", "remaining_time": "4:13:02"} +{"current_steps": 3343, "total_steps": 4118, "loss": 1.5568, "learning_rate": 0.0001, "epoch": 0.8118018455560952, "percentage": 81.18, "elapsed_time": "18:10:05", "remaining_time": "4:12:42"} +{"current_steps": 3344, "total_steps": 4118, "loss": 1.7278, "learning_rate": 0.0001, "epoch": 0.8120446818844099, "percentage": 81.2, "elapsed_time": "18:10:24", "remaining_time": "4:12:23"} +{"current_steps": 3345, "total_steps": 4118, "loss": 1.7762, "learning_rate": 0.0001, "epoch": 0.8122875182127246, "percentage": 81.23, "elapsed_time": "18:10:44", "remaining_time": "4:12:03"} +{"current_steps": 3346, "total_steps": 4118, "loss": 1.6091, "learning_rate": 0.0001, "epoch": 0.8125303545410394, "percentage": 81.25, "elapsed_time": "18:11:03", "remaining_time": "4:11:44"} +{"current_steps": 3347, "total_steps": 4118, "loss": 1.699, "learning_rate": 0.0001, "epoch": 0.8127731908693541, "percentage": 81.28, "elapsed_time": "18:11:23", "remaining_time": "4:11:24"} +{"current_steps": 3348, "total_steps": 4118, "loss": 1.779, "learning_rate": 0.0001, "epoch": 0.8130160271976687, "percentage": 81.3, "elapsed_time": "18:11:42", "remaining_time": "4:11:04"} +{"current_steps": 3349, "total_steps": 4118, "loss": 1.9329, "learning_rate": 0.0001, "epoch": 0.8132588635259835, "percentage": 81.33, "elapsed_time": "18:12:02", "remaining_time": "4:10:45"} +{"current_steps": 3350, "total_steps": 4118, "loss": 1.8494, "learning_rate": 0.0001, "epoch": 0.8135016998542982, "percentage": 81.35, "elapsed_time": "18:12:22", "remaining_time": "4:10:25"} +{"current_steps": 3351, "total_steps": 4118, "loss": 1.4451, "learning_rate": 0.0001, "epoch": 0.8137445361826129, "percentage": 81.37, "elapsed_time": "18:12:41", "remaining_time": "4:10:06"} +{"current_steps": 3352, "total_steps": 4118, "loss": 1.6861, "learning_rate": 0.0001, "epoch": 0.8139873725109277, "percentage": 81.4, "elapsed_time": "18:13:01", "remaining_time": "4:09:46"} +{"current_steps": 3353, "total_steps": 4118, "loss": 1.8228, "learning_rate": 0.0001, "epoch": 0.8142302088392424, "percentage": 81.42, "elapsed_time": "18:13:20", "remaining_time": "4:09:27"} +{"current_steps": 3354, "total_steps": 4118, "loss": 1.6771, "learning_rate": 0.0001, "epoch": 0.814473045167557, "percentage": 81.45, "elapsed_time": "18:13:40", "remaining_time": "4:09:07"} +{"current_steps": 3355, "total_steps": 4118, "loss": 1.7107, "learning_rate": 0.0001, "epoch": 0.8147158814958718, "percentage": 81.47, "elapsed_time": "18:13:59", "remaining_time": "4:08:47"} +{"current_steps": 3356, "total_steps": 4118, "loss": 1.5783, "learning_rate": 0.0001, "epoch": 0.8149587178241865, "percentage": 81.5, "elapsed_time": "18:14:19", "remaining_time": "4:08:28"} +{"current_steps": 3357, "total_steps": 4118, "loss": 1.7775, "learning_rate": 0.0001, "epoch": 0.8152015541525012, "percentage": 81.52, "elapsed_time": "18:14:39", "remaining_time": "4:08:08"} +{"current_steps": 3358, "total_steps": 4118, "loss": 1.6928, "learning_rate": 0.0001, "epoch": 0.815444390480816, "percentage": 81.54, "elapsed_time": "18:14:58", "remaining_time": "4:07:49"} +{"current_steps": 3359, "total_steps": 4118, "loss": 1.7559, "learning_rate": 0.0001, "epoch": 0.8156872268091306, "percentage": 81.57, "elapsed_time": "18:15:18", "remaining_time": "4:07:29"} +{"current_steps": 3360, "total_steps": 4118, "loss": 1.5733, "learning_rate": 0.0001, "epoch": 0.8159300631374453, "percentage": 81.59, "elapsed_time": "18:15:37", "remaining_time": "4:07:10"} +{"current_steps": 3361, "total_steps": 4118, "loss": 1.7317, "learning_rate": 0.0001, "epoch": 0.8161728994657601, "percentage": 81.62, "elapsed_time": "18:15:57", "remaining_time": "4:06:50"} +{"current_steps": 3362, "total_steps": 4118, "loss": 1.8898, "learning_rate": 0.0001, "epoch": 0.8164157357940748, "percentage": 81.64, "elapsed_time": "18:16:16", "remaining_time": "4:06:31"} +{"current_steps": 3363, "total_steps": 4118, "loss": 1.7949, "learning_rate": 0.0001, "epoch": 0.8166585721223895, "percentage": 81.67, "elapsed_time": "18:16:36", "remaining_time": "4:06:11"} +{"current_steps": 3364, "total_steps": 4118, "loss": 1.8458, "learning_rate": 0.0001, "epoch": 0.8169014084507042, "percentage": 81.69, "elapsed_time": "18:16:56", "remaining_time": "4:05:51"} +{"current_steps": 3365, "total_steps": 4118, "loss": 1.8251, "learning_rate": 0.0001, "epoch": 0.8171442447790189, "percentage": 81.71, "elapsed_time": "18:17:15", "remaining_time": "4:05:32"} +{"current_steps": 3366, "total_steps": 4118, "loss": 1.7581, "learning_rate": 0.0001, "epoch": 0.8173870811073336, "percentage": 81.74, "elapsed_time": "18:17:35", "remaining_time": "4:05:12"} +{"current_steps": 3367, "total_steps": 4118, "loss": 1.7579, "learning_rate": 0.0001, "epoch": 0.8176299174356484, "percentage": 81.76, "elapsed_time": "18:17:54", "remaining_time": "4:04:53"} +{"current_steps": 3368, "total_steps": 4118, "loss": 1.8426, "learning_rate": 0.0001, "epoch": 0.8178727537639631, "percentage": 81.79, "elapsed_time": "18:18:14", "remaining_time": "4:04:33"} +{"current_steps": 3369, "total_steps": 4118, "loss": 1.8797, "learning_rate": 0.0001, "epoch": 0.8181155900922779, "percentage": 81.81, "elapsed_time": "18:18:33", "remaining_time": "4:04:14"} +{"current_steps": 3370, "total_steps": 4118, "loss": 1.9202, "learning_rate": 0.0001, "epoch": 0.8183584264205925, "percentage": 81.84, "elapsed_time": "18:18:53", "remaining_time": "4:03:54"} +{"current_steps": 3371, "total_steps": 4118, "loss": 1.739, "learning_rate": 0.0001, "epoch": 0.8186012627489072, "percentage": 81.86, "elapsed_time": "18:19:13", "remaining_time": "4:03:34"} +{"current_steps": 3372, "total_steps": 4118, "loss": 1.7359, "learning_rate": 0.0001, "epoch": 0.818844099077222, "percentage": 81.88, "elapsed_time": "18:19:32", "remaining_time": "4:03:15"} +{"current_steps": 3373, "total_steps": 4118, "loss": 1.4532, "learning_rate": 0.0001, "epoch": 0.8190869354055367, "percentage": 81.91, "elapsed_time": "18:19:52", "remaining_time": "4:02:55"} +{"current_steps": 3374, "total_steps": 4118, "loss": 1.5996, "learning_rate": 0.0001, "epoch": 0.8193297717338514, "percentage": 81.93, "elapsed_time": "18:20:11", "remaining_time": "4:02:36"} +{"current_steps": 3375, "total_steps": 4118, "loss": 1.6075, "learning_rate": 0.0001, "epoch": 0.8195726080621661, "percentage": 81.96, "elapsed_time": "18:20:31", "remaining_time": "4:02:16"} +{"current_steps": 3376, "total_steps": 4118, "loss": 1.7507, "learning_rate": 0.0001, "epoch": 0.8198154443904808, "percentage": 81.98, "elapsed_time": "18:20:50", "remaining_time": "4:01:57"} +{"current_steps": 3377, "total_steps": 4118, "loss": 1.7595, "learning_rate": 0.0001, "epoch": 0.8200582807187955, "percentage": 82.01, "elapsed_time": "18:21:10", "remaining_time": "4:01:37"} +{"current_steps": 3378, "total_steps": 4118, "loss": 1.7232, "learning_rate": 0.0001, "epoch": 0.8203011170471103, "percentage": 82.03, "elapsed_time": "18:21:30", "remaining_time": "4:01:17"} +{"current_steps": 3379, "total_steps": 4118, "loss": 1.7659, "learning_rate": 0.0001, "epoch": 0.820543953375425, "percentage": 82.05, "elapsed_time": "18:21:49", "remaining_time": "4:00:58"} +{"current_steps": 3380, "total_steps": 4118, "loss": 1.6007, "learning_rate": 0.0001, "epoch": 0.8207867897037396, "percentage": 82.08, "elapsed_time": "18:22:09", "remaining_time": "4:00:38"} +{"current_steps": 3381, "total_steps": 4118, "loss": 1.5795, "learning_rate": 0.0001, "epoch": 0.8210296260320544, "percentage": 82.1, "elapsed_time": "18:22:28", "remaining_time": "4:00:19"} +{"current_steps": 3382, "total_steps": 4118, "loss": 1.7462, "learning_rate": 0.0001, "epoch": 0.8212724623603691, "percentage": 82.13, "elapsed_time": "18:22:48", "remaining_time": "3:59:59"} +{"current_steps": 3383, "total_steps": 4118, "loss": 1.8801, "learning_rate": 0.0001, "epoch": 0.8215152986886838, "percentage": 82.15, "elapsed_time": "18:23:07", "remaining_time": "3:59:40"} +{"current_steps": 3384, "total_steps": 4118, "loss": 1.8415, "learning_rate": 0.0001, "epoch": 0.8217581350169986, "percentage": 82.18, "elapsed_time": "18:23:27", "remaining_time": "3:59:20"} +{"current_steps": 3385, "total_steps": 4118, "loss": 1.6972, "learning_rate": 0.0001, "epoch": 0.8220009713453132, "percentage": 82.2, "elapsed_time": "18:23:47", "remaining_time": "3:59:01"} +{"current_steps": 3386, "total_steps": 4118, "loss": 1.8269, "learning_rate": 0.0001, "epoch": 0.8222438076736279, "percentage": 82.22, "elapsed_time": "18:24:06", "remaining_time": "3:58:41"} +{"current_steps": 3387, "total_steps": 4118, "loss": 1.6874, "learning_rate": 0.0001, "epoch": 0.8224866440019427, "percentage": 82.25, "elapsed_time": "18:24:26", "remaining_time": "3:58:21"} +{"current_steps": 3388, "total_steps": 4118, "loss": 1.6137, "learning_rate": 0.0001, "epoch": 0.8227294803302574, "percentage": 82.27, "elapsed_time": "18:24:45", "remaining_time": "3:58:02"} +{"current_steps": 3389, "total_steps": 4118, "loss": 1.8294, "learning_rate": 0.0001, "epoch": 0.8229723166585721, "percentage": 82.3, "elapsed_time": "18:25:05", "remaining_time": "3:57:42"} +{"current_steps": 3390, "total_steps": 4118, "loss": 1.7883, "learning_rate": 0.0001, "epoch": 0.8232151529868869, "percentage": 82.32, "elapsed_time": "18:25:24", "remaining_time": "3:57:23"} +{"current_steps": 3391, "total_steps": 4118, "loss": 1.8427, "learning_rate": 0.0001, "epoch": 0.8234579893152015, "percentage": 82.35, "elapsed_time": "18:25:44", "remaining_time": "3:57:03"} +{"current_steps": 3392, "total_steps": 4118, "loss": 1.7458, "learning_rate": 0.0001, "epoch": 0.8237008256435163, "percentage": 82.37, "elapsed_time": "18:26:04", "remaining_time": "3:56:44"} +{"current_steps": 3393, "total_steps": 4118, "loss": 1.7382, "learning_rate": 0.0001, "epoch": 0.823943661971831, "percentage": 82.39, "elapsed_time": "18:26:23", "remaining_time": "3:56:24"} +{"current_steps": 3394, "total_steps": 4118, "loss": 1.8143, "learning_rate": 0.0001, "epoch": 0.8241864983001457, "percentage": 82.42, "elapsed_time": "18:26:43", "remaining_time": "3:56:04"} +{"current_steps": 3395, "total_steps": 4118, "loss": 1.8622, "learning_rate": 0.0001, "epoch": 0.8244293346284605, "percentage": 82.44, "elapsed_time": "18:27:02", "remaining_time": "3:55:45"} +{"current_steps": 3396, "total_steps": 4118, "loss": 1.569, "learning_rate": 0.0001, "epoch": 0.8246721709567751, "percentage": 82.47, "elapsed_time": "18:27:22", "remaining_time": "3:55:25"} +{"current_steps": 3397, "total_steps": 4118, "loss": 1.629, "learning_rate": 0.0001, "epoch": 0.8249150072850898, "percentage": 82.49, "elapsed_time": "18:27:41", "remaining_time": "3:55:06"} +{"current_steps": 3398, "total_steps": 4118, "loss": 1.656, "learning_rate": 0.0001, "epoch": 0.8251578436134046, "percentage": 82.52, "elapsed_time": "18:28:01", "remaining_time": "3:54:46"} +{"current_steps": 3399, "total_steps": 4118, "loss": 1.5435, "learning_rate": 0.0001, "epoch": 0.8254006799417193, "percentage": 82.54, "elapsed_time": "18:28:21", "remaining_time": "3:54:27"} +{"current_steps": 3400, "total_steps": 4118, "loss": 1.853, "learning_rate": 0.0001, "epoch": 0.825643516270034, "percentage": 82.56, "elapsed_time": "18:28:40", "remaining_time": "3:54:07"} +{"current_steps": 3401, "total_steps": 4118, "loss": 1.6336, "learning_rate": 0.0001, "epoch": 0.8258863525983487, "percentage": 82.59, "elapsed_time": "18:29:00", "remaining_time": "3:53:48"} +{"current_steps": 3402, "total_steps": 4118, "loss": 1.8534, "learning_rate": 0.0001, "epoch": 0.8261291889266634, "percentage": 82.61, "elapsed_time": "18:29:19", "remaining_time": "3:53:28"} +{"current_steps": 3403, "total_steps": 4118, "loss": 1.6783, "learning_rate": 0.0001, "epoch": 0.8263720252549781, "percentage": 82.64, "elapsed_time": "18:29:39", "remaining_time": "3:53:08"} +{"current_steps": 3404, "total_steps": 4118, "loss": 1.6878, "learning_rate": 0.0001, "epoch": 0.8266148615832929, "percentage": 82.66, "elapsed_time": "18:29:58", "remaining_time": "3:52:49"} +{"current_steps": 3405, "total_steps": 4118, "loss": 1.8284, "learning_rate": 0.0001, "epoch": 0.8268576979116076, "percentage": 82.69, "elapsed_time": "18:30:18", "remaining_time": "3:52:29"} +{"current_steps": 3406, "total_steps": 4118, "loss": 1.6677, "learning_rate": 0.0001, "epoch": 0.8271005342399222, "percentage": 82.71, "elapsed_time": "18:30:38", "remaining_time": "3:52:10"} +{"current_steps": 3407, "total_steps": 4118, "loss": 1.7604, "learning_rate": 0.0001, "epoch": 0.827343370568237, "percentage": 82.73, "elapsed_time": "18:30:57", "remaining_time": "3:51:50"} +{"current_steps": 3408, "total_steps": 4118, "loss": 1.7342, "learning_rate": 0.0001, "epoch": 0.8275862068965517, "percentage": 82.76, "elapsed_time": "18:31:17", "remaining_time": "3:51:31"} +{"current_steps": 3409, "total_steps": 4118, "loss": 1.7269, "learning_rate": 0.0001, "epoch": 0.8278290432248664, "percentage": 82.78, "elapsed_time": "18:31:36", "remaining_time": "3:51:11"} +{"current_steps": 3410, "total_steps": 4118, "loss": 1.6687, "learning_rate": 0.0001, "epoch": 0.8280718795531812, "percentage": 82.81, "elapsed_time": "18:31:56", "remaining_time": "3:50:51"} +{"current_steps": 3411, "total_steps": 4118, "loss": 1.9147, "learning_rate": 0.0001, "epoch": 0.8283147158814959, "percentage": 82.83, "elapsed_time": "18:32:15", "remaining_time": "3:50:32"} +{"current_steps": 3412, "total_steps": 4118, "loss": 1.5786, "learning_rate": 0.0001, "epoch": 0.8285575522098105, "percentage": 82.86, "elapsed_time": "18:32:35", "remaining_time": "3:50:12"} +{"current_steps": 3413, "total_steps": 4118, "loss": 1.6854, "learning_rate": 0.0001, "epoch": 0.8288003885381253, "percentage": 82.88, "elapsed_time": "18:32:55", "remaining_time": "3:49:53"} +{"current_steps": 3414, "total_steps": 4118, "loss": 1.7253, "learning_rate": 0.0001, "epoch": 0.82904322486644, "percentage": 82.9, "elapsed_time": "18:33:14", "remaining_time": "3:49:33"} +{"current_steps": 3415, "total_steps": 4118, "loss": 1.6321, "learning_rate": 0.0001, "epoch": 0.8292860611947548, "percentage": 82.93, "elapsed_time": "18:33:34", "remaining_time": "3:49:14"} +{"current_steps": 3416, "total_steps": 4118, "loss": 1.8233, "learning_rate": 0.0001, "epoch": 0.8295288975230695, "percentage": 82.95, "elapsed_time": "18:33:53", "remaining_time": "3:48:54"} +{"current_steps": 3417, "total_steps": 4118, "loss": 1.5996, "learning_rate": 0.0001, "epoch": 0.8297717338513841, "percentage": 82.98, "elapsed_time": "18:34:13", "remaining_time": "3:48:35"} +{"current_steps": 3418, "total_steps": 4118, "loss": 1.8894, "learning_rate": 0.0001, "epoch": 0.8300145701796989, "percentage": 83.0, "elapsed_time": "18:34:32", "remaining_time": "3:48:15"} +{"current_steps": 3419, "total_steps": 4118, "loss": 1.648, "learning_rate": 0.0001, "epoch": 0.8302574065080136, "percentage": 83.03, "elapsed_time": "18:34:52", "remaining_time": "3:47:55"} +{"current_steps": 3420, "total_steps": 4118, "loss": 1.6909, "learning_rate": 0.0001, "epoch": 0.8305002428363283, "percentage": 83.05, "elapsed_time": "18:35:12", "remaining_time": "3:47:36"} +{"current_steps": 3421, "total_steps": 4118, "loss": 1.6443, "learning_rate": 0.0001, "epoch": 0.8307430791646431, "percentage": 83.07, "elapsed_time": "18:35:31", "remaining_time": "3:47:16"} +{"current_steps": 3422, "total_steps": 4118, "loss": 1.6151, "learning_rate": 0.0001, "epoch": 0.8309859154929577, "percentage": 83.1, "elapsed_time": "18:35:51", "remaining_time": "3:46:57"} +{"current_steps": 3423, "total_steps": 4118, "loss": 1.5926, "learning_rate": 0.0001, "epoch": 0.8312287518212724, "percentage": 83.12, "elapsed_time": "18:36:10", "remaining_time": "3:46:37"} +{"current_steps": 3424, "total_steps": 4118, "loss": 1.7498, "learning_rate": 0.0001, "epoch": 0.8314715881495872, "percentage": 83.15, "elapsed_time": "18:36:30", "remaining_time": "3:46:18"} +{"current_steps": 3425, "total_steps": 4118, "loss": 1.5778, "learning_rate": 0.0001, "epoch": 0.8317144244779019, "percentage": 83.17, "elapsed_time": "18:36:49", "remaining_time": "3:45:58"} +{"current_steps": 3426, "total_steps": 4118, "loss": 1.8568, "learning_rate": 0.0001, "epoch": 0.8319572608062166, "percentage": 83.2, "elapsed_time": "18:37:09", "remaining_time": "3:45:38"} +{"current_steps": 3427, "total_steps": 4118, "loss": 1.8229, "learning_rate": 0.0001, "epoch": 0.8322000971345314, "percentage": 83.22, "elapsed_time": "18:37:29", "remaining_time": "3:45:19"} +{"current_steps": 3428, "total_steps": 4118, "loss": 1.7362, "learning_rate": 0.0001, "epoch": 0.832442933462846, "percentage": 83.24, "elapsed_time": "18:37:48", "remaining_time": "3:44:59"} +{"current_steps": 3429, "total_steps": 4118, "loss": 1.6308, "learning_rate": 0.0001, "epoch": 0.8326857697911607, "percentage": 83.27, "elapsed_time": "18:38:08", "remaining_time": "3:44:40"} +{"current_steps": 3430, "total_steps": 4118, "loss": 1.7336, "learning_rate": 0.0001, "epoch": 0.8329286061194755, "percentage": 83.29, "elapsed_time": "18:38:27", "remaining_time": "3:44:20"} +{"current_steps": 3431, "total_steps": 4118, "loss": 1.7484, "learning_rate": 0.0001, "epoch": 0.8331714424477902, "percentage": 83.32, "elapsed_time": "18:38:47", "remaining_time": "3:44:01"} +{"current_steps": 3432, "total_steps": 4118, "loss": 1.6542, "learning_rate": 0.0001, "epoch": 0.8334142787761049, "percentage": 83.34, "elapsed_time": "18:39:06", "remaining_time": "3:43:41"} +{"current_steps": 3433, "total_steps": 4118, "loss": 1.7287, "learning_rate": 0.0001, "epoch": 0.8336571151044196, "percentage": 83.37, "elapsed_time": "18:39:26", "remaining_time": "3:43:22"} +{"current_steps": 3434, "total_steps": 4118, "loss": 1.8663, "learning_rate": 0.0001, "epoch": 0.8338999514327343, "percentage": 83.39, "elapsed_time": "18:39:46", "remaining_time": "3:43:02"} +{"current_steps": 3435, "total_steps": 4118, "loss": 1.7799, "learning_rate": 0.0001, "epoch": 0.834142787761049, "percentage": 83.41, "elapsed_time": "18:40:05", "remaining_time": "3:42:42"} +{"current_steps": 3436, "total_steps": 4118, "loss": 1.7116, "learning_rate": 0.0001, "epoch": 0.8343856240893638, "percentage": 83.44, "elapsed_time": "18:40:25", "remaining_time": "3:42:23"} +{"current_steps": 3437, "total_steps": 4118, "loss": 1.689, "learning_rate": 0.0001, "epoch": 0.8346284604176785, "percentage": 83.46, "elapsed_time": "18:40:44", "remaining_time": "3:42:03"} +{"current_steps": 3438, "total_steps": 4118, "loss": 1.7361, "learning_rate": 0.0001, "epoch": 0.8348712967459933, "percentage": 83.49, "elapsed_time": "18:41:04", "remaining_time": "3:41:44"} +{"current_steps": 3439, "total_steps": 4118, "loss": 1.5896, "learning_rate": 0.0001, "epoch": 0.8351141330743079, "percentage": 83.51, "elapsed_time": "18:41:23", "remaining_time": "3:41:24"} +{"current_steps": 3440, "total_steps": 4118, "loss": 1.8037, "learning_rate": 0.0001, "epoch": 0.8353569694026226, "percentage": 83.54, "elapsed_time": "18:41:43", "remaining_time": "3:41:05"} +{"current_steps": 3441, "total_steps": 4118, "loss": 1.6066, "learning_rate": 0.0001, "epoch": 0.8355998057309374, "percentage": 83.56, "elapsed_time": "18:42:03", "remaining_time": "3:40:45"} +{"current_steps": 3442, "total_steps": 4118, "loss": 1.6905, "learning_rate": 0.0001, "epoch": 0.8358426420592521, "percentage": 83.58, "elapsed_time": "18:42:22", "remaining_time": "3:40:25"} +{"current_steps": 3443, "total_steps": 4118, "loss": 1.8136, "learning_rate": 0.0001, "epoch": 0.8360854783875667, "percentage": 83.61, "elapsed_time": "18:42:42", "remaining_time": "3:40:06"} +{"current_steps": 3444, "total_steps": 4118, "loss": 1.6891, "learning_rate": 0.0001, "epoch": 0.8363283147158815, "percentage": 83.63, "elapsed_time": "18:43:01", "remaining_time": "3:39:46"} +{"current_steps": 3445, "total_steps": 4118, "loss": 1.7177, "learning_rate": 0.0001, "epoch": 0.8365711510441962, "percentage": 83.66, "elapsed_time": "18:43:21", "remaining_time": "3:39:27"} +{"current_steps": 3446, "total_steps": 4118, "loss": 1.7874, "learning_rate": 0.0001, "epoch": 0.8368139873725109, "percentage": 83.68, "elapsed_time": "18:43:40", "remaining_time": "3:39:07"} +{"current_steps": 3447, "total_steps": 4118, "loss": 1.5894, "learning_rate": 0.0001, "epoch": 0.8370568237008257, "percentage": 83.71, "elapsed_time": "18:44:00", "remaining_time": "3:38:48"} +{"current_steps": 3448, "total_steps": 4118, "loss": 1.8538, "learning_rate": 0.0001, "epoch": 0.8372996600291404, "percentage": 83.73, "elapsed_time": "18:44:20", "remaining_time": "3:38:28"} +{"current_steps": 3449, "total_steps": 4118, "loss": 1.7675, "learning_rate": 0.0001, "epoch": 0.837542496357455, "percentage": 83.75, "elapsed_time": "18:44:39", "remaining_time": "3:38:08"} +{"current_steps": 3450, "total_steps": 4118, "loss": 1.6959, "learning_rate": 0.0001, "epoch": 0.8377853326857698, "percentage": 83.78, "elapsed_time": "18:44:59", "remaining_time": "3:37:49"} +{"current_steps": 3451, "total_steps": 4118, "loss": 1.6671, "learning_rate": 0.0001, "epoch": 0.8380281690140845, "percentage": 83.8, "elapsed_time": "18:45:18", "remaining_time": "3:37:29"} +{"current_steps": 3452, "total_steps": 4118, "loss": 1.8324, "learning_rate": 0.0001, "epoch": 0.8382710053423992, "percentage": 83.83, "elapsed_time": "18:45:38", "remaining_time": "3:37:10"} +{"current_steps": 3453, "total_steps": 4118, "loss": 1.5199, "learning_rate": 0.0001, "epoch": 0.838513841670714, "percentage": 83.85, "elapsed_time": "18:45:57", "remaining_time": "3:36:50"} +{"current_steps": 3454, "total_steps": 4118, "loss": 1.7311, "learning_rate": 0.0001, "epoch": 0.8387566779990286, "percentage": 83.88, "elapsed_time": "18:46:17", "remaining_time": "3:36:31"} +{"current_steps": 3455, "total_steps": 4118, "loss": 1.6945, "learning_rate": 0.0001, "epoch": 0.8389995143273433, "percentage": 83.9, "elapsed_time": "18:46:37", "remaining_time": "3:36:11"} +{"current_steps": 3456, "total_steps": 4118, "loss": 1.6382, "learning_rate": 0.0001, "epoch": 0.8392423506556581, "percentage": 83.92, "elapsed_time": "18:46:56", "remaining_time": "3:35:52"} +{"current_steps": 3457, "total_steps": 4118, "loss": 1.9143, "learning_rate": 0.0001, "epoch": 0.8394851869839728, "percentage": 83.95, "elapsed_time": "18:47:16", "remaining_time": "3:35:32"} +{"current_steps": 3458, "total_steps": 4118, "loss": 1.7031, "learning_rate": 0.0001, "epoch": 0.8397280233122875, "percentage": 83.97, "elapsed_time": "18:47:35", "remaining_time": "3:35:12"} +{"current_steps": 3459, "total_steps": 4118, "loss": 1.6781, "learning_rate": 0.0001, "epoch": 0.8399708596406023, "percentage": 84.0, "elapsed_time": "18:47:55", "remaining_time": "3:34:53"} +{"current_steps": 3460, "total_steps": 4118, "loss": 1.7503, "learning_rate": 0.0001, "epoch": 0.8402136959689169, "percentage": 84.02, "elapsed_time": "18:48:15", "remaining_time": "3:34:33"} +{"current_steps": 3461, "total_steps": 4118, "loss": 1.8107, "learning_rate": 0.0001, "epoch": 0.8404565322972317, "percentage": 84.05, "elapsed_time": "18:48:34", "remaining_time": "3:34:14"} +{"current_steps": 3462, "total_steps": 4118, "loss": 1.7321, "learning_rate": 0.0001, "epoch": 0.8406993686255464, "percentage": 84.07, "elapsed_time": "18:48:54", "remaining_time": "3:33:54"} +{"current_steps": 3463, "total_steps": 4118, "loss": 1.6663, "learning_rate": 0.0001, "epoch": 0.8409422049538611, "percentage": 84.09, "elapsed_time": "18:49:13", "remaining_time": "3:33:35"} +{"current_steps": 3464, "total_steps": 4118, "loss": 1.7196, "learning_rate": 0.0001, "epoch": 0.8411850412821759, "percentage": 84.12, "elapsed_time": "18:49:33", "remaining_time": "3:33:15"} +{"current_steps": 3465, "total_steps": 4118, "loss": 1.5922, "learning_rate": 0.0001, "epoch": 0.8414278776104905, "percentage": 84.14, "elapsed_time": "18:49:52", "remaining_time": "3:32:55"} +{"current_steps": 3466, "total_steps": 4118, "loss": 1.8856, "learning_rate": 0.0001, "epoch": 0.8416707139388052, "percentage": 84.17, "elapsed_time": "18:50:12", "remaining_time": "3:32:36"} +{"current_steps": 3467, "total_steps": 4118, "loss": 1.6493, "learning_rate": 0.0001, "epoch": 0.84191355026712, "percentage": 84.19, "elapsed_time": "18:50:32", "remaining_time": "3:32:16"} +{"current_steps": 3468, "total_steps": 4118, "loss": 1.5431, "learning_rate": 0.0001, "epoch": 0.8421563865954347, "percentage": 84.22, "elapsed_time": "18:50:51", "remaining_time": "3:31:57"} +{"current_steps": 3469, "total_steps": 4118, "loss": 1.7391, "learning_rate": 0.0001, "epoch": 0.8423992229237494, "percentage": 84.24, "elapsed_time": "18:51:11", "remaining_time": "3:31:37"} +{"current_steps": 3470, "total_steps": 4118, "loss": 1.8653, "learning_rate": 0.0001, "epoch": 0.8426420592520641, "percentage": 84.26, "elapsed_time": "18:51:30", "remaining_time": "3:31:18"} +{"current_steps": 3471, "total_steps": 4118, "loss": 1.5631, "learning_rate": 0.0001, "epoch": 0.8428848955803788, "percentage": 84.29, "elapsed_time": "18:51:50", "remaining_time": "3:30:58"} +{"current_steps": 3472, "total_steps": 4118, "loss": 1.6229, "learning_rate": 0.0001, "epoch": 0.8431277319086935, "percentage": 84.31, "elapsed_time": "18:52:10", "remaining_time": "3:30:39"} +{"current_steps": 3473, "total_steps": 4118, "loss": 1.7445, "learning_rate": 0.0001, "epoch": 0.8433705682370083, "percentage": 84.34, "elapsed_time": "18:52:29", "remaining_time": "3:30:19"} +{"current_steps": 3474, "total_steps": 4118, "loss": 1.7657, "learning_rate": 0.0001, "epoch": 0.843613404565323, "percentage": 84.36, "elapsed_time": "18:52:49", "remaining_time": "3:29:59"} +{"current_steps": 3475, "total_steps": 4118, "loss": 1.7353, "learning_rate": 0.0001, "epoch": 0.8438562408936376, "percentage": 84.39, "elapsed_time": "18:53:08", "remaining_time": "3:29:40"} +{"current_steps": 3476, "total_steps": 4118, "loss": 1.8221, "learning_rate": 0.0001, "epoch": 0.8440990772219524, "percentage": 84.41, "elapsed_time": "18:53:28", "remaining_time": "3:29:20"} +{"current_steps": 3477, "total_steps": 4118, "loss": 1.6688, "learning_rate": 0.0001, "epoch": 0.8443419135502671, "percentage": 84.43, "elapsed_time": "18:53:47", "remaining_time": "3:29:01"} +{"current_steps": 3478, "total_steps": 4118, "loss": 1.6621, "learning_rate": 0.0001, "epoch": 0.8445847498785818, "percentage": 84.46, "elapsed_time": "18:54:07", "remaining_time": "3:28:41"} +{"current_steps": 3479, "total_steps": 4118, "loss": 1.8035, "learning_rate": 0.0001, "epoch": 0.8448275862068966, "percentage": 84.48, "elapsed_time": "18:54:27", "remaining_time": "3:28:22"} +{"current_steps": 3480, "total_steps": 4118, "loss": 1.7085, "learning_rate": 0.0001, "epoch": 0.8450704225352113, "percentage": 84.51, "elapsed_time": "18:54:46", "remaining_time": "3:28:02"} +{"current_steps": 3481, "total_steps": 4118, "loss": 1.7313, "learning_rate": 0.0001, "epoch": 0.8453132588635259, "percentage": 84.53, "elapsed_time": "18:55:06", "remaining_time": "3:27:43"} +{"current_steps": 3482, "total_steps": 4118, "loss": 1.6452, "learning_rate": 0.0001, "epoch": 0.8455560951918407, "percentage": 84.56, "elapsed_time": "18:55:25", "remaining_time": "3:27:23"} +{"current_steps": 3483, "total_steps": 4118, "loss": 1.7738, "learning_rate": 0.0001, "epoch": 0.8457989315201554, "percentage": 84.58, "elapsed_time": "18:55:45", "remaining_time": "3:27:03"} +{"current_steps": 3484, "total_steps": 4118, "loss": 1.6795, "learning_rate": 0.0001, "epoch": 0.8460417678484702, "percentage": 84.6, "elapsed_time": "18:56:05", "remaining_time": "3:26:44"} +{"current_steps": 3485, "total_steps": 4118, "loss": 1.6703, "learning_rate": 0.0001, "epoch": 0.8462846041767849, "percentage": 84.63, "elapsed_time": "18:56:24", "remaining_time": "3:26:24"} +{"current_steps": 3486, "total_steps": 4118, "loss": 1.7616, "learning_rate": 0.0001, "epoch": 0.8465274405050995, "percentage": 84.65, "elapsed_time": "18:56:44", "remaining_time": "3:26:05"} +{"current_steps": 3487, "total_steps": 4118, "loss": 1.5935, "learning_rate": 0.0001, "epoch": 0.8467702768334143, "percentage": 84.68, "elapsed_time": "18:57:03", "remaining_time": "3:25:45"} +{"current_steps": 3488, "total_steps": 4118, "loss": 1.6806, "learning_rate": 0.0001, "epoch": 0.847013113161729, "percentage": 84.7, "elapsed_time": "18:57:23", "remaining_time": "3:25:26"} +{"current_steps": 3489, "total_steps": 4118, "loss": 1.74, "learning_rate": 0.0001, "epoch": 0.8472559494900437, "percentage": 84.73, "elapsed_time": "18:57:42", "remaining_time": "3:25:06"} +{"current_steps": 3490, "total_steps": 4118, "loss": 1.5164, "learning_rate": 0.0001, "epoch": 0.8474987858183585, "percentage": 84.75, "elapsed_time": "18:58:02", "remaining_time": "3:24:46"} +{"current_steps": 3491, "total_steps": 4118, "loss": 1.5673, "learning_rate": 0.0001, "epoch": 0.8477416221466731, "percentage": 84.77, "elapsed_time": "18:58:22", "remaining_time": "3:24:27"} +{"current_steps": 3492, "total_steps": 4118, "loss": 1.5747, "learning_rate": 0.0001, "epoch": 0.8479844584749878, "percentage": 84.8, "elapsed_time": "18:58:41", "remaining_time": "3:24:07"} +{"current_steps": 3493, "total_steps": 4118, "loss": 1.6824, "learning_rate": 0.0001, "epoch": 0.8482272948033026, "percentage": 84.82, "elapsed_time": "18:59:01", "remaining_time": "3:23:48"} +{"current_steps": 3494, "total_steps": 4118, "loss": 1.7838, "learning_rate": 0.0001, "epoch": 0.8484701311316173, "percentage": 84.85, "elapsed_time": "18:59:20", "remaining_time": "3:23:28"} +{"current_steps": 3495, "total_steps": 4118, "loss": 1.632, "learning_rate": 0.0001, "epoch": 0.848712967459932, "percentage": 84.87, "elapsed_time": "18:59:40", "remaining_time": "3:23:09"} +{"current_steps": 3496, "total_steps": 4118, "loss": 1.6986, "learning_rate": 0.0001, "epoch": 0.8489558037882468, "percentage": 84.9, "elapsed_time": "19:00:00", "remaining_time": "3:22:49"} +{"current_steps": 3497, "total_steps": 4118, "loss": 1.6776, "learning_rate": 0.0001, "epoch": 0.8491986401165614, "percentage": 84.92, "elapsed_time": "19:00:19", "remaining_time": "3:22:30"} +{"current_steps": 3498, "total_steps": 4118, "loss": 1.8569, "learning_rate": 0.0001, "epoch": 0.8494414764448761, "percentage": 84.94, "elapsed_time": "19:00:39", "remaining_time": "3:22:10"} +{"current_steps": 3499, "total_steps": 4118, "loss": 1.7408, "learning_rate": 0.0001, "epoch": 0.8496843127731909, "percentage": 84.97, "elapsed_time": "19:00:58", "remaining_time": "3:21:50"} +{"current_steps": 3500, "total_steps": 4118, "loss": 1.5541, "learning_rate": 0.0001, "epoch": 0.8499271491015056, "percentage": 84.99, "elapsed_time": "19:01:18", "remaining_time": "3:21:31"} +{"current_steps": 3501, "total_steps": 4118, "loss": 1.7525, "learning_rate": 0.0001, "epoch": 0.8501699854298203, "percentage": 85.02, "elapsed_time": "19:01:40", "remaining_time": "3:21:12"} +{"current_steps": 3502, "total_steps": 4118, "loss": 1.7271, "learning_rate": 0.0001, "epoch": 0.850412821758135, "percentage": 85.04, "elapsed_time": "19:01:59", "remaining_time": "3:20:52"} +{"current_steps": 3503, "total_steps": 4118, "loss": 1.6255, "learning_rate": 0.0001, "epoch": 0.8506556580864497, "percentage": 85.07, "elapsed_time": "19:02:19", "remaining_time": "3:20:33"} +{"current_steps": 3504, "total_steps": 4118, "loss": 1.7825, "learning_rate": 0.0001, "epoch": 0.8508984944147644, "percentage": 85.09, "elapsed_time": "19:02:39", "remaining_time": "3:20:13"} +{"current_steps": 3505, "total_steps": 4118, "loss": 1.6949, "learning_rate": 0.0001, "epoch": 0.8511413307430792, "percentage": 85.11, "elapsed_time": "19:02:58", "remaining_time": "3:19:53"} +{"current_steps": 3506, "total_steps": 4118, "loss": 1.5887, "learning_rate": 0.0001, "epoch": 0.8513841670713939, "percentage": 85.14, "elapsed_time": "19:03:18", "remaining_time": "3:19:34"} +{"current_steps": 3507, "total_steps": 4118, "loss": 1.6181, "learning_rate": 0.0001, "epoch": 0.8516270033997086, "percentage": 85.16, "elapsed_time": "19:03:37", "remaining_time": "3:19:14"} +{"current_steps": 3508, "total_steps": 4118, "loss": 1.8756, "learning_rate": 0.0001, "epoch": 0.8518698397280233, "percentage": 85.19, "elapsed_time": "19:03:57", "remaining_time": "3:18:55"} +{"current_steps": 3509, "total_steps": 4118, "loss": 1.6656, "learning_rate": 0.0001, "epoch": 0.852112676056338, "percentage": 85.21, "elapsed_time": "19:04:16", "remaining_time": "3:18:35"} +{"current_steps": 3510, "total_steps": 4118, "loss": 1.7821, "learning_rate": 0.0001, "epoch": 0.8523555123846528, "percentage": 85.24, "elapsed_time": "19:04:36", "remaining_time": "3:18:16"} +{"current_steps": 3511, "total_steps": 4118, "loss": 1.6822, "learning_rate": 0.0001, "epoch": 0.8525983487129675, "percentage": 85.26, "elapsed_time": "19:04:56", "remaining_time": "3:17:56"} +{"current_steps": 3512, "total_steps": 4118, "loss": 1.69, "learning_rate": 0.0001, "epoch": 0.8528411850412821, "percentage": 85.28, "elapsed_time": "19:05:15", "remaining_time": "3:17:36"} +{"current_steps": 3513, "total_steps": 4118, "loss": 1.7882, "learning_rate": 0.0001, "epoch": 0.8530840213695969, "percentage": 85.31, "elapsed_time": "19:05:35", "remaining_time": "3:17:17"} +{"current_steps": 3514, "total_steps": 4118, "loss": 1.6513, "learning_rate": 0.0001, "epoch": 0.8533268576979116, "percentage": 85.33, "elapsed_time": "19:05:54", "remaining_time": "3:16:57"} +{"current_steps": 3515, "total_steps": 4118, "loss": 1.6001, "learning_rate": 0.0001, "epoch": 0.8535696940262263, "percentage": 85.36, "elapsed_time": "19:06:14", "remaining_time": "3:16:38"} +{"current_steps": 3516, "total_steps": 4118, "loss": 1.5536, "learning_rate": 0.0001, "epoch": 0.8538125303545411, "percentage": 85.38, "elapsed_time": "19:06:33", "remaining_time": "3:16:18"} +{"current_steps": 3517, "total_steps": 4118, "loss": 1.847, "learning_rate": 0.0001, "epoch": 0.8540553666828558, "percentage": 85.41, "elapsed_time": "19:06:53", "remaining_time": "3:15:59"} +{"current_steps": 3518, "total_steps": 4118, "loss": 1.8304, "learning_rate": 0.0001, "epoch": 0.8542982030111704, "percentage": 85.43, "elapsed_time": "19:07:13", "remaining_time": "3:15:39"} +{"current_steps": 3519, "total_steps": 4118, "loss": 1.6442, "learning_rate": 0.0001, "epoch": 0.8545410393394852, "percentage": 85.45, "elapsed_time": "19:07:32", "remaining_time": "3:15:20"} +{"current_steps": 3520, "total_steps": 4118, "loss": 1.6178, "learning_rate": 0.0001, "epoch": 0.8547838756677999, "percentage": 85.48, "elapsed_time": "19:07:52", "remaining_time": "3:15:00"} +{"current_steps": 3521, "total_steps": 4118, "loss": 1.7807, "learning_rate": 0.0001, "epoch": 0.8550267119961146, "percentage": 85.5, "elapsed_time": "19:08:11", "remaining_time": "3:14:40"} +{"current_steps": 3522, "total_steps": 4118, "loss": 1.667, "learning_rate": 0.0001, "epoch": 0.8552695483244294, "percentage": 85.53, "elapsed_time": "19:08:31", "remaining_time": "3:14:21"} +{"current_steps": 3523, "total_steps": 4118, "loss": 1.5618, "learning_rate": 0.0001, "epoch": 0.855512384652744, "percentage": 85.55, "elapsed_time": "19:08:50", "remaining_time": "3:14:01"} +{"current_steps": 3524, "total_steps": 4118, "loss": 1.7621, "learning_rate": 0.0001, "epoch": 0.8557552209810587, "percentage": 85.58, "elapsed_time": "19:09:10", "remaining_time": "3:13:42"} +{"current_steps": 3525, "total_steps": 4118, "loss": 1.7855, "learning_rate": 0.0001, "epoch": 0.8559980573093735, "percentage": 85.6, "elapsed_time": "19:09:30", "remaining_time": "3:13:22"} +{"current_steps": 3526, "total_steps": 4118, "loss": 1.9816, "learning_rate": 0.0001, "epoch": 0.8562408936376882, "percentage": 85.62, "elapsed_time": "19:09:49", "remaining_time": "3:13:03"} +{"current_steps": 3527, "total_steps": 4118, "loss": 1.6439, "learning_rate": 0.0001, "epoch": 0.8564837299660029, "percentage": 85.65, "elapsed_time": "19:10:09", "remaining_time": "3:12:43"} +{"current_steps": 3528, "total_steps": 4118, "loss": 1.6415, "learning_rate": 0.0001, "epoch": 0.8567265662943176, "percentage": 85.67, "elapsed_time": "19:10:28", "remaining_time": "3:12:23"} +{"current_steps": 3529, "total_steps": 4118, "loss": 1.7428, "learning_rate": 0.0001, "epoch": 0.8569694026226323, "percentage": 85.7, "elapsed_time": "19:10:48", "remaining_time": "3:12:04"} +{"current_steps": 3530, "total_steps": 4118, "loss": 1.8304, "learning_rate": 0.0001, "epoch": 0.8572122389509471, "percentage": 85.72, "elapsed_time": "19:11:07", "remaining_time": "3:11:44"} +{"current_steps": 3531, "total_steps": 4118, "loss": 1.7163, "learning_rate": 0.0001, "epoch": 0.8574550752792618, "percentage": 85.75, "elapsed_time": "19:11:27", "remaining_time": "3:11:25"} +{"current_steps": 3532, "total_steps": 4118, "loss": 1.612, "learning_rate": 0.0001, "epoch": 0.8576979116075765, "percentage": 85.77, "elapsed_time": "19:11:47", "remaining_time": "3:11:05"} +{"current_steps": 3533, "total_steps": 4118, "loss": 1.7723, "learning_rate": 0.0001, "epoch": 0.8579407479358913, "percentage": 85.79, "elapsed_time": "19:12:06", "remaining_time": "3:10:46"} +{"current_steps": 3534, "total_steps": 4118, "loss": 1.6499, "learning_rate": 0.0001, "epoch": 0.8581835842642059, "percentage": 85.82, "elapsed_time": "19:12:26", "remaining_time": "3:10:26"} +{"current_steps": 3535, "total_steps": 4118, "loss": 1.6353, "learning_rate": 0.0001, "epoch": 0.8584264205925206, "percentage": 85.84, "elapsed_time": "19:12:45", "remaining_time": "3:10:06"} +{"current_steps": 3536, "total_steps": 4118, "loss": 1.7546, "learning_rate": 0.0001, "epoch": 0.8586692569208354, "percentage": 85.87, "elapsed_time": "19:13:05", "remaining_time": "3:09:47"} +{"current_steps": 3537, "total_steps": 4118, "loss": 1.7296, "learning_rate": 0.0001, "epoch": 0.8589120932491501, "percentage": 85.89, "elapsed_time": "19:13:25", "remaining_time": "3:09:27"} +{"current_steps": 3538, "total_steps": 4118, "loss": 1.63, "learning_rate": 0.0001, "epoch": 0.8591549295774648, "percentage": 85.92, "elapsed_time": "19:13:44", "remaining_time": "3:09:08"} +{"current_steps": 3539, "total_steps": 4118, "loss": 1.8952, "learning_rate": 0.0001, "epoch": 0.8593977659057795, "percentage": 85.94, "elapsed_time": "19:14:04", "remaining_time": "3:08:48"} +{"current_steps": 3540, "total_steps": 4118, "loss": 1.7142, "learning_rate": 0.0001, "epoch": 0.8596406022340942, "percentage": 85.96, "elapsed_time": "19:14:23", "remaining_time": "3:08:29"} +{"current_steps": 3541, "total_steps": 4118, "loss": 1.8622, "learning_rate": 0.0001, "epoch": 0.8598834385624089, "percentage": 85.99, "elapsed_time": "19:14:43", "remaining_time": "3:08:09"} +{"current_steps": 3542, "total_steps": 4118, "loss": 1.5651, "learning_rate": 0.0001, "epoch": 0.8601262748907237, "percentage": 86.01, "elapsed_time": "19:15:02", "remaining_time": "3:07:50"} +{"current_steps": 3543, "total_steps": 4118, "loss": 1.703, "learning_rate": 0.0001, "epoch": 0.8603691112190384, "percentage": 86.04, "elapsed_time": "19:15:22", "remaining_time": "3:07:30"} +{"current_steps": 3544, "total_steps": 4118, "loss": 1.7557, "learning_rate": 0.0001, "epoch": 0.860611947547353, "percentage": 86.06, "elapsed_time": "19:15:42", "remaining_time": "3:07:10"} +{"current_steps": 3545, "total_steps": 4118, "loss": 1.518, "learning_rate": 0.0001, "epoch": 0.8608547838756678, "percentage": 86.09, "elapsed_time": "19:16:01", "remaining_time": "3:06:51"} +{"current_steps": 3546, "total_steps": 4118, "loss": 1.6803, "learning_rate": 0.0001, "epoch": 0.8610976202039825, "percentage": 86.11, "elapsed_time": "19:16:21", "remaining_time": "3:06:31"} +{"current_steps": 3547, "total_steps": 4118, "loss": 1.7783, "learning_rate": 0.0001, "epoch": 0.8613404565322972, "percentage": 86.13, "elapsed_time": "19:16:40", "remaining_time": "3:06:12"} +{"current_steps": 3548, "total_steps": 4118, "loss": 1.7868, "learning_rate": 0.0001, "epoch": 0.861583292860612, "percentage": 86.16, "elapsed_time": "19:17:00", "remaining_time": "3:05:52"} +{"current_steps": 3549, "total_steps": 4118, "loss": 1.6135, "learning_rate": 0.0001, "epoch": 0.8618261291889266, "percentage": 86.18, "elapsed_time": "19:17:19", "remaining_time": "3:05:33"} +{"current_steps": 3550, "total_steps": 4118, "loss": 1.661, "learning_rate": 0.0001, "epoch": 0.8620689655172413, "percentage": 86.21, "elapsed_time": "19:17:39", "remaining_time": "3:05:13"} +{"current_steps": 3551, "total_steps": 4118, "loss": 1.6758, "learning_rate": 0.0001, "epoch": 0.8623118018455561, "percentage": 86.23, "elapsed_time": "19:17:59", "remaining_time": "3:04:53"} +{"current_steps": 3552, "total_steps": 4118, "loss": 1.6706, "learning_rate": 0.0001, "epoch": 0.8625546381738708, "percentage": 86.26, "elapsed_time": "19:18:18", "remaining_time": "3:04:34"} +{"current_steps": 3553, "total_steps": 4118, "loss": 1.5629, "learning_rate": 0.0001, "epoch": 0.8627974745021856, "percentage": 86.28, "elapsed_time": "19:18:38", "remaining_time": "3:04:14"} +{"current_steps": 3554, "total_steps": 4118, "loss": 1.6986, "learning_rate": 0.0001, "epoch": 0.8630403108305003, "percentage": 86.3, "elapsed_time": "19:18:57", "remaining_time": "3:03:55"} +{"current_steps": 3555, "total_steps": 4118, "loss": 1.762, "learning_rate": 0.0001, "epoch": 0.8632831471588149, "percentage": 86.33, "elapsed_time": "19:19:17", "remaining_time": "3:03:35"} +{"current_steps": 3556, "total_steps": 4118, "loss": 1.67, "learning_rate": 0.0001, "epoch": 0.8635259834871297, "percentage": 86.35, "elapsed_time": "19:19:36", "remaining_time": "3:03:16"} +{"current_steps": 3557, "total_steps": 4118, "loss": 1.5813, "learning_rate": 0.0001, "epoch": 0.8637688198154444, "percentage": 86.38, "elapsed_time": "19:19:56", "remaining_time": "3:02:56"} +{"current_steps": 3558, "total_steps": 4118, "loss": 1.7734, "learning_rate": 0.0001, "epoch": 0.8640116561437591, "percentage": 86.4, "elapsed_time": "19:20:16", "remaining_time": "3:02:37"} +{"current_steps": 3559, "total_steps": 4118, "loss": 1.6955, "learning_rate": 0.0001, "epoch": 0.8642544924720739, "percentage": 86.43, "elapsed_time": "19:20:35", "remaining_time": "3:02:17"} +{"current_steps": 3560, "total_steps": 4118, "loss": 1.83, "learning_rate": 0.0001, "epoch": 0.8644973288003885, "percentage": 86.45, "elapsed_time": "19:20:55", "remaining_time": "3:01:57"} +{"current_steps": 3561, "total_steps": 4118, "loss": 1.6015, "learning_rate": 0.0001, "epoch": 0.8647401651287032, "percentage": 86.47, "elapsed_time": "19:21:14", "remaining_time": "3:01:38"} +{"current_steps": 3562, "total_steps": 4118, "loss": 1.6734, "learning_rate": 0.0001, "epoch": 0.864983001457018, "percentage": 86.5, "elapsed_time": "19:21:34", "remaining_time": "3:01:18"} +{"current_steps": 3563, "total_steps": 4118, "loss": 1.7198, "learning_rate": 0.0001, "epoch": 0.8652258377853327, "percentage": 86.52, "elapsed_time": "19:21:54", "remaining_time": "3:00:59"} +{"current_steps": 3564, "total_steps": 4118, "loss": 1.6996, "learning_rate": 0.0001, "epoch": 0.8654686741136474, "percentage": 86.55, "elapsed_time": "19:22:13", "remaining_time": "3:00:39"} +{"current_steps": 3565, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.8657115104419622, "percentage": 86.57, "elapsed_time": "19:22:33", "remaining_time": "3:00:20"} +{"current_steps": 3566, "total_steps": 4118, "loss": 1.8216, "learning_rate": 0.0001, "epoch": 0.8659543467702768, "percentage": 86.6, "elapsed_time": "19:22:52", "remaining_time": "3:00:00"} +{"current_steps": 3567, "total_steps": 4118, "loss": 1.7786, "learning_rate": 0.0001, "epoch": 0.8661971830985915, "percentage": 86.62, "elapsed_time": "19:23:12", "remaining_time": "2:59:40"} +{"current_steps": 3568, "total_steps": 4118, "loss": 1.7527, "learning_rate": 0.0001, "epoch": 0.8664400194269063, "percentage": 86.64, "elapsed_time": "19:23:31", "remaining_time": "2:59:21"} +{"current_steps": 3569, "total_steps": 4118, "loss": 1.8827, "learning_rate": 0.0001, "epoch": 0.866682855755221, "percentage": 86.67, "elapsed_time": "19:23:51", "remaining_time": "2:59:01"} +{"current_steps": 3570, "total_steps": 4118, "loss": 1.6746, "learning_rate": 0.0001, "epoch": 0.8669256920835356, "percentage": 86.69, "elapsed_time": "19:24:10", "remaining_time": "2:58:42"} +{"current_steps": 3571, "total_steps": 4118, "loss": 1.8653, "learning_rate": 0.0001, "epoch": 0.8671685284118504, "percentage": 86.72, "elapsed_time": "19:24:30", "remaining_time": "2:58:22"} +{"current_steps": 3572, "total_steps": 4118, "loss": 1.6643, "learning_rate": 0.0001, "epoch": 0.8674113647401651, "percentage": 86.74, "elapsed_time": "19:24:50", "remaining_time": "2:58:03"} +{"current_steps": 3573, "total_steps": 4118, "loss": 1.9083, "learning_rate": 0.0001, "epoch": 0.8676542010684798, "percentage": 86.77, "elapsed_time": "19:25:09", "remaining_time": "2:57:43"} +{"current_steps": 3574, "total_steps": 4118, "loss": 1.5136, "learning_rate": 0.0001, "epoch": 0.8678970373967946, "percentage": 86.79, "elapsed_time": "19:25:29", "remaining_time": "2:57:23"} +{"current_steps": 3575, "total_steps": 4118, "loss": 1.7118, "learning_rate": 0.0001, "epoch": 0.8681398737251093, "percentage": 86.81, "elapsed_time": "19:25:48", "remaining_time": "2:57:04"} +{"current_steps": 3576, "total_steps": 4118, "loss": 1.6209, "learning_rate": 0.0001, "epoch": 0.868382710053424, "percentage": 86.84, "elapsed_time": "19:26:08", "remaining_time": "2:56:44"} +{"current_steps": 3577, "total_steps": 4118, "loss": 1.8447, "learning_rate": 0.0001, "epoch": 0.8686255463817387, "percentage": 86.86, "elapsed_time": "19:26:27", "remaining_time": "2:56:25"} +{"current_steps": 3578, "total_steps": 4118, "loss": 1.6032, "learning_rate": 0.0001, "epoch": 0.8688683827100534, "percentage": 86.89, "elapsed_time": "19:26:47", "remaining_time": "2:56:05"} +{"current_steps": 3579, "total_steps": 4118, "loss": 1.6633, "learning_rate": 0.0001, "epoch": 0.8691112190383682, "percentage": 86.91, "elapsed_time": "19:27:07", "remaining_time": "2:55:46"} +{"current_steps": 3580, "total_steps": 4118, "loss": 1.7538, "learning_rate": 0.0001, "epoch": 0.8693540553666829, "percentage": 86.94, "elapsed_time": "19:27:26", "remaining_time": "2:55:26"} +{"current_steps": 3581, "total_steps": 4118, "loss": 1.4959, "learning_rate": 0.0001, "epoch": 0.8695968916949975, "percentage": 86.96, "elapsed_time": "19:27:46", "remaining_time": "2:55:07"} +{"current_steps": 3582, "total_steps": 4118, "loss": 1.8265, "learning_rate": 0.0001, "epoch": 0.8698397280233123, "percentage": 86.98, "elapsed_time": "19:28:05", "remaining_time": "2:54:47"} +{"current_steps": 3583, "total_steps": 4118, "loss": 1.625, "learning_rate": 0.0001, "epoch": 0.870082564351627, "percentage": 87.01, "elapsed_time": "19:28:25", "remaining_time": "2:54:27"} +{"current_steps": 3584, "total_steps": 4118, "loss": 1.7295, "learning_rate": 0.0001, "epoch": 0.8703254006799417, "percentage": 87.03, "elapsed_time": "19:28:44", "remaining_time": "2:54:08"} +{"current_steps": 3585, "total_steps": 4118, "loss": 1.6617, "learning_rate": 0.0001, "epoch": 0.8705682370082565, "percentage": 87.06, "elapsed_time": "19:29:04", "remaining_time": "2:53:48"} +{"current_steps": 3586, "total_steps": 4118, "loss": 1.7834, "learning_rate": 0.0001, "epoch": 0.8708110733365712, "percentage": 87.08, "elapsed_time": "19:29:24", "remaining_time": "2:53:29"} +{"current_steps": 3587, "total_steps": 4118, "loss": 1.7361, "learning_rate": 0.0001, "epoch": 0.8710539096648858, "percentage": 87.11, "elapsed_time": "19:29:43", "remaining_time": "2:53:09"} +{"current_steps": 3588, "total_steps": 4118, "loss": 1.7896, "learning_rate": 0.0001, "epoch": 0.8712967459932006, "percentage": 87.13, "elapsed_time": "19:30:03", "remaining_time": "2:52:50"} +{"current_steps": 3589, "total_steps": 4118, "loss": 1.6152, "learning_rate": 0.0001, "epoch": 0.8715395823215153, "percentage": 87.15, "elapsed_time": "19:30:22", "remaining_time": "2:52:30"} +{"current_steps": 3590, "total_steps": 4118, "loss": 1.6431, "learning_rate": 0.0001, "epoch": 0.87178241864983, "percentage": 87.18, "elapsed_time": "19:30:42", "remaining_time": "2:52:10"} +{"current_steps": 3591, "total_steps": 4118, "loss": 1.592, "learning_rate": 0.0001, "epoch": 0.8720252549781448, "percentage": 87.2, "elapsed_time": "19:31:02", "remaining_time": "2:51:51"} +{"current_steps": 3592, "total_steps": 4118, "loss": 1.7961, "learning_rate": 0.0001, "epoch": 0.8722680913064594, "percentage": 87.23, "elapsed_time": "19:31:21", "remaining_time": "2:51:31"} +{"current_steps": 3593, "total_steps": 4118, "loss": 1.6244, "learning_rate": 0.0001, "epoch": 0.8725109276347741, "percentage": 87.25, "elapsed_time": "19:31:41", "remaining_time": "2:51:12"} +{"current_steps": 3594, "total_steps": 4118, "loss": 1.7303, "learning_rate": 0.0001, "epoch": 0.8727537639630889, "percentage": 87.28, "elapsed_time": "19:32:00", "remaining_time": "2:50:52"} +{"current_steps": 3595, "total_steps": 4118, "loss": 1.7745, "learning_rate": 0.0001, "epoch": 0.8729966002914036, "percentage": 87.3, "elapsed_time": "19:32:20", "remaining_time": "2:50:33"} +{"current_steps": 3596, "total_steps": 4118, "loss": 1.6856, "learning_rate": 0.0001, "epoch": 0.8732394366197183, "percentage": 87.32, "elapsed_time": "19:32:39", "remaining_time": "2:50:13"} +{"current_steps": 3597, "total_steps": 4118, "loss": 1.8024, "learning_rate": 0.0001, "epoch": 0.873482272948033, "percentage": 87.35, "elapsed_time": "19:32:59", "remaining_time": "2:49:53"} +{"current_steps": 3598, "total_steps": 4118, "loss": 1.6687, "learning_rate": 0.0001, "epoch": 0.8737251092763477, "percentage": 87.37, "elapsed_time": "19:33:19", "remaining_time": "2:49:34"} +{"current_steps": 3599, "total_steps": 4118, "loss": 1.6438, "learning_rate": 0.0001, "epoch": 0.8739679456046625, "percentage": 87.4, "elapsed_time": "19:33:38", "remaining_time": "2:49:14"} +{"current_steps": 3600, "total_steps": 4118, "loss": 1.7707, "learning_rate": 0.0001, "epoch": 0.8742107819329772, "percentage": 87.42, "elapsed_time": "19:33:58", "remaining_time": "2:48:55"} +{"current_steps": 3601, "total_steps": 4118, "loss": 1.6052, "learning_rate": 0.0001, "epoch": 0.8744536182612919, "percentage": 87.45, "elapsed_time": "19:34:17", "remaining_time": "2:48:35"} +{"current_steps": 3602, "total_steps": 4118, "loss": 1.5211, "learning_rate": 0.0001, "epoch": 0.8746964545896067, "percentage": 87.47, "elapsed_time": "19:34:37", "remaining_time": "2:48:16"} +{"current_steps": 3603, "total_steps": 4118, "loss": 1.702, "learning_rate": 0.0001, "epoch": 0.8749392909179213, "percentage": 87.49, "elapsed_time": "19:34:57", "remaining_time": "2:47:56"} +{"current_steps": 3604, "total_steps": 4118, "loss": 1.6857, "learning_rate": 0.0001, "epoch": 0.875182127246236, "percentage": 87.52, "elapsed_time": "19:35:16", "remaining_time": "2:47:37"} +{"current_steps": 3605, "total_steps": 4118, "loss": 1.6593, "learning_rate": 0.0001, "epoch": 0.8754249635745508, "percentage": 87.54, "elapsed_time": "19:35:36", "remaining_time": "2:47:17"} +{"current_steps": 3606, "total_steps": 4118, "loss": 1.748, "learning_rate": 0.0001, "epoch": 0.8756677999028655, "percentage": 87.57, "elapsed_time": "19:35:55", "remaining_time": "2:46:57"} +{"current_steps": 3607, "total_steps": 4118, "loss": 1.5767, "learning_rate": 0.0001, "epoch": 0.8759106362311802, "percentage": 87.59, "elapsed_time": "19:36:15", "remaining_time": "2:46:38"} +{"current_steps": 3608, "total_steps": 4118, "loss": 1.8715, "learning_rate": 0.0001, "epoch": 0.8761534725594949, "percentage": 87.62, "elapsed_time": "19:36:34", "remaining_time": "2:46:18"} +{"current_steps": 3609, "total_steps": 4118, "loss": 1.7028, "learning_rate": 0.0001, "epoch": 0.8763963088878096, "percentage": 87.64, "elapsed_time": "19:36:54", "remaining_time": "2:45:59"} +{"current_steps": 3610, "total_steps": 4118, "loss": 1.5971, "learning_rate": 0.0001, "epoch": 0.8766391452161243, "percentage": 87.66, "elapsed_time": "19:37:14", "remaining_time": "2:45:39"} +{"current_steps": 3611, "total_steps": 4118, "loss": 1.8988, "learning_rate": 0.0001, "epoch": 0.8768819815444391, "percentage": 87.69, "elapsed_time": "19:37:33", "remaining_time": "2:45:20"} +{"current_steps": 3612, "total_steps": 4118, "loss": 1.6727, "learning_rate": 0.0001, "epoch": 0.8771248178727538, "percentage": 87.71, "elapsed_time": "19:37:53", "remaining_time": "2:45:00"} +{"current_steps": 3613, "total_steps": 4118, "loss": 1.8204, "learning_rate": 0.0001, "epoch": 0.8773676542010684, "percentage": 87.74, "elapsed_time": "19:38:12", "remaining_time": "2:44:40"} +{"current_steps": 3614, "total_steps": 4118, "loss": 1.6884, "learning_rate": 0.0001, "epoch": 0.8776104905293832, "percentage": 87.76, "elapsed_time": "19:38:32", "remaining_time": "2:44:21"} +{"current_steps": 3615, "total_steps": 4118, "loss": 1.5819, "learning_rate": 0.0001, "epoch": 0.8778533268576979, "percentage": 87.79, "elapsed_time": "19:38:51", "remaining_time": "2:44:01"} +{"current_steps": 3616, "total_steps": 4118, "loss": 1.793, "learning_rate": 0.0001, "epoch": 0.8780961631860126, "percentage": 87.81, "elapsed_time": "19:39:11", "remaining_time": "2:43:42"} +{"current_steps": 3617, "total_steps": 4118, "loss": 1.7813, "learning_rate": 0.0001, "epoch": 0.8783389995143274, "percentage": 87.83, "elapsed_time": "19:39:31", "remaining_time": "2:43:22"} +{"current_steps": 3618, "total_steps": 4118, "loss": 1.4658, "learning_rate": 0.0001, "epoch": 0.878581835842642, "percentage": 87.86, "elapsed_time": "19:39:50", "remaining_time": "2:43:03"} +{"current_steps": 3619, "total_steps": 4118, "loss": 1.6934, "learning_rate": 0.0001, "epoch": 0.8788246721709567, "percentage": 87.88, "elapsed_time": "19:40:10", "remaining_time": "2:42:43"} +{"current_steps": 3620, "total_steps": 4118, "loss": 1.7695, "learning_rate": 0.0001, "epoch": 0.8790675084992715, "percentage": 87.91, "elapsed_time": "19:40:29", "remaining_time": "2:42:23"} +{"current_steps": 3621, "total_steps": 4118, "loss": 1.7358, "learning_rate": 0.0001, "epoch": 0.8793103448275862, "percentage": 87.93, "elapsed_time": "19:40:49", "remaining_time": "2:42:04"} +{"current_steps": 3622, "total_steps": 4118, "loss": 1.9493, "learning_rate": 0.0001, "epoch": 0.879553181155901, "percentage": 87.96, "elapsed_time": "19:41:08", "remaining_time": "2:41:44"} +{"current_steps": 3623, "total_steps": 4118, "loss": 1.6903, "learning_rate": 0.0001, "epoch": 0.8797960174842157, "percentage": 87.98, "elapsed_time": "19:41:28", "remaining_time": "2:41:25"} +{"current_steps": 3624, "total_steps": 4118, "loss": 1.6884, "learning_rate": 0.0001, "epoch": 0.8800388538125303, "percentage": 88.0, "elapsed_time": "19:41:47", "remaining_time": "2:41:05"} +{"current_steps": 3625, "total_steps": 4118, "loss": 1.7675, "learning_rate": 0.0001, "epoch": 0.8802816901408451, "percentage": 88.03, "elapsed_time": "19:42:07", "remaining_time": "2:40:46"} +{"current_steps": 3626, "total_steps": 4118, "loss": 1.5043, "learning_rate": 0.0001, "epoch": 0.8805245264691598, "percentage": 88.05, "elapsed_time": "19:42:27", "remaining_time": "2:40:26"} +{"current_steps": 3627, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.8807673627974745, "percentage": 88.08, "elapsed_time": "19:42:46", "remaining_time": "2:40:07"} +{"current_steps": 3628, "total_steps": 4118, "loss": 1.5986, "learning_rate": 0.0001, "epoch": 0.8810101991257893, "percentage": 88.1, "elapsed_time": "19:43:06", "remaining_time": "2:39:47"} +{"current_steps": 3629, "total_steps": 4118, "loss": 1.7539, "learning_rate": 0.0001, "epoch": 0.8812530354541039, "percentage": 88.13, "elapsed_time": "19:43:25", "remaining_time": "2:39:27"} +{"current_steps": 3630, "total_steps": 4118, "loss": 1.497, "learning_rate": 0.0001, "epoch": 0.8814958717824186, "percentage": 88.15, "elapsed_time": "19:43:45", "remaining_time": "2:39:08"} +{"current_steps": 3631, "total_steps": 4118, "loss": 1.5783, "learning_rate": 0.0001, "epoch": 0.8817387081107334, "percentage": 88.17, "elapsed_time": "19:44:05", "remaining_time": "2:38:48"} +{"current_steps": 3632, "total_steps": 4118, "loss": 1.6675, "learning_rate": 0.0001, "epoch": 0.8819815444390481, "percentage": 88.2, "elapsed_time": "19:44:24", "remaining_time": "2:38:29"} +{"current_steps": 3633, "total_steps": 4118, "loss": 1.5811, "learning_rate": 0.0001, "epoch": 0.8822243807673628, "percentage": 88.22, "elapsed_time": "19:44:44", "remaining_time": "2:38:09"} +{"current_steps": 3634, "total_steps": 4118, "loss": 1.7446, "learning_rate": 0.0001, "epoch": 0.8824672170956775, "percentage": 88.25, "elapsed_time": "19:45:03", "remaining_time": "2:37:50"} +{"current_steps": 3635, "total_steps": 4118, "loss": 1.7286, "learning_rate": 0.0001, "epoch": 0.8827100534239922, "percentage": 88.27, "elapsed_time": "19:45:23", "remaining_time": "2:37:30"} +{"current_steps": 3636, "total_steps": 4118, "loss": 1.8169, "learning_rate": 0.0001, "epoch": 0.8829528897523069, "percentage": 88.3, "elapsed_time": "19:45:42", "remaining_time": "2:37:10"} +{"current_steps": 3637, "total_steps": 4118, "loss": 1.5132, "learning_rate": 0.0001, "epoch": 0.8831957260806217, "percentage": 88.32, "elapsed_time": "19:46:02", "remaining_time": "2:36:51"} +{"current_steps": 3638, "total_steps": 4118, "loss": 1.8118, "learning_rate": 0.0001, "epoch": 0.8834385624089364, "percentage": 88.34, "elapsed_time": "19:46:22", "remaining_time": "2:36:31"} +{"current_steps": 3639, "total_steps": 4118, "loss": 1.8104, "learning_rate": 0.0001, "epoch": 0.883681398737251, "percentage": 88.37, "elapsed_time": "19:46:41", "remaining_time": "2:36:12"} +{"current_steps": 3640, "total_steps": 4118, "loss": 1.8216, "learning_rate": 0.0001, "epoch": 0.8839242350655658, "percentage": 88.39, "elapsed_time": "19:47:01", "remaining_time": "2:35:52"} +{"current_steps": 3641, "total_steps": 4118, "loss": 1.7857, "learning_rate": 0.0001, "epoch": 0.8841670713938805, "percentage": 88.42, "elapsed_time": "19:47:20", "remaining_time": "2:35:33"} +{"current_steps": 3642, "total_steps": 4118, "loss": 1.7616, "learning_rate": 0.0001, "epoch": 0.8844099077221952, "percentage": 88.44, "elapsed_time": "19:47:40", "remaining_time": "2:35:13"} +{"current_steps": 3643, "total_steps": 4118, "loss": 1.8297, "learning_rate": 0.0001, "epoch": 0.88465274405051, "percentage": 88.47, "elapsed_time": "19:47:59", "remaining_time": "2:34:53"} +{"current_steps": 3644, "total_steps": 4118, "loss": 1.7653, "learning_rate": 0.0001, "epoch": 0.8848955803788247, "percentage": 88.49, "elapsed_time": "19:48:19", "remaining_time": "2:34:34"} +{"current_steps": 3645, "total_steps": 4118, "loss": 1.6767, "learning_rate": 0.0001, "epoch": 0.8851384167071394, "percentage": 88.51, "elapsed_time": "19:48:39", "remaining_time": "2:34:14"} +{"current_steps": 3646, "total_steps": 4118, "loss": 1.5862, "learning_rate": 0.0001, "epoch": 0.8853812530354541, "percentage": 88.54, "elapsed_time": "19:48:58", "remaining_time": "2:33:55"} +{"current_steps": 3647, "total_steps": 4118, "loss": 1.5474, "learning_rate": 0.0001, "epoch": 0.8856240893637688, "percentage": 88.56, "elapsed_time": "19:49:18", "remaining_time": "2:33:35"} +{"current_steps": 3648, "total_steps": 4118, "loss": 1.7783, "learning_rate": 0.0001, "epoch": 0.8858669256920836, "percentage": 88.59, "elapsed_time": "19:49:37", "remaining_time": "2:33:16"} +{"current_steps": 3649, "total_steps": 4118, "loss": 1.8086, "learning_rate": 0.0001, "epoch": 0.8861097620203983, "percentage": 88.61, "elapsed_time": "19:49:57", "remaining_time": "2:32:56"} +{"current_steps": 3650, "total_steps": 4118, "loss": 1.612, "learning_rate": 0.0001, "epoch": 0.8863525983487129, "percentage": 88.64, "elapsed_time": "19:50:16", "remaining_time": "2:32:37"} +{"current_steps": 3651, "total_steps": 4118, "loss": 1.8749, "learning_rate": 0.0001, "epoch": 0.8865954346770277, "percentage": 88.66, "elapsed_time": "19:50:36", "remaining_time": "2:32:17"} +{"current_steps": 3652, "total_steps": 4118, "loss": 1.725, "learning_rate": 0.0001, "epoch": 0.8868382710053424, "percentage": 88.68, "elapsed_time": "19:50:55", "remaining_time": "2:31:57"} +{"current_steps": 3653, "total_steps": 4118, "loss": 1.7427, "learning_rate": 0.0001, "epoch": 0.8870811073336571, "percentage": 88.71, "elapsed_time": "19:51:15", "remaining_time": "2:31:38"} +{"current_steps": 3654, "total_steps": 4118, "loss": 1.6951, "learning_rate": 0.0001, "epoch": 0.8873239436619719, "percentage": 88.73, "elapsed_time": "19:51:35", "remaining_time": "2:31:18"} +{"current_steps": 3655, "total_steps": 4118, "loss": 1.8607, "learning_rate": 0.0001, "epoch": 0.8875667799902865, "percentage": 88.76, "elapsed_time": "19:51:54", "remaining_time": "2:30:59"} +{"current_steps": 3656, "total_steps": 4118, "loss": 1.8764, "learning_rate": 0.0001, "epoch": 0.8878096163186012, "percentage": 88.78, "elapsed_time": "19:52:14", "remaining_time": "2:30:39"} +{"current_steps": 3657, "total_steps": 4118, "loss": 1.6136, "learning_rate": 0.0001, "epoch": 0.888052452646916, "percentage": 88.81, "elapsed_time": "19:52:33", "remaining_time": "2:30:20"} +{"current_steps": 3658, "total_steps": 4118, "loss": 1.6685, "learning_rate": 0.0001, "epoch": 0.8882952889752307, "percentage": 88.83, "elapsed_time": "19:52:53", "remaining_time": "2:30:00"} +{"current_steps": 3659, "total_steps": 4118, "loss": 1.7648, "learning_rate": 0.0001, "epoch": 0.8885381253035454, "percentage": 88.85, "elapsed_time": "19:53:13", "remaining_time": "2:29:40"} +{"current_steps": 3660, "total_steps": 4118, "loss": 1.7452, "learning_rate": 0.0001, "epoch": 0.8887809616318602, "percentage": 88.88, "elapsed_time": "19:53:32", "remaining_time": "2:29:21"} +{"current_steps": 3661, "total_steps": 4118, "loss": 1.7785, "learning_rate": 0.0001, "epoch": 0.8890237979601748, "percentage": 88.9, "elapsed_time": "19:53:52", "remaining_time": "2:29:01"} +{"current_steps": 3662, "total_steps": 4118, "loss": 1.7477, "learning_rate": 0.0001, "epoch": 0.8892666342884895, "percentage": 88.93, "elapsed_time": "19:54:11", "remaining_time": "2:28:42"} +{"current_steps": 3663, "total_steps": 4118, "loss": 1.8816, "learning_rate": 0.0001, "epoch": 0.8895094706168043, "percentage": 88.95, "elapsed_time": "19:54:31", "remaining_time": "2:28:22"} +{"current_steps": 3664, "total_steps": 4118, "loss": 1.7417, "learning_rate": 0.0001, "epoch": 0.889752306945119, "percentage": 88.98, "elapsed_time": "19:54:50", "remaining_time": "2:28:03"} +{"current_steps": 3665, "total_steps": 4118, "loss": 1.6544, "learning_rate": 0.0001, "epoch": 0.8899951432734337, "percentage": 89.0, "elapsed_time": "19:55:10", "remaining_time": "2:27:43"} +{"current_steps": 3666, "total_steps": 4118, "loss": 1.5303, "learning_rate": 0.0001, "epoch": 0.8902379796017484, "percentage": 89.02, "elapsed_time": "19:55:30", "remaining_time": "2:27:23"} +{"current_steps": 3667, "total_steps": 4118, "loss": 1.5845, "learning_rate": 0.0001, "epoch": 0.8904808159300631, "percentage": 89.05, "elapsed_time": "19:55:49", "remaining_time": "2:27:04"} +{"current_steps": 3668, "total_steps": 4118, "loss": 1.6932, "learning_rate": 0.0001, "epoch": 0.8907236522583779, "percentage": 89.07, "elapsed_time": "19:56:09", "remaining_time": "2:26:44"} +{"current_steps": 3669, "total_steps": 4118, "loss": 1.6315, "learning_rate": 0.0001, "epoch": 0.8909664885866926, "percentage": 89.1, "elapsed_time": "19:56:28", "remaining_time": "2:26:25"} +{"current_steps": 3670, "total_steps": 4118, "loss": 1.69, "learning_rate": 0.0001, "epoch": 0.8912093249150073, "percentage": 89.12, "elapsed_time": "19:56:48", "remaining_time": "2:26:05"} +{"current_steps": 3671, "total_steps": 4118, "loss": 1.823, "learning_rate": 0.0001, "epoch": 0.891452161243322, "percentage": 89.15, "elapsed_time": "19:57:07", "remaining_time": "2:25:46"} +{"current_steps": 3672, "total_steps": 4118, "loss": 1.6852, "learning_rate": 0.0001, "epoch": 0.8916949975716367, "percentage": 89.17, "elapsed_time": "19:57:27", "remaining_time": "2:25:26"} +{"current_steps": 3673, "total_steps": 4118, "loss": 1.8119, "learning_rate": 0.0001, "epoch": 0.8919378338999514, "percentage": 89.19, "elapsed_time": "19:57:46", "remaining_time": "2:25:06"} +{"current_steps": 3674, "total_steps": 4118, "loss": 1.6484, "learning_rate": 0.0001, "epoch": 0.8921806702282662, "percentage": 89.22, "elapsed_time": "19:58:06", "remaining_time": "2:24:47"} +{"current_steps": 3675, "total_steps": 4118, "loss": 1.7356, "learning_rate": 0.0001, "epoch": 0.8924235065565809, "percentage": 89.24, "elapsed_time": "19:58:26", "remaining_time": "2:24:27"} +{"current_steps": 3676, "total_steps": 4118, "loss": 1.7318, "learning_rate": 0.0001, "epoch": 0.8926663428848955, "percentage": 89.27, "elapsed_time": "19:58:45", "remaining_time": "2:24:08"} +{"current_steps": 3677, "total_steps": 4118, "loss": 1.7684, "learning_rate": 0.0001, "epoch": 0.8929091792132103, "percentage": 89.29, "elapsed_time": "19:59:05", "remaining_time": "2:23:48"} +{"current_steps": 3678, "total_steps": 4118, "loss": 1.823, "learning_rate": 0.0001, "epoch": 0.893152015541525, "percentage": 89.32, "elapsed_time": "19:59:24", "remaining_time": "2:23:29"} +{"current_steps": 3679, "total_steps": 4118, "loss": 1.8532, "learning_rate": 0.0001, "epoch": 0.8933948518698397, "percentage": 89.34, "elapsed_time": "19:59:44", "remaining_time": "2:23:09"} +{"current_steps": 3680, "total_steps": 4118, "loss": 1.6019, "learning_rate": 0.0001, "epoch": 0.8936376881981545, "percentage": 89.36, "elapsed_time": "20:00:03", "remaining_time": "2:22:50"} +{"current_steps": 3681, "total_steps": 4118, "loss": 1.6418, "learning_rate": 0.0001, "epoch": 0.8938805245264692, "percentage": 89.39, "elapsed_time": "20:00:23", "remaining_time": "2:22:30"} +{"current_steps": 3682, "total_steps": 4118, "loss": 1.7011, "learning_rate": 0.0001, "epoch": 0.8941233608547838, "percentage": 89.41, "elapsed_time": "20:00:43", "remaining_time": "2:22:10"} +{"current_steps": 3683, "total_steps": 4118, "loss": 1.7345, "learning_rate": 0.0001, "epoch": 0.8943661971830986, "percentage": 89.44, "elapsed_time": "20:01:02", "remaining_time": "2:21:51"} +{"current_steps": 3684, "total_steps": 4118, "loss": 1.6809, "learning_rate": 0.0001, "epoch": 0.8946090335114133, "percentage": 89.46, "elapsed_time": "20:01:22", "remaining_time": "2:21:31"} +{"current_steps": 3685, "total_steps": 4118, "loss": 1.6632, "learning_rate": 0.0001, "epoch": 0.894851869839728, "percentage": 89.49, "elapsed_time": "20:01:41", "remaining_time": "2:21:12"} +{"current_steps": 3686, "total_steps": 4118, "loss": 1.7149, "learning_rate": 0.0001, "epoch": 0.8950947061680428, "percentage": 89.51, "elapsed_time": "20:02:01", "remaining_time": "2:20:52"} +{"current_steps": 3687, "total_steps": 4118, "loss": 1.676, "learning_rate": 0.0001, "epoch": 0.8953375424963574, "percentage": 89.53, "elapsed_time": "20:02:20", "remaining_time": "2:20:33"} +{"current_steps": 3688, "total_steps": 4118, "loss": 1.6785, "learning_rate": 0.0001, "epoch": 0.8955803788246721, "percentage": 89.56, "elapsed_time": "20:02:40", "remaining_time": "2:20:13"} +{"current_steps": 3689, "total_steps": 4118, "loss": 1.6722, "learning_rate": 0.0001, "epoch": 0.8958232151529869, "percentage": 89.58, "elapsed_time": "20:03:00", "remaining_time": "2:19:53"} +{"current_steps": 3690, "total_steps": 4118, "loss": 1.7129, "learning_rate": 0.0001, "epoch": 0.8960660514813016, "percentage": 89.61, "elapsed_time": "20:03:19", "remaining_time": "2:19:34"} +{"current_steps": 3691, "total_steps": 4118, "loss": 1.7061, "learning_rate": 0.0001, "epoch": 0.8963088878096164, "percentage": 89.63, "elapsed_time": "20:03:39", "remaining_time": "2:19:14"} +{"current_steps": 3692, "total_steps": 4118, "loss": 1.8021, "learning_rate": 0.0001, "epoch": 0.896551724137931, "percentage": 89.66, "elapsed_time": "20:03:58", "remaining_time": "2:18:55"} +{"current_steps": 3693, "total_steps": 4118, "loss": 1.6411, "learning_rate": 0.0001, "epoch": 0.8967945604662457, "percentage": 89.68, "elapsed_time": "20:04:18", "remaining_time": "2:18:35"} +{"current_steps": 3694, "total_steps": 4118, "loss": 1.8246, "learning_rate": 0.0001, "epoch": 0.8970373967945605, "percentage": 89.7, "elapsed_time": "20:04:38", "remaining_time": "2:18:16"} +{"current_steps": 3695, "total_steps": 4118, "loss": 1.715, "learning_rate": 0.0001, "epoch": 0.8972802331228752, "percentage": 89.73, "elapsed_time": "20:04:57", "remaining_time": "2:17:56"} +{"current_steps": 3696, "total_steps": 4118, "loss": 1.7117, "learning_rate": 0.0001, "epoch": 0.8975230694511899, "percentage": 89.75, "elapsed_time": "20:05:17", "remaining_time": "2:17:36"} +{"current_steps": 3697, "total_steps": 4118, "loss": 1.7008, "learning_rate": 0.0001, "epoch": 0.8977659057795047, "percentage": 89.78, "elapsed_time": "20:05:36", "remaining_time": "2:17:17"} +{"current_steps": 3698, "total_steps": 4118, "loss": 1.8742, "learning_rate": 0.0001, "epoch": 0.8980087421078193, "percentage": 89.8, "elapsed_time": "20:05:56", "remaining_time": "2:16:57"} +{"current_steps": 3699, "total_steps": 4118, "loss": 1.7297, "learning_rate": 0.0001, "epoch": 0.898251578436134, "percentage": 89.83, "elapsed_time": "20:06:15", "remaining_time": "2:16:38"} +{"current_steps": 3700, "total_steps": 4118, "loss": 1.6937, "learning_rate": 0.0001, "epoch": 0.8984944147644488, "percentage": 89.85, "elapsed_time": "20:06:35", "remaining_time": "2:16:18"} +{"current_steps": 3701, "total_steps": 4118, "loss": 1.6871, "learning_rate": 0.0001, "epoch": 0.8987372510927635, "percentage": 89.87, "elapsed_time": "20:06:55", "remaining_time": "2:15:59"} +{"current_steps": 3702, "total_steps": 4118, "loss": 1.7537, "learning_rate": 0.0001, "epoch": 0.8989800874210782, "percentage": 89.9, "elapsed_time": "20:07:14", "remaining_time": "2:15:39"} +{"current_steps": 3703, "total_steps": 4118, "loss": 1.771, "learning_rate": 0.0001, "epoch": 0.8992229237493929, "percentage": 89.92, "elapsed_time": "20:07:34", "remaining_time": "2:15:20"} +{"current_steps": 3704, "total_steps": 4118, "loss": 1.8436, "learning_rate": 0.0001, "epoch": 0.8994657600777076, "percentage": 89.95, "elapsed_time": "20:07:53", "remaining_time": "2:15:00"} +{"current_steps": 3705, "total_steps": 4118, "loss": 1.7767, "learning_rate": 0.0001, "epoch": 0.8997085964060223, "percentage": 89.97, "elapsed_time": "20:08:13", "remaining_time": "2:14:40"} +{"current_steps": 3706, "total_steps": 4118, "loss": 1.7591, "learning_rate": 0.0001, "epoch": 0.8999514327343371, "percentage": 90.0, "elapsed_time": "20:08:32", "remaining_time": "2:14:21"} +{"current_steps": 3707, "total_steps": 4118, "loss": 1.6773, "learning_rate": 0.0001, "epoch": 0.9001942690626518, "percentage": 90.02, "elapsed_time": "20:08:52", "remaining_time": "2:14:01"} +{"current_steps": 3708, "total_steps": 4118, "loss": 1.6081, "learning_rate": 0.0001, "epoch": 0.9004371053909664, "percentage": 90.04, "elapsed_time": "20:09:12", "remaining_time": "2:13:42"} +{"current_steps": 3709, "total_steps": 4118, "loss": 1.5499, "learning_rate": 0.0001, "epoch": 0.9006799417192812, "percentage": 90.07, "elapsed_time": "20:09:31", "remaining_time": "2:13:22"} +{"current_steps": 3710, "total_steps": 4118, "loss": 1.654, "learning_rate": 0.0001, "epoch": 0.9009227780475959, "percentage": 90.09, "elapsed_time": "20:09:51", "remaining_time": "2:13:03"} +{"current_steps": 3711, "total_steps": 4118, "loss": 1.7292, "learning_rate": 0.0001, "epoch": 0.9011656143759106, "percentage": 90.12, "elapsed_time": "20:10:10", "remaining_time": "2:12:43"} +{"current_steps": 3712, "total_steps": 4118, "loss": 1.7602, "learning_rate": 0.0001, "epoch": 0.9014084507042254, "percentage": 90.14, "elapsed_time": "20:10:30", "remaining_time": "2:12:23"} +{"current_steps": 3713, "total_steps": 4118, "loss": 1.7753, "learning_rate": 0.0001, "epoch": 0.90165128703254, "percentage": 90.17, "elapsed_time": "20:10:50", "remaining_time": "2:12:04"} +{"current_steps": 3714, "total_steps": 4118, "loss": 1.7303, "learning_rate": 0.0001, "epoch": 0.9018941233608548, "percentage": 90.19, "elapsed_time": "20:11:09", "remaining_time": "2:11:44"} +{"current_steps": 3715, "total_steps": 4118, "loss": 1.7165, "learning_rate": 0.0001, "epoch": 0.9021369596891695, "percentage": 90.21, "elapsed_time": "20:11:29", "remaining_time": "2:11:25"} +{"current_steps": 3716, "total_steps": 4118, "loss": 1.8595, "learning_rate": 0.0001, "epoch": 0.9023797960174842, "percentage": 90.24, "elapsed_time": "20:11:48", "remaining_time": "2:11:05"} +{"current_steps": 3717, "total_steps": 4118, "loss": 1.5261, "learning_rate": 0.0001, "epoch": 0.902622632345799, "percentage": 90.26, "elapsed_time": "20:12:08", "remaining_time": "2:10:46"} +{"current_steps": 3718, "total_steps": 4118, "loss": 1.6389, "learning_rate": 0.0001, "epoch": 0.9028654686741137, "percentage": 90.29, "elapsed_time": "20:12:27", "remaining_time": "2:10:26"} +{"current_steps": 3719, "total_steps": 4118, "loss": 1.7333, "learning_rate": 0.0001, "epoch": 0.9031083050024283, "percentage": 90.31, "elapsed_time": "20:12:47", "remaining_time": "2:10:07"} +{"current_steps": 3720, "total_steps": 4118, "loss": 1.7694, "learning_rate": 0.0001, "epoch": 0.9033511413307431, "percentage": 90.34, "elapsed_time": "20:13:07", "remaining_time": "2:09:47"} +{"current_steps": 3721, "total_steps": 4118, "loss": 1.7013, "learning_rate": 0.0001, "epoch": 0.9035939776590578, "percentage": 90.36, "elapsed_time": "20:13:26", "remaining_time": "2:09:27"} +{"current_steps": 3722, "total_steps": 4118, "loss": 1.8643, "learning_rate": 0.0001, "epoch": 0.9038368139873725, "percentage": 90.38, "elapsed_time": "20:13:46", "remaining_time": "2:09:08"} +{"current_steps": 3723, "total_steps": 4118, "loss": 1.6665, "learning_rate": 0.0001, "epoch": 0.9040796503156873, "percentage": 90.41, "elapsed_time": "20:14:05", "remaining_time": "2:08:48"} +{"current_steps": 3724, "total_steps": 4118, "loss": 1.9307, "learning_rate": 0.0001, "epoch": 0.9043224866440019, "percentage": 90.43, "elapsed_time": "20:14:25", "remaining_time": "2:08:29"} +{"current_steps": 3725, "total_steps": 4118, "loss": 1.6618, "learning_rate": 0.0001, "epoch": 0.9045653229723166, "percentage": 90.46, "elapsed_time": "20:14:45", "remaining_time": "2:08:09"} +{"current_steps": 3726, "total_steps": 4118, "loss": 1.5407, "learning_rate": 0.0001, "epoch": 0.9048081593006314, "percentage": 90.48, "elapsed_time": "20:15:04", "remaining_time": "2:07:50"} +{"current_steps": 3727, "total_steps": 4118, "loss": 1.7124, "learning_rate": 0.0001, "epoch": 0.9050509956289461, "percentage": 90.51, "elapsed_time": "20:15:24", "remaining_time": "2:07:30"} +{"current_steps": 3728, "total_steps": 4118, "loss": 1.713, "learning_rate": 0.0001, "epoch": 0.9052938319572608, "percentage": 90.53, "elapsed_time": "20:15:43", "remaining_time": "2:07:10"} +{"current_steps": 3729, "total_steps": 4118, "loss": 1.7817, "learning_rate": 0.0001, "epoch": 0.9055366682855756, "percentage": 90.55, "elapsed_time": "20:16:03", "remaining_time": "2:06:51"} +{"current_steps": 3730, "total_steps": 4118, "loss": 1.7341, "learning_rate": 0.0001, "epoch": 0.9057795046138902, "percentage": 90.58, "elapsed_time": "20:16:22", "remaining_time": "2:06:31"} +{"current_steps": 3731, "total_steps": 4118, "loss": 1.7046, "learning_rate": 0.0001, "epoch": 0.9060223409422049, "percentage": 90.6, "elapsed_time": "20:16:42", "remaining_time": "2:06:12"} +{"current_steps": 3732, "total_steps": 4118, "loss": 1.7321, "learning_rate": 0.0001, "epoch": 0.9062651772705197, "percentage": 90.63, "elapsed_time": "20:17:02", "remaining_time": "2:05:52"} +{"current_steps": 3733, "total_steps": 4118, "loss": 1.5914, "learning_rate": 0.0001, "epoch": 0.9065080135988344, "percentage": 90.65, "elapsed_time": "20:17:21", "remaining_time": "2:05:33"} +{"current_steps": 3734, "total_steps": 4118, "loss": 1.6959, "learning_rate": 0.0001, "epoch": 0.906750849927149, "percentage": 90.68, "elapsed_time": "20:17:41", "remaining_time": "2:05:13"} +{"current_steps": 3735, "total_steps": 4118, "loss": 1.7332, "learning_rate": 0.0001, "epoch": 0.9069936862554638, "percentage": 90.7, "elapsed_time": "20:18:00", "remaining_time": "2:04:53"} +{"current_steps": 3736, "total_steps": 4118, "loss": 1.734, "learning_rate": 0.0001, "epoch": 0.9072365225837785, "percentage": 90.72, "elapsed_time": "20:18:20", "remaining_time": "2:04:34"} +{"current_steps": 3737, "total_steps": 4118, "loss": 1.7344, "learning_rate": 0.0001, "epoch": 0.9074793589120933, "percentage": 90.75, "elapsed_time": "20:18:40", "remaining_time": "2:04:14"} +{"current_steps": 3738, "total_steps": 4118, "loss": 1.6196, "learning_rate": 0.0001, "epoch": 0.907722195240408, "percentage": 90.77, "elapsed_time": "20:18:59", "remaining_time": "2:03:55"} +{"current_steps": 3739, "total_steps": 4118, "loss": 1.6482, "learning_rate": 0.0001, "epoch": 0.9079650315687227, "percentage": 90.8, "elapsed_time": "20:19:19", "remaining_time": "2:03:35"} +{"current_steps": 3740, "total_steps": 4118, "loss": 1.7407, "learning_rate": 0.0001, "epoch": 0.9082078678970374, "percentage": 90.82, "elapsed_time": "20:19:38", "remaining_time": "2:03:16"} +{"current_steps": 3741, "total_steps": 4118, "loss": 1.7984, "learning_rate": 0.0001, "epoch": 0.9084507042253521, "percentage": 90.85, "elapsed_time": "20:19:58", "remaining_time": "2:02:56"} +{"current_steps": 3742, "total_steps": 4118, "loss": 1.8259, "learning_rate": 0.0001, "epoch": 0.9086935405536668, "percentage": 90.87, "elapsed_time": "20:20:17", "remaining_time": "2:02:37"} +{"current_steps": 3743, "total_steps": 4118, "loss": 1.7165, "learning_rate": 0.0001, "epoch": 0.9089363768819816, "percentage": 90.89, "elapsed_time": "20:20:37", "remaining_time": "2:02:17"} +{"current_steps": 3744, "total_steps": 4118, "loss": 1.4274, "learning_rate": 0.0001, "epoch": 0.9091792132102963, "percentage": 90.92, "elapsed_time": "20:20:57", "remaining_time": "2:01:57"} +{"current_steps": 3745, "total_steps": 4118, "loss": 1.8345, "learning_rate": 0.0001, "epoch": 0.9094220495386109, "percentage": 90.94, "elapsed_time": "20:21:16", "remaining_time": "2:01:38"} +{"current_steps": 3746, "total_steps": 4118, "loss": 1.6946, "learning_rate": 0.0001, "epoch": 0.9096648858669257, "percentage": 90.97, "elapsed_time": "20:21:36", "remaining_time": "2:01:18"} +{"current_steps": 3747, "total_steps": 4118, "loss": 1.721, "learning_rate": 0.0001, "epoch": 0.9099077221952404, "percentage": 90.99, "elapsed_time": "20:21:55", "remaining_time": "2:00:59"} +{"current_steps": 3748, "total_steps": 4118, "loss": 1.691, "learning_rate": 0.0001, "epoch": 0.9101505585235551, "percentage": 91.02, "elapsed_time": "20:22:15", "remaining_time": "2:00:39"} +{"current_steps": 3749, "total_steps": 4118, "loss": 1.7858, "learning_rate": 0.0001, "epoch": 0.9103933948518699, "percentage": 91.04, "elapsed_time": "20:22:35", "remaining_time": "2:00:20"} +{"current_steps": 3750, "total_steps": 4118, "loss": 1.8063, "learning_rate": 0.0001, "epoch": 0.9106362311801846, "percentage": 91.06, "elapsed_time": "20:22:54", "remaining_time": "2:00:00"} +{"current_steps": 3751, "total_steps": 4118, "loss": 1.7182, "learning_rate": 0.0001, "epoch": 0.9108790675084992, "percentage": 91.09, "elapsed_time": "20:23:14", "remaining_time": "1:59:40"} +{"current_steps": 3752, "total_steps": 4118, "loss": 1.7449, "learning_rate": 0.0001, "epoch": 0.911121903836814, "percentage": 91.11, "elapsed_time": "20:23:33", "remaining_time": "1:59:21"} +{"current_steps": 3753, "total_steps": 4118, "loss": 1.7502, "learning_rate": 0.0001, "epoch": 0.9113647401651287, "percentage": 91.14, "elapsed_time": "20:23:53", "remaining_time": "1:59:01"} +{"current_steps": 3754, "total_steps": 4118, "loss": 1.6306, "learning_rate": 0.0001, "epoch": 0.9116075764934434, "percentage": 91.16, "elapsed_time": "20:24:12", "remaining_time": "1:58:42"} +{"current_steps": 3755, "total_steps": 4118, "loss": 1.7577, "learning_rate": 0.0001, "epoch": 0.9118504128217582, "percentage": 91.19, "elapsed_time": "20:24:32", "remaining_time": "1:58:22"} +{"current_steps": 3756, "total_steps": 4118, "loss": 1.7471, "learning_rate": 0.0001, "epoch": 0.9120932491500728, "percentage": 91.21, "elapsed_time": "20:24:52", "remaining_time": "1:58:03"} +{"current_steps": 3757, "total_steps": 4118, "loss": 1.6457, "learning_rate": 0.0001, "epoch": 0.9123360854783875, "percentage": 91.23, "elapsed_time": "20:25:11", "remaining_time": "1:57:43"} +{"current_steps": 3758, "total_steps": 4118, "loss": 1.709, "learning_rate": 0.0001, "epoch": 0.9125789218067023, "percentage": 91.26, "elapsed_time": "20:25:31", "remaining_time": "1:57:23"} +{"current_steps": 3759, "total_steps": 4118, "loss": 1.7737, "learning_rate": 0.0001, "epoch": 0.912821758135017, "percentage": 91.28, "elapsed_time": "20:25:50", "remaining_time": "1:57:04"} +{"current_steps": 3760, "total_steps": 4118, "loss": 1.7218, "learning_rate": 0.0001, "epoch": 0.9130645944633318, "percentage": 91.31, "elapsed_time": "20:26:10", "remaining_time": "1:56:44"} +{"current_steps": 3761, "total_steps": 4118, "loss": 1.7957, "learning_rate": 0.0001, "epoch": 0.9133074307916464, "percentage": 91.33, "elapsed_time": "20:26:30", "remaining_time": "1:56:25"} +{"current_steps": 3762, "total_steps": 4118, "loss": 1.5423, "learning_rate": 0.0001, "epoch": 0.9135502671199611, "percentage": 91.36, "elapsed_time": "20:26:49", "remaining_time": "1:56:05"} +{"current_steps": 3763, "total_steps": 4118, "loss": 1.6495, "learning_rate": 0.0001, "epoch": 0.9137931034482759, "percentage": 91.38, "elapsed_time": "20:27:09", "remaining_time": "1:55:46"} +{"current_steps": 3764, "total_steps": 4118, "loss": 1.7936, "learning_rate": 0.0001, "epoch": 0.9140359397765906, "percentage": 91.4, "elapsed_time": "20:27:28", "remaining_time": "1:55:26"} +{"current_steps": 3765, "total_steps": 4118, "loss": 1.869, "learning_rate": 0.0001, "epoch": 0.9142787761049053, "percentage": 91.43, "elapsed_time": "20:27:48", "remaining_time": "1:55:07"} +{"current_steps": 3766, "total_steps": 4118, "loss": 1.665, "learning_rate": 0.0001, "epoch": 0.91452161243322, "percentage": 91.45, "elapsed_time": "20:28:07", "remaining_time": "1:54:47"} +{"current_steps": 3767, "total_steps": 4118, "loss": 1.7082, "learning_rate": 0.0001, "epoch": 0.9147644487615347, "percentage": 91.48, "elapsed_time": "20:28:27", "remaining_time": "1:54:27"} +{"current_steps": 3768, "total_steps": 4118, "loss": 1.7704, "learning_rate": 0.0001, "epoch": 0.9150072850898494, "percentage": 91.5, "elapsed_time": "20:28:47", "remaining_time": "1:54:08"} +{"current_steps": 3769, "total_steps": 4118, "loss": 1.6219, "learning_rate": 0.0001, "epoch": 0.9152501214181642, "percentage": 91.53, "elapsed_time": "20:29:06", "remaining_time": "1:53:48"} +{"current_steps": 3770, "total_steps": 4118, "loss": 1.6059, "learning_rate": 0.0001, "epoch": 0.9154929577464789, "percentage": 91.55, "elapsed_time": "20:29:26", "remaining_time": "1:53:29"} +{"current_steps": 3771, "total_steps": 4118, "loss": 1.6326, "learning_rate": 0.0001, "epoch": 0.9157357940747936, "percentage": 91.57, "elapsed_time": "20:29:45", "remaining_time": "1:53:09"} +{"current_steps": 3772, "total_steps": 4118, "loss": 1.6287, "learning_rate": 0.0001, "epoch": 0.9159786304031083, "percentage": 91.6, "elapsed_time": "20:30:05", "remaining_time": "1:52:50"} +{"current_steps": 3773, "total_steps": 4118, "loss": 1.8132, "learning_rate": 0.0001, "epoch": 0.916221466731423, "percentage": 91.62, "elapsed_time": "20:30:24", "remaining_time": "1:52:30"} +{"current_steps": 3774, "total_steps": 4118, "loss": 1.7577, "learning_rate": 0.0001, "epoch": 0.9164643030597377, "percentage": 91.65, "elapsed_time": "20:30:44", "remaining_time": "1:52:10"} +{"current_steps": 3775, "total_steps": 4118, "loss": 1.5894, "learning_rate": 0.0001, "epoch": 0.9167071393880525, "percentage": 91.67, "elapsed_time": "20:31:04", "remaining_time": "1:51:51"} +{"current_steps": 3776, "total_steps": 4118, "loss": 1.6875, "learning_rate": 0.0001, "epoch": 0.9169499757163672, "percentage": 91.69, "elapsed_time": "20:31:23", "remaining_time": "1:51:31"} +{"current_steps": 3777, "total_steps": 4118, "loss": 1.8051, "learning_rate": 0.0001, "epoch": 0.9171928120446818, "percentage": 91.72, "elapsed_time": "20:31:43", "remaining_time": "1:51:12"} +{"current_steps": 3778, "total_steps": 4118, "loss": 1.8676, "learning_rate": 0.0001, "epoch": 0.9174356483729966, "percentage": 91.74, "elapsed_time": "20:32:02", "remaining_time": "1:50:52"} +{"current_steps": 3779, "total_steps": 4118, "loss": 1.744, "learning_rate": 0.0001, "epoch": 0.9176784847013113, "percentage": 91.77, "elapsed_time": "20:32:22", "remaining_time": "1:50:33"} +{"current_steps": 3780, "total_steps": 4118, "loss": 1.7269, "learning_rate": 0.0001, "epoch": 0.917921321029626, "percentage": 91.79, "elapsed_time": "20:32:42", "remaining_time": "1:50:13"} +{"current_steps": 3781, "total_steps": 4118, "loss": 1.8089, "learning_rate": 0.0001, "epoch": 0.9181641573579408, "percentage": 91.82, "elapsed_time": "20:33:01", "remaining_time": "1:49:53"} +{"current_steps": 3782, "total_steps": 4118, "loss": 1.7532, "learning_rate": 0.0001, "epoch": 0.9184069936862554, "percentage": 91.84, "elapsed_time": "20:33:21", "remaining_time": "1:49:34"} +{"current_steps": 3783, "total_steps": 4118, "loss": 1.7703, "learning_rate": 0.0001, "epoch": 0.9186498300145702, "percentage": 91.86, "elapsed_time": "20:33:40", "remaining_time": "1:49:14"} +{"current_steps": 3784, "total_steps": 4118, "loss": 1.5755, "learning_rate": 0.0001, "epoch": 0.9188926663428849, "percentage": 91.89, "elapsed_time": "20:34:00", "remaining_time": "1:48:55"} +{"current_steps": 3785, "total_steps": 4118, "loss": 1.8595, "learning_rate": 0.0001, "epoch": 0.9191355026711996, "percentage": 91.91, "elapsed_time": "20:34:19", "remaining_time": "1:48:35"} +{"current_steps": 3786, "total_steps": 4118, "loss": 1.9148, "learning_rate": 0.0001, "epoch": 0.9193783389995144, "percentage": 91.94, "elapsed_time": "20:34:39", "remaining_time": "1:48:16"} +{"current_steps": 3787, "total_steps": 4118, "loss": 1.7892, "learning_rate": 0.0001, "epoch": 0.919621175327829, "percentage": 91.96, "elapsed_time": "20:34:59", "remaining_time": "1:47:56"} +{"current_steps": 3788, "total_steps": 4118, "loss": 1.8767, "learning_rate": 0.0001, "epoch": 0.9198640116561437, "percentage": 91.99, "elapsed_time": "20:35:18", "remaining_time": "1:47:37"} +{"current_steps": 3789, "total_steps": 4118, "loss": 1.6995, "learning_rate": 0.0001, "epoch": 0.9201068479844585, "percentage": 92.01, "elapsed_time": "20:35:38", "remaining_time": "1:47:17"} +{"current_steps": 3790, "total_steps": 4118, "loss": 1.8269, "learning_rate": 0.0001, "epoch": 0.9203496843127732, "percentage": 92.03, "elapsed_time": "20:35:57", "remaining_time": "1:46:57"} +{"current_steps": 3791, "total_steps": 4118, "loss": 1.5861, "learning_rate": 0.0001, "epoch": 0.9205925206410879, "percentage": 92.06, "elapsed_time": "20:36:17", "remaining_time": "1:46:38"} +{"current_steps": 3792, "total_steps": 4118, "loss": 1.7848, "learning_rate": 0.0001, "epoch": 0.9208353569694027, "percentage": 92.08, "elapsed_time": "20:36:36", "remaining_time": "1:46:18"} +{"current_steps": 3793, "total_steps": 4118, "loss": 1.6602, "learning_rate": 0.0001, "epoch": 0.9210781932977173, "percentage": 92.11, "elapsed_time": "20:36:56", "remaining_time": "1:45:59"} +{"current_steps": 3794, "total_steps": 4118, "loss": 1.6146, "learning_rate": 0.0001, "epoch": 0.921321029626032, "percentage": 92.13, "elapsed_time": "20:37:16", "remaining_time": "1:45:39"} +{"current_steps": 3795, "total_steps": 4118, "loss": 1.692, "learning_rate": 0.0001, "epoch": 0.9215638659543468, "percentage": 92.16, "elapsed_time": "20:37:35", "remaining_time": "1:45:20"} +{"current_steps": 3796, "total_steps": 4118, "loss": 1.6026, "learning_rate": 0.0001, "epoch": 0.9218067022826615, "percentage": 92.18, "elapsed_time": "20:37:55", "remaining_time": "1:45:00"} +{"current_steps": 3797, "total_steps": 4118, "loss": 1.8375, "learning_rate": 0.0001, "epoch": 0.9220495386109762, "percentage": 92.2, "elapsed_time": "20:38:14", "remaining_time": "1:44:40"} +{"current_steps": 3798, "total_steps": 4118, "loss": 1.7074, "learning_rate": 0.0001, "epoch": 0.922292374939291, "percentage": 92.23, "elapsed_time": "20:38:34", "remaining_time": "1:44:21"} +{"current_steps": 3799, "total_steps": 4118, "loss": 1.8008, "learning_rate": 0.0001, "epoch": 0.9225352112676056, "percentage": 92.25, "elapsed_time": "20:38:53", "remaining_time": "1:44:01"} +{"current_steps": 3800, "total_steps": 4118, "loss": 1.7208, "learning_rate": 0.0001, "epoch": 0.9227780475959203, "percentage": 92.28, "elapsed_time": "20:39:13", "remaining_time": "1:43:42"} +{"current_steps": 3801, "total_steps": 4118, "loss": 1.7196, "learning_rate": 0.0001, "epoch": 0.9230208839242351, "percentage": 92.3, "elapsed_time": "20:39:33", "remaining_time": "1:43:22"} +{"current_steps": 3802, "total_steps": 4118, "loss": 1.7521, "learning_rate": 0.0001, "epoch": 0.9232637202525498, "percentage": 92.33, "elapsed_time": "20:39:52", "remaining_time": "1:43:03"} +{"current_steps": 3803, "total_steps": 4118, "loss": 1.6032, "learning_rate": 0.0001, "epoch": 0.9235065565808644, "percentage": 92.35, "elapsed_time": "20:40:12", "remaining_time": "1:42:43"} +{"current_steps": 3804, "total_steps": 4118, "loss": 1.5633, "learning_rate": 0.0001, "epoch": 0.9237493929091792, "percentage": 92.37, "elapsed_time": "20:40:31", "remaining_time": "1:42:23"} +{"current_steps": 3805, "total_steps": 4118, "loss": 1.8285, "learning_rate": 0.0001, "epoch": 0.9239922292374939, "percentage": 92.4, "elapsed_time": "20:40:51", "remaining_time": "1:42:04"} +{"current_steps": 3806, "total_steps": 4118, "loss": 1.871, "learning_rate": 0.0001, "epoch": 0.9242350655658087, "percentage": 92.42, "elapsed_time": "20:41:10", "remaining_time": "1:41:44"} +{"current_steps": 3807, "total_steps": 4118, "loss": 1.7312, "learning_rate": 0.0001, "epoch": 0.9244779018941234, "percentage": 92.45, "elapsed_time": "20:41:30", "remaining_time": "1:41:25"} +{"current_steps": 3808, "total_steps": 4118, "loss": 1.6354, "learning_rate": 0.0001, "epoch": 0.924720738222438, "percentage": 92.47, "elapsed_time": "20:41:50", "remaining_time": "1:41:05"} +{"current_steps": 3809, "total_steps": 4118, "loss": 1.8493, "learning_rate": 0.0001, "epoch": 0.9249635745507528, "percentage": 92.5, "elapsed_time": "20:42:09", "remaining_time": "1:40:46"} +{"current_steps": 3810, "total_steps": 4118, "loss": 1.7691, "learning_rate": 0.0001, "epoch": 0.9252064108790675, "percentage": 92.52, "elapsed_time": "20:42:29", "remaining_time": "1:40:26"} +{"current_steps": 3811, "total_steps": 4118, "loss": 1.6955, "learning_rate": 0.0001, "epoch": 0.9254492472073822, "percentage": 92.54, "elapsed_time": "20:42:48", "remaining_time": "1:40:06"} +{"current_steps": 3812, "total_steps": 4118, "loss": 1.6646, "learning_rate": 0.0001, "epoch": 0.925692083535697, "percentage": 92.57, "elapsed_time": "20:43:08", "remaining_time": "1:39:47"} +{"current_steps": 3813, "total_steps": 4118, "loss": 1.757, "learning_rate": 0.0001, "epoch": 0.9259349198640117, "percentage": 92.59, "elapsed_time": "20:43:27", "remaining_time": "1:39:27"} +{"current_steps": 3814, "total_steps": 4118, "loss": 1.6666, "learning_rate": 0.0001, "epoch": 0.9261777561923263, "percentage": 92.62, "elapsed_time": "20:43:47", "remaining_time": "1:39:08"} +{"current_steps": 3815, "total_steps": 4118, "loss": 1.7786, "learning_rate": 0.0001, "epoch": 0.9264205925206411, "percentage": 92.64, "elapsed_time": "20:44:07", "remaining_time": "1:38:48"} +{"current_steps": 3816, "total_steps": 4118, "loss": 1.6966, "learning_rate": 0.0001, "epoch": 0.9266634288489558, "percentage": 92.67, "elapsed_time": "20:44:26", "remaining_time": "1:38:29"} +{"current_steps": 3817, "total_steps": 4118, "loss": 1.5354, "learning_rate": 0.0001, "epoch": 0.9269062651772705, "percentage": 92.69, "elapsed_time": "20:44:46", "remaining_time": "1:38:09"} +{"current_steps": 3818, "total_steps": 4118, "loss": 1.7828, "learning_rate": 0.0001, "epoch": 0.9271491015055853, "percentage": 92.71, "elapsed_time": "20:45:05", "remaining_time": "1:37:50"} +{"current_steps": 3819, "total_steps": 4118, "loss": 1.7877, "learning_rate": 0.0001, "epoch": 0.9273919378339, "percentage": 92.74, "elapsed_time": "20:45:25", "remaining_time": "1:37:30"} +{"current_steps": 3820, "total_steps": 4118, "loss": 1.8208, "learning_rate": 0.0001, "epoch": 0.9276347741622146, "percentage": 92.76, "elapsed_time": "20:45:44", "remaining_time": "1:37:10"} +{"current_steps": 3821, "total_steps": 4118, "loss": 1.6174, "learning_rate": 0.0001, "epoch": 0.9278776104905294, "percentage": 92.79, "elapsed_time": "20:46:04", "remaining_time": "1:36:51"} +{"current_steps": 3822, "total_steps": 4118, "loss": 1.6645, "learning_rate": 0.0001, "epoch": 0.9281204468188441, "percentage": 92.81, "elapsed_time": "20:46:24", "remaining_time": "1:36:31"} +{"current_steps": 3823, "total_steps": 4118, "loss": 1.788, "learning_rate": 0.0001, "epoch": 0.9283632831471588, "percentage": 92.84, "elapsed_time": "20:46:43", "remaining_time": "1:36:12"} +{"current_steps": 3824, "total_steps": 4118, "loss": 1.6565, "learning_rate": 0.0001, "epoch": 0.9286061194754736, "percentage": 92.86, "elapsed_time": "20:47:03", "remaining_time": "1:35:52"} +{"current_steps": 3825, "total_steps": 4118, "loss": 1.5886, "learning_rate": 0.0001, "epoch": 0.9288489558037882, "percentage": 92.88, "elapsed_time": "20:47:22", "remaining_time": "1:35:33"} +{"current_steps": 3826, "total_steps": 4118, "loss": 1.751, "learning_rate": 0.0001, "epoch": 0.9290917921321029, "percentage": 92.91, "elapsed_time": "20:47:42", "remaining_time": "1:35:13"} +{"current_steps": 3827, "total_steps": 4118, "loss": 1.6578, "learning_rate": 0.0001, "epoch": 0.9293346284604177, "percentage": 92.93, "elapsed_time": "20:48:01", "remaining_time": "1:34:53"} +{"current_steps": 3828, "total_steps": 4118, "loss": 1.8028, "learning_rate": 0.0001, "epoch": 0.9295774647887324, "percentage": 92.96, "elapsed_time": "20:48:21", "remaining_time": "1:34:34"} +{"current_steps": 3829, "total_steps": 4118, "loss": 1.8405, "learning_rate": 0.0001, "epoch": 0.9298203011170472, "percentage": 92.98, "elapsed_time": "20:48:40", "remaining_time": "1:34:14"} +{"current_steps": 3830, "total_steps": 4118, "loss": 1.7229, "learning_rate": 0.0001, "epoch": 0.9300631374453618, "percentage": 93.01, "elapsed_time": "20:49:00", "remaining_time": "1:33:55"} +{"current_steps": 3831, "total_steps": 4118, "loss": 1.832, "learning_rate": 0.0001, "epoch": 0.9303059737736765, "percentage": 93.03, "elapsed_time": "20:49:20", "remaining_time": "1:33:35"} +{"current_steps": 3832, "total_steps": 4118, "loss": 1.9006, "learning_rate": 0.0001, "epoch": 0.9305488101019913, "percentage": 93.05, "elapsed_time": "20:49:39", "remaining_time": "1:33:16"} +{"current_steps": 3833, "total_steps": 4118, "loss": 1.7176, "learning_rate": 0.0001, "epoch": 0.930791646430306, "percentage": 93.08, "elapsed_time": "20:49:59", "remaining_time": "1:32:56"} +{"current_steps": 3834, "total_steps": 4118, "loss": 1.6997, "learning_rate": 0.0001, "epoch": 0.9310344827586207, "percentage": 93.1, "elapsed_time": "20:50:18", "remaining_time": "1:32:36"} +{"current_steps": 3835, "total_steps": 4118, "loss": 1.6854, "learning_rate": 0.0001, "epoch": 0.9312773190869355, "percentage": 93.13, "elapsed_time": "20:50:38", "remaining_time": "1:32:17"} +{"current_steps": 3836, "total_steps": 4118, "loss": 1.7624, "learning_rate": 0.0001, "epoch": 0.9315201554152501, "percentage": 93.15, "elapsed_time": "20:50:57", "remaining_time": "1:31:57"} +{"current_steps": 3837, "total_steps": 4118, "loss": 1.8233, "learning_rate": 0.0001, "epoch": 0.9317629917435648, "percentage": 93.18, "elapsed_time": "20:51:17", "remaining_time": "1:31:38"} +{"current_steps": 3838, "total_steps": 4118, "loss": 1.7693, "learning_rate": 0.0001, "epoch": 0.9320058280718796, "percentage": 93.2, "elapsed_time": "20:51:37", "remaining_time": "1:31:18"} +{"current_steps": 3839, "total_steps": 4118, "loss": 1.8361, "learning_rate": 0.0001, "epoch": 0.9322486644001943, "percentage": 93.22, "elapsed_time": "20:51:56", "remaining_time": "1:30:59"} +{"current_steps": 3840, "total_steps": 4118, "loss": 1.7417, "learning_rate": 0.0001, "epoch": 0.932491500728509, "percentage": 93.25, "elapsed_time": "20:52:16", "remaining_time": "1:30:39"} +{"current_steps": 3841, "total_steps": 4118, "loss": 1.6915, "learning_rate": 0.0001, "epoch": 0.9327343370568237, "percentage": 93.27, "elapsed_time": "20:52:35", "remaining_time": "1:30:19"} +{"current_steps": 3842, "total_steps": 4118, "loss": 1.8735, "learning_rate": 0.0001, "epoch": 0.9329771733851384, "percentage": 93.3, "elapsed_time": "20:52:55", "remaining_time": "1:30:00"} +{"current_steps": 3843, "total_steps": 4118, "loss": 1.6466, "learning_rate": 0.0001, "epoch": 0.9332200097134531, "percentage": 93.32, "elapsed_time": "20:53:14", "remaining_time": "1:29:40"} +{"current_steps": 3844, "total_steps": 4118, "loss": 1.7699, "learning_rate": 0.0001, "epoch": 0.9334628460417679, "percentage": 93.35, "elapsed_time": "20:53:34", "remaining_time": "1:29:21"} +{"current_steps": 3845, "total_steps": 4118, "loss": 1.5479, "learning_rate": 0.0001, "epoch": 0.9337056823700826, "percentage": 93.37, "elapsed_time": "20:53:54", "remaining_time": "1:29:01"} +{"current_steps": 3846, "total_steps": 4118, "loss": 1.6949, "learning_rate": 0.0001, "epoch": 0.9339485186983972, "percentage": 93.39, "elapsed_time": "20:54:13", "remaining_time": "1:28:42"} +{"current_steps": 3847, "total_steps": 4118, "loss": 1.5544, "learning_rate": 0.0001, "epoch": 0.934191355026712, "percentage": 93.42, "elapsed_time": "20:54:33", "remaining_time": "1:28:22"} +{"current_steps": 3848, "total_steps": 4118, "loss": 1.477, "learning_rate": 0.0001, "epoch": 0.9344341913550267, "percentage": 93.44, "elapsed_time": "20:54:52", "remaining_time": "1:28:03"} +{"current_steps": 3849, "total_steps": 4118, "loss": 1.5285, "learning_rate": 0.0001, "epoch": 0.9346770276833414, "percentage": 93.47, "elapsed_time": "20:55:12", "remaining_time": "1:27:43"} +{"current_steps": 3850, "total_steps": 4118, "loss": 1.7515, "learning_rate": 0.0001, "epoch": 0.9349198640116562, "percentage": 93.49, "elapsed_time": "20:55:31", "remaining_time": "1:27:23"} +{"current_steps": 3851, "total_steps": 4118, "loss": 1.9378, "learning_rate": 0.0001, "epoch": 0.9351627003399708, "percentage": 93.52, "elapsed_time": "20:55:51", "remaining_time": "1:27:04"} +{"current_steps": 3852, "total_steps": 4118, "loss": 1.7695, "learning_rate": 0.0001, "epoch": 0.9354055366682856, "percentage": 93.54, "elapsed_time": "20:56:11", "remaining_time": "1:26:44"} +{"current_steps": 3853, "total_steps": 4118, "loss": 1.831, "learning_rate": 0.0001, "epoch": 0.9356483729966003, "percentage": 93.56, "elapsed_time": "20:56:30", "remaining_time": "1:26:25"} +{"current_steps": 3854, "total_steps": 4118, "loss": 1.8053, "learning_rate": 0.0001, "epoch": 0.935891209324915, "percentage": 93.59, "elapsed_time": "20:56:50", "remaining_time": "1:26:05"} +{"current_steps": 3855, "total_steps": 4118, "loss": 1.7729, "learning_rate": 0.0001, "epoch": 0.9361340456532298, "percentage": 93.61, "elapsed_time": "20:57:09", "remaining_time": "1:25:46"} +{"current_steps": 3856, "total_steps": 4118, "loss": 1.8245, "learning_rate": 0.0001, "epoch": 0.9363768819815445, "percentage": 93.64, "elapsed_time": "20:57:29", "remaining_time": "1:25:26"} +{"current_steps": 3857, "total_steps": 4118, "loss": 1.6508, "learning_rate": 0.0001, "epoch": 0.9366197183098591, "percentage": 93.66, "elapsed_time": "20:57:49", "remaining_time": "1:25:06"} +{"current_steps": 3858, "total_steps": 4118, "loss": 1.6602, "learning_rate": 0.0001, "epoch": 0.9368625546381739, "percentage": 93.69, "elapsed_time": "20:58:08", "remaining_time": "1:24:47"} +{"current_steps": 3859, "total_steps": 4118, "loss": 1.7526, "learning_rate": 0.0001, "epoch": 0.9371053909664886, "percentage": 93.71, "elapsed_time": "20:58:28", "remaining_time": "1:24:27"} +{"current_steps": 3860, "total_steps": 4118, "loss": 1.8961, "learning_rate": 0.0001, "epoch": 0.9373482272948033, "percentage": 93.73, "elapsed_time": "20:58:47", "remaining_time": "1:24:08"} +{"current_steps": 3861, "total_steps": 4118, "loss": 1.8107, "learning_rate": 0.0001, "epoch": 0.9375910636231181, "percentage": 93.76, "elapsed_time": "20:59:07", "remaining_time": "1:23:48"} +{"current_steps": 3862, "total_steps": 4118, "loss": 1.6924, "learning_rate": 0.0001, "epoch": 0.9378338999514327, "percentage": 93.78, "elapsed_time": "20:59:26", "remaining_time": "1:23:29"} +{"current_steps": 3863, "total_steps": 4118, "loss": 1.8423, "learning_rate": 0.0001, "epoch": 0.9380767362797474, "percentage": 93.81, "elapsed_time": "20:59:46", "remaining_time": "1:23:09"} +{"current_steps": 3864, "total_steps": 4118, "loss": 1.6215, "learning_rate": 0.0001, "epoch": 0.9383195726080622, "percentage": 93.83, "elapsed_time": "21:00:05", "remaining_time": "1:22:49"} +{"current_steps": 3865, "total_steps": 4118, "loss": 1.5849, "learning_rate": 0.0001, "epoch": 0.9385624089363769, "percentage": 93.86, "elapsed_time": "21:00:25", "remaining_time": "1:22:30"} +{"current_steps": 3866, "total_steps": 4118, "loss": 1.8643, "learning_rate": 0.0001, "epoch": 0.9388052452646916, "percentage": 93.88, "elapsed_time": "21:00:45", "remaining_time": "1:22:10"} +{"current_steps": 3867, "total_steps": 4118, "loss": 1.6674, "learning_rate": 0.0001, "epoch": 0.9390480815930063, "percentage": 93.9, "elapsed_time": "21:01:04", "remaining_time": "1:21:51"} +{"current_steps": 3868, "total_steps": 4118, "loss": 1.6291, "learning_rate": 0.0001, "epoch": 0.939290917921321, "percentage": 93.93, "elapsed_time": "21:01:24", "remaining_time": "1:21:31"} +{"current_steps": 3869, "total_steps": 4118, "loss": 1.7148, "learning_rate": 0.0001, "epoch": 0.9395337542496357, "percentage": 93.95, "elapsed_time": "21:01:43", "remaining_time": "1:21:12"} +{"current_steps": 3870, "total_steps": 4118, "loss": 1.5, "learning_rate": 0.0001, "epoch": 0.9397765905779505, "percentage": 93.98, "elapsed_time": "21:02:03", "remaining_time": "1:20:52"} +{"current_steps": 3871, "total_steps": 4118, "loss": 1.7749, "learning_rate": 0.0001, "epoch": 0.9400194269062652, "percentage": 94.0, "elapsed_time": "21:02:22", "remaining_time": "1:20:32"} +{"current_steps": 3872, "total_steps": 4118, "loss": 1.601, "learning_rate": 0.0001, "epoch": 0.9402622632345798, "percentage": 94.03, "elapsed_time": "21:02:42", "remaining_time": "1:20:13"} +{"current_steps": 3873, "total_steps": 4118, "loss": 1.763, "learning_rate": 0.0001, "epoch": 0.9405050995628946, "percentage": 94.05, "elapsed_time": "21:03:02", "remaining_time": "1:19:53"} +{"current_steps": 3874, "total_steps": 4118, "loss": 1.522, "learning_rate": 0.0001, "epoch": 0.9407479358912093, "percentage": 94.07, "elapsed_time": "21:03:21", "remaining_time": "1:19:34"} +{"current_steps": 3875, "total_steps": 4118, "loss": 1.7923, "learning_rate": 0.0001, "epoch": 0.940990772219524, "percentage": 94.1, "elapsed_time": "21:03:41", "remaining_time": "1:19:14"} +{"current_steps": 3876, "total_steps": 4118, "loss": 1.6011, "learning_rate": 0.0001, "epoch": 0.9412336085478388, "percentage": 94.12, "elapsed_time": "21:04:00", "remaining_time": "1:18:55"} +{"current_steps": 3877, "total_steps": 4118, "loss": 1.7228, "learning_rate": 0.0001, "epoch": 0.9414764448761535, "percentage": 94.15, "elapsed_time": "21:04:20", "remaining_time": "1:18:35"} +{"current_steps": 3878, "total_steps": 4118, "loss": 1.5695, "learning_rate": 0.0001, "epoch": 0.9417192812044682, "percentage": 94.17, "elapsed_time": "21:04:39", "remaining_time": "1:18:16"} +{"current_steps": 3879, "total_steps": 4118, "loss": 1.7936, "learning_rate": 0.0001, "epoch": 0.9419621175327829, "percentage": 94.2, "elapsed_time": "21:04:59", "remaining_time": "1:17:56"} +{"current_steps": 3880, "total_steps": 4118, "loss": 1.6305, "learning_rate": 0.0001, "epoch": 0.9422049538610976, "percentage": 94.22, "elapsed_time": "21:05:19", "remaining_time": "1:17:36"} +{"current_steps": 3881, "total_steps": 4118, "loss": 1.7584, "learning_rate": 0.0001, "epoch": 0.9424477901894124, "percentage": 94.24, "elapsed_time": "21:05:38", "remaining_time": "1:17:17"} +{"current_steps": 3882, "total_steps": 4118, "loss": 1.6608, "learning_rate": 0.0001, "epoch": 0.9426906265177271, "percentage": 94.27, "elapsed_time": "21:05:58", "remaining_time": "1:16:57"} +{"current_steps": 3883, "total_steps": 4118, "loss": 1.8851, "learning_rate": 0.0001, "epoch": 0.9429334628460417, "percentage": 94.29, "elapsed_time": "21:06:17", "remaining_time": "1:16:38"} +{"current_steps": 3884, "total_steps": 4118, "loss": 1.5741, "learning_rate": 0.0001, "epoch": 0.9431762991743565, "percentage": 94.32, "elapsed_time": "21:06:37", "remaining_time": "1:16:18"} +{"current_steps": 3885, "total_steps": 4118, "loss": 1.6703, "learning_rate": 0.0001, "epoch": 0.9434191355026712, "percentage": 94.34, "elapsed_time": "21:06:56", "remaining_time": "1:15:59"} +{"current_steps": 3886, "total_steps": 4118, "loss": 1.775, "learning_rate": 0.0001, "epoch": 0.9436619718309859, "percentage": 94.37, "elapsed_time": "21:07:16", "remaining_time": "1:15:39"} +{"current_steps": 3887, "total_steps": 4118, "loss": 1.8407, "learning_rate": 0.0001, "epoch": 0.9439048081593007, "percentage": 94.39, "elapsed_time": "21:07:36", "remaining_time": "1:15:19"} +{"current_steps": 3888, "total_steps": 4118, "loss": 1.8503, "learning_rate": 0.0001, "epoch": 0.9441476444876153, "percentage": 94.41, "elapsed_time": "21:07:55", "remaining_time": "1:15:00"} +{"current_steps": 3889, "total_steps": 4118, "loss": 1.7469, "learning_rate": 0.0001, "epoch": 0.94439048081593, "percentage": 94.44, "elapsed_time": "21:08:15", "remaining_time": "1:14:40"} +{"current_steps": 3890, "total_steps": 4118, "loss": 1.8293, "learning_rate": 0.0001, "epoch": 0.9446333171442448, "percentage": 94.46, "elapsed_time": "21:08:34", "remaining_time": "1:14:21"} +{"current_steps": 3891, "total_steps": 4118, "loss": 1.6652, "learning_rate": 0.0001, "epoch": 0.9448761534725595, "percentage": 94.49, "elapsed_time": "21:08:54", "remaining_time": "1:14:01"} +{"current_steps": 3892, "total_steps": 4118, "loss": 1.8189, "learning_rate": 0.0001, "epoch": 0.9451189898008742, "percentage": 94.51, "elapsed_time": "21:09:13", "remaining_time": "1:13:42"} +{"current_steps": 3893, "total_steps": 4118, "loss": 1.6334, "learning_rate": 0.0001, "epoch": 0.945361826129189, "percentage": 94.54, "elapsed_time": "21:09:33", "remaining_time": "1:13:22"} +{"current_steps": 3894, "total_steps": 4118, "loss": 1.6424, "learning_rate": 0.0001, "epoch": 0.9456046624575036, "percentage": 94.56, "elapsed_time": "21:09:53", "remaining_time": "1:13:02"} +{"current_steps": 3895, "total_steps": 4118, "loss": 1.729, "learning_rate": 0.0001, "epoch": 0.9458474987858183, "percentage": 94.58, "elapsed_time": "21:10:12", "remaining_time": "1:12:43"} +{"current_steps": 3896, "total_steps": 4118, "loss": 1.7863, "learning_rate": 0.0001, "epoch": 0.9460903351141331, "percentage": 94.61, "elapsed_time": "21:10:32", "remaining_time": "1:12:23"} +{"current_steps": 3897, "total_steps": 4118, "loss": 1.8143, "learning_rate": 0.0001, "epoch": 0.9463331714424478, "percentage": 94.63, "elapsed_time": "21:10:51", "remaining_time": "1:12:04"} +{"current_steps": 3898, "total_steps": 4118, "loss": 1.778, "learning_rate": 0.0001, "epoch": 0.9465760077707625, "percentage": 94.66, "elapsed_time": "21:11:11", "remaining_time": "1:11:44"} +{"current_steps": 3899, "total_steps": 4118, "loss": 1.8069, "learning_rate": 0.0001, "epoch": 0.9468188440990772, "percentage": 94.68, "elapsed_time": "21:11:30", "remaining_time": "1:11:25"} +{"current_steps": 3900, "total_steps": 4118, "loss": 1.7953, "learning_rate": 0.0001, "epoch": 0.9470616804273919, "percentage": 94.71, "elapsed_time": "21:11:50", "remaining_time": "1:11:05"} +{"current_steps": 3901, "total_steps": 4118, "loss": 1.7421, "learning_rate": 0.0001, "epoch": 0.9473045167557067, "percentage": 94.73, "elapsed_time": "21:12:10", "remaining_time": "1:10:45"} +{"current_steps": 3902, "total_steps": 4118, "loss": 1.644, "learning_rate": 0.0001, "epoch": 0.9475473530840214, "percentage": 94.75, "elapsed_time": "21:12:29", "remaining_time": "1:10:26"} +{"current_steps": 3903, "total_steps": 4118, "loss": 1.7078, "learning_rate": 0.0001, "epoch": 0.9477901894123361, "percentage": 94.78, "elapsed_time": "21:12:49", "remaining_time": "1:10:06"} +{"current_steps": 3904, "total_steps": 4118, "loss": 1.7499, "learning_rate": 0.0001, "epoch": 0.9480330257406508, "percentage": 94.8, "elapsed_time": "21:13:08", "remaining_time": "1:09:47"} +{"current_steps": 3905, "total_steps": 4118, "loss": 1.6558, "learning_rate": 0.0001, "epoch": 0.9482758620689655, "percentage": 94.83, "elapsed_time": "21:13:28", "remaining_time": "1:09:27"} +{"current_steps": 3906, "total_steps": 4118, "loss": 1.7148, "learning_rate": 0.0001, "epoch": 0.9485186983972802, "percentage": 94.85, "elapsed_time": "21:13:47", "remaining_time": "1:09:08"} +{"current_steps": 3907, "total_steps": 4118, "loss": 1.7672, "learning_rate": 0.0001, "epoch": 0.948761534725595, "percentage": 94.88, "elapsed_time": "21:14:07", "remaining_time": "1:08:48"} +{"current_steps": 3908, "total_steps": 4118, "loss": 1.6448, "learning_rate": 0.0001, "epoch": 0.9490043710539097, "percentage": 94.9, "elapsed_time": "21:14:27", "remaining_time": "1:08:29"} +{"current_steps": 3909, "total_steps": 4118, "loss": 1.8698, "learning_rate": 0.0001, "epoch": 0.9492472073822243, "percentage": 94.92, "elapsed_time": "21:14:46", "remaining_time": "1:08:09"} +{"current_steps": 3910, "total_steps": 4118, "loss": 1.5805, "learning_rate": 0.0001, "epoch": 0.9494900437105391, "percentage": 94.95, "elapsed_time": "21:15:06", "remaining_time": "1:07:49"} +{"current_steps": 3911, "total_steps": 4118, "loss": 1.7704, "learning_rate": 0.0001, "epoch": 0.9497328800388538, "percentage": 94.97, "elapsed_time": "21:15:25", "remaining_time": "1:07:30"} +{"current_steps": 3912, "total_steps": 4118, "loss": 1.7174, "learning_rate": 0.0001, "epoch": 0.9499757163671685, "percentage": 95.0, "elapsed_time": "21:15:45", "remaining_time": "1:07:10"} +{"current_steps": 3913, "total_steps": 4118, "loss": 1.5908, "learning_rate": 0.0001, "epoch": 0.9502185526954833, "percentage": 95.02, "elapsed_time": "21:16:04", "remaining_time": "1:06:51"} +{"current_steps": 3914, "total_steps": 4118, "loss": 1.6275, "learning_rate": 0.0001, "epoch": 0.950461389023798, "percentage": 95.05, "elapsed_time": "21:16:24", "remaining_time": "1:06:31"} +{"current_steps": 3915, "total_steps": 4118, "loss": 1.5785, "learning_rate": 0.0001, "epoch": 0.9507042253521126, "percentage": 95.07, "elapsed_time": "21:16:44", "remaining_time": "1:06:12"} +{"current_steps": 3916, "total_steps": 4118, "loss": 1.7933, "learning_rate": 0.0001, "epoch": 0.9509470616804274, "percentage": 95.09, "elapsed_time": "21:17:03", "remaining_time": "1:05:52"} +{"current_steps": 3917, "total_steps": 4118, "loss": 1.5611, "learning_rate": 0.0001, "epoch": 0.9511898980087421, "percentage": 95.12, "elapsed_time": "21:17:23", "remaining_time": "1:05:32"} +{"current_steps": 3918, "total_steps": 4118, "loss": 1.7692, "learning_rate": 0.0001, "epoch": 0.9514327343370568, "percentage": 95.14, "elapsed_time": "21:17:42", "remaining_time": "1:05:13"} +{"current_steps": 3919, "total_steps": 4118, "loss": 1.8757, "learning_rate": 0.0001, "epoch": 0.9516755706653716, "percentage": 95.17, "elapsed_time": "21:18:02", "remaining_time": "1:04:53"} +{"current_steps": 3920, "total_steps": 4118, "loss": 1.7443, "learning_rate": 0.0001, "epoch": 0.9519184069936862, "percentage": 95.19, "elapsed_time": "21:18:21", "remaining_time": "1:04:34"} +{"current_steps": 3921, "total_steps": 4118, "loss": 1.6834, "learning_rate": 0.0001, "epoch": 0.9521612433220009, "percentage": 95.22, "elapsed_time": "21:18:41", "remaining_time": "1:04:14"} +{"current_steps": 3922, "total_steps": 4118, "loss": 1.707, "learning_rate": 0.0001, "epoch": 0.9524040796503157, "percentage": 95.24, "elapsed_time": "21:19:01", "remaining_time": "1:03:55"} +{"current_steps": 3923, "total_steps": 4118, "loss": 1.6153, "learning_rate": 0.0001, "epoch": 0.9526469159786304, "percentage": 95.26, "elapsed_time": "21:19:20", "remaining_time": "1:03:35"} +{"current_steps": 3924, "total_steps": 4118, "loss": 1.7335, "learning_rate": 0.0001, "epoch": 0.9528897523069452, "percentage": 95.29, "elapsed_time": "21:19:40", "remaining_time": "1:03:15"} +{"current_steps": 3925, "total_steps": 4118, "loss": 1.6976, "learning_rate": 0.0001, "epoch": 0.9531325886352598, "percentage": 95.31, "elapsed_time": "21:19:59", "remaining_time": "1:02:56"} +{"current_steps": 3926, "total_steps": 4118, "loss": 1.7219, "learning_rate": 0.0001, "epoch": 0.9533754249635745, "percentage": 95.34, "elapsed_time": "21:20:19", "remaining_time": "1:02:36"} +{"current_steps": 3927, "total_steps": 4118, "loss": 1.689, "learning_rate": 0.0001, "epoch": 0.9536182612918893, "percentage": 95.36, "elapsed_time": "21:20:38", "remaining_time": "1:02:17"} +{"current_steps": 3928, "total_steps": 4118, "loss": 1.6427, "learning_rate": 0.0001, "epoch": 0.953861097620204, "percentage": 95.39, "elapsed_time": "21:20:58", "remaining_time": "1:01:57"} +{"current_steps": 3929, "total_steps": 4118, "loss": 1.7403, "learning_rate": 0.0001, "epoch": 0.9541039339485187, "percentage": 95.41, "elapsed_time": "21:21:18", "remaining_time": "1:01:38"} +{"current_steps": 3930, "total_steps": 4118, "loss": 1.6777, "learning_rate": 0.0001, "epoch": 0.9543467702768335, "percentage": 95.43, "elapsed_time": "21:21:37", "remaining_time": "1:01:18"} +{"current_steps": 3931, "total_steps": 4118, "loss": 1.5139, "learning_rate": 0.0001, "epoch": 0.9545896066051481, "percentage": 95.46, "elapsed_time": "21:21:57", "remaining_time": "1:00:58"} +{"current_steps": 3932, "total_steps": 4118, "loss": 1.7151, "learning_rate": 0.0001, "epoch": 0.9548324429334628, "percentage": 95.48, "elapsed_time": "21:22:16", "remaining_time": "1:00:39"} +{"current_steps": 3933, "total_steps": 4118, "loss": 1.7379, "learning_rate": 0.0001, "epoch": 0.9550752792617776, "percentage": 95.51, "elapsed_time": "21:22:36", "remaining_time": "1:00:19"} +{"current_steps": 3934, "total_steps": 4118, "loss": 1.7787, "learning_rate": 0.0001, "epoch": 0.9553181155900923, "percentage": 95.53, "elapsed_time": "21:22:55", "remaining_time": "1:00:00"} +{"current_steps": 3935, "total_steps": 4118, "loss": 1.8091, "learning_rate": 0.0001, "epoch": 0.955560951918407, "percentage": 95.56, "elapsed_time": "21:23:15", "remaining_time": "0:59:40"} +{"current_steps": 3936, "total_steps": 4118, "loss": 1.611, "learning_rate": 0.0001, "epoch": 0.9558037882467217, "percentage": 95.58, "elapsed_time": "21:23:35", "remaining_time": "0:59:21"} +{"current_steps": 3937, "total_steps": 4118, "loss": 1.5187, "learning_rate": 0.0001, "epoch": 0.9560466245750364, "percentage": 95.6, "elapsed_time": "21:23:54", "remaining_time": "0:59:01"} +{"current_steps": 3938, "total_steps": 4118, "loss": 1.6591, "learning_rate": 0.0001, "epoch": 0.9562894609033511, "percentage": 95.63, "elapsed_time": "21:24:14", "remaining_time": "0:58:42"} +{"current_steps": 3939, "total_steps": 4118, "loss": 1.808, "learning_rate": 0.0001, "epoch": 0.9565322972316659, "percentage": 95.65, "elapsed_time": "21:24:33", "remaining_time": "0:58:22"} +{"current_steps": 3940, "total_steps": 4118, "loss": 1.8636, "learning_rate": 0.0001, "epoch": 0.9567751335599806, "percentage": 95.68, "elapsed_time": "21:24:53", "remaining_time": "0:58:02"} +{"current_steps": 3941, "total_steps": 4118, "loss": 1.7372, "learning_rate": 0.0001, "epoch": 0.9570179698882952, "percentage": 95.7, "elapsed_time": "21:25:12", "remaining_time": "0:57:43"} +{"current_steps": 3942, "total_steps": 4118, "loss": 1.5142, "learning_rate": 0.0001, "epoch": 0.95726080621661, "percentage": 95.73, "elapsed_time": "21:25:32", "remaining_time": "0:57:23"} +{"current_steps": 3943, "total_steps": 4118, "loss": 1.6276, "learning_rate": 0.0001, "epoch": 0.9575036425449247, "percentage": 95.75, "elapsed_time": "21:25:52", "remaining_time": "0:57:04"} +{"current_steps": 3944, "total_steps": 4118, "loss": 1.6529, "learning_rate": 0.0001, "epoch": 0.9577464788732394, "percentage": 95.77, "elapsed_time": "21:26:11", "remaining_time": "0:56:44"} +{"current_steps": 3945, "total_steps": 4118, "loss": 1.7251, "learning_rate": 0.0001, "epoch": 0.9579893152015542, "percentage": 95.8, "elapsed_time": "21:26:31", "remaining_time": "0:56:25"} +{"current_steps": 3946, "total_steps": 4118, "loss": 1.8378, "learning_rate": 0.0001, "epoch": 0.9582321515298688, "percentage": 95.82, "elapsed_time": "21:26:50", "remaining_time": "0:56:05"} +{"current_steps": 3947, "total_steps": 4118, "loss": 1.7151, "learning_rate": 0.0001, "epoch": 0.9584749878581836, "percentage": 95.85, "elapsed_time": "21:27:10", "remaining_time": "0:55:45"} +{"current_steps": 3948, "total_steps": 4118, "loss": 1.8039, "learning_rate": 0.0001, "epoch": 0.9587178241864983, "percentage": 95.87, "elapsed_time": "21:27:29", "remaining_time": "0:55:26"} +{"current_steps": 3949, "total_steps": 4118, "loss": 1.7832, "learning_rate": 0.0001, "epoch": 0.958960660514813, "percentage": 95.9, "elapsed_time": "21:27:49", "remaining_time": "0:55:06"} +{"current_steps": 3950, "total_steps": 4118, "loss": 1.6898, "learning_rate": 0.0001, "epoch": 0.9592034968431278, "percentage": 95.92, "elapsed_time": "21:28:09", "remaining_time": "0:54:47"} +{"current_steps": 3951, "total_steps": 4118, "loss": 1.9863, "learning_rate": 0.0001, "epoch": 0.9594463331714425, "percentage": 95.94, "elapsed_time": "21:28:28", "remaining_time": "0:54:27"} +{"current_steps": 3952, "total_steps": 4118, "loss": 1.6597, "learning_rate": 0.0001, "epoch": 0.9596891694997571, "percentage": 95.97, "elapsed_time": "21:28:48", "remaining_time": "0:54:08"} +{"current_steps": 3953, "total_steps": 4118, "loss": 1.6809, "learning_rate": 0.0001, "epoch": 0.9599320058280719, "percentage": 95.99, "elapsed_time": "21:29:07", "remaining_time": "0:53:48"} +{"current_steps": 3954, "total_steps": 4118, "loss": 1.8271, "learning_rate": 0.0001, "epoch": 0.9601748421563866, "percentage": 96.02, "elapsed_time": "21:29:27", "remaining_time": "0:53:28"} +{"current_steps": 3955, "total_steps": 4118, "loss": 1.6894, "learning_rate": 0.0001, "epoch": 0.9604176784847013, "percentage": 96.04, "elapsed_time": "21:29:47", "remaining_time": "0:53:09"} +{"current_steps": 3956, "total_steps": 4118, "loss": 1.6728, "learning_rate": 0.0001, "epoch": 0.9606605148130161, "percentage": 96.07, "elapsed_time": "21:30:06", "remaining_time": "0:52:49"} +{"current_steps": 3957, "total_steps": 4118, "loss": 1.8403, "learning_rate": 0.0001, "epoch": 0.9609033511413307, "percentage": 96.09, "elapsed_time": "21:30:26", "remaining_time": "0:52:30"} +{"current_steps": 3958, "total_steps": 4118, "loss": 1.6587, "learning_rate": 0.0001, "epoch": 0.9611461874696454, "percentage": 96.11, "elapsed_time": "21:30:45", "remaining_time": "0:52:10"} +{"current_steps": 3959, "total_steps": 4118, "loss": 1.6842, "learning_rate": 0.0001, "epoch": 0.9613890237979602, "percentage": 96.14, "elapsed_time": "21:31:05", "remaining_time": "0:51:51"} +{"current_steps": 3960, "total_steps": 4118, "loss": 1.7138, "learning_rate": 0.0001, "epoch": 0.9616318601262749, "percentage": 96.16, "elapsed_time": "21:31:24", "remaining_time": "0:51:31"} +{"current_steps": 3961, "total_steps": 4118, "loss": 1.6918, "learning_rate": 0.0001, "epoch": 0.9618746964545896, "percentage": 96.19, "elapsed_time": "21:31:44", "remaining_time": "0:51:12"} +{"current_steps": 3962, "total_steps": 4118, "loss": 1.8678, "learning_rate": 0.0001, "epoch": 0.9621175327829043, "percentage": 96.21, "elapsed_time": "21:32:04", "remaining_time": "0:50:52"} +{"current_steps": 3963, "total_steps": 4118, "loss": 1.7039, "learning_rate": 0.0001, "epoch": 0.962360369111219, "percentage": 96.24, "elapsed_time": "21:32:23", "remaining_time": "0:50:32"} +{"current_steps": 3964, "total_steps": 4118, "loss": 1.9527, "learning_rate": 0.0001, "epoch": 0.9626032054395337, "percentage": 96.26, "elapsed_time": "21:32:43", "remaining_time": "0:50:13"} +{"current_steps": 3965, "total_steps": 4118, "loss": 1.6171, "learning_rate": 0.0001, "epoch": 0.9628460417678485, "percentage": 96.28, "elapsed_time": "21:33:02", "remaining_time": "0:49:53"} +{"current_steps": 3966, "total_steps": 4118, "loss": 1.6327, "learning_rate": 0.0001, "epoch": 0.9630888780961632, "percentage": 96.31, "elapsed_time": "21:33:22", "remaining_time": "0:49:34"} +{"current_steps": 3967, "total_steps": 4118, "loss": 1.7477, "learning_rate": 0.0001, "epoch": 0.9633317144244778, "percentage": 96.33, "elapsed_time": "21:33:41", "remaining_time": "0:49:14"} +{"current_steps": 3968, "total_steps": 4118, "loss": 1.782, "learning_rate": 0.0001, "epoch": 0.9635745507527926, "percentage": 96.36, "elapsed_time": "21:34:01", "remaining_time": "0:48:55"} +{"current_steps": 3969, "total_steps": 4118, "loss": 1.8864, "learning_rate": 0.0001, "epoch": 0.9638173870811073, "percentage": 96.38, "elapsed_time": "21:34:20", "remaining_time": "0:48:35"} +{"current_steps": 3970, "total_steps": 4118, "loss": 1.9161, "learning_rate": 0.0001, "epoch": 0.9640602234094221, "percentage": 96.41, "elapsed_time": "21:34:40", "remaining_time": "0:48:15"} +{"current_steps": 3971, "total_steps": 4118, "loss": 1.7699, "learning_rate": 0.0001, "epoch": 0.9643030597377368, "percentage": 96.43, "elapsed_time": "21:35:00", "remaining_time": "0:47:56"} +{"current_steps": 3972, "total_steps": 4118, "loss": 1.8133, "learning_rate": 0.0001, "epoch": 0.9645458960660515, "percentage": 96.45, "elapsed_time": "21:35:19", "remaining_time": "0:47:36"} +{"current_steps": 3973, "total_steps": 4118, "loss": 1.7083, "learning_rate": 0.0001, "epoch": 0.9647887323943662, "percentage": 96.48, "elapsed_time": "21:35:39", "remaining_time": "0:47:17"} +{"current_steps": 3974, "total_steps": 4118, "loss": 1.7431, "learning_rate": 0.0001, "epoch": 0.9650315687226809, "percentage": 96.5, "elapsed_time": "21:35:58", "remaining_time": "0:46:57"} +{"current_steps": 3975, "total_steps": 4118, "loss": 1.7541, "learning_rate": 0.0001, "epoch": 0.9652744050509956, "percentage": 96.53, "elapsed_time": "21:36:18", "remaining_time": "0:46:38"} +{"current_steps": 3976, "total_steps": 4118, "loss": 2.0108, "learning_rate": 0.0001, "epoch": 0.9655172413793104, "percentage": 96.55, "elapsed_time": "21:36:37", "remaining_time": "0:46:18"} +{"current_steps": 3977, "total_steps": 4118, "loss": 1.8295, "learning_rate": 0.0001, "epoch": 0.9657600777076251, "percentage": 96.58, "elapsed_time": "21:36:57", "remaining_time": "0:45:58"} +{"current_steps": 3978, "total_steps": 4118, "loss": 1.6777, "learning_rate": 0.0001, "epoch": 0.9660029140359397, "percentage": 96.6, "elapsed_time": "21:37:17", "remaining_time": "0:45:39"} +{"current_steps": 3979, "total_steps": 4118, "loss": 1.7248, "learning_rate": 0.0001, "epoch": 0.9662457503642545, "percentage": 96.62, "elapsed_time": "21:37:36", "remaining_time": "0:45:19"} +{"current_steps": 3980, "total_steps": 4118, "loss": 1.7211, "learning_rate": 0.0001, "epoch": 0.9664885866925692, "percentage": 96.65, "elapsed_time": "21:37:56", "remaining_time": "0:45:00"} +{"current_steps": 3981, "total_steps": 4118, "loss": 1.7135, "learning_rate": 0.0001, "epoch": 0.9667314230208839, "percentage": 96.67, "elapsed_time": "21:38:15", "remaining_time": "0:44:40"} +{"current_steps": 3982, "total_steps": 4118, "loss": 1.6635, "learning_rate": 0.0001, "epoch": 0.9669742593491987, "percentage": 96.7, "elapsed_time": "21:38:35", "remaining_time": "0:44:21"} +{"current_steps": 3983, "total_steps": 4118, "loss": 1.8882, "learning_rate": 0.0001, "epoch": 0.9672170956775133, "percentage": 96.72, "elapsed_time": "21:38:54", "remaining_time": "0:44:01"} +{"current_steps": 3984, "total_steps": 4118, "loss": 1.8406, "learning_rate": 0.0001, "epoch": 0.967459932005828, "percentage": 96.75, "elapsed_time": "21:39:14", "remaining_time": "0:43:41"} +{"current_steps": 3985, "total_steps": 4118, "loss": 1.7376, "learning_rate": 0.0001, "epoch": 0.9677027683341428, "percentage": 96.77, "elapsed_time": "21:39:34", "remaining_time": "0:43:22"} +{"current_steps": 3986, "total_steps": 4118, "loss": 1.8353, "learning_rate": 0.0001, "epoch": 0.9679456046624575, "percentage": 96.79, "elapsed_time": "21:39:53", "remaining_time": "0:43:02"} +{"current_steps": 3987, "total_steps": 4118, "loss": 1.7397, "learning_rate": 0.0001, "epoch": 0.9681884409907722, "percentage": 96.82, "elapsed_time": "21:40:13", "remaining_time": "0:42:43"} +{"current_steps": 3988, "total_steps": 4118, "loss": 1.788, "learning_rate": 0.0001, "epoch": 0.968431277319087, "percentage": 96.84, "elapsed_time": "21:40:32", "remaining_time": "0:42:23"} +{"current_steps": 3989, "total_steps": 4118, "loss": 1.7381, "learning_rate": 0.0001, "epoch": 0.9686741136474016, "percentage": 96.87, "elapsed_time": "21:40:52", "remaining_time": "0:42:04"} +{"current_steps": 3990, "total_steps": 4118, "loss": 1.8624, "learning_rate": 0.0001, "epoch": 0.9689169499757163, "percentage": 96.89, "elapsed_time": "21:41:11", "remaining_time": "0:41:44"} +{"current_steps": 3991, "total_steps": 4118, "loss": 1.6093, "learning_rate": 0.0001, "epoch": 0.9691597863040311, "percentage": 96.92, "elapsed_time": "21:41:31", "remaining_time": "0:41:24"} +{"current_steps": 3992, "total_steps": 4118, "loss": 1.7558, "learning_rate": 0.0001, "epoch": 0.9694026226323458, "percentage": 96.94, "elapsed_time": "21:41:51", "remaining_time": "0:41:05"} +{"current_steps": 3993, "total_steps": 4118, "loss": 1.6389, "learning_rate": 0.0001, "epoch": 0.9696454589606606, "percentage": 96.96, "elapsed_time": "21:42:10", "remaining_time": "0:40:45"} +{"current_steps": 3994, "total_steps": 4118, "loss": 1.5926, "learning_rate": 0.0001, "epoch": 0.9698882952889752, "percentage": 96.99, "elapsed_time": "21:42:30", "remaining_time": "0:40:26"} +{"current_steps": 3995, "total_steps": 4118, "loss": 1.5598, "learning_rate": 0.0001, "epoch": 0.9701311316172899, "percentage": 97.01, "elapsed_time": "21:42:49", "remaining_time": "0:40:06"} +{"current_steps": 3996, "total_steps": 4118, "loss": 1.6834, "learning_rate": 0.0001, "epoch": 0.9703739679456047, "percentage": 97.04, "elapsed_time": "21:43:09", "remaining_time": "0:39:47"} +{"current_steps": 3997, "total_steps": 4118, "loss": 1.8155, "learning_rate": 0.0001, "epoch": 0.9706168042739194, "percentage": 97.06, "elapsed_time": "21:43:28", "remaining_time": "0:39:27"} +{"current_steps": 3998, "total_steps": 4118, "loss": 1.791, "learning_rate": 0.0001, "epoch": 0.9708596406022341, "percentage": 97.09, "elapsed_time": "21:43:48", "remaining_time": "0:39:08"} +{"current_steps": 3999, "total_steps": 4118, "loss": 1.6744, "learning_rate": 0.0001, "epoch": 0.9711024769305489, "percentage": 97.11, "elapsed_time": "21:44:08", "remaining_time": "0:38:48"} +{"current_steps": 4000, "total_steps": 4118, "loss": 1.9069, "learning_rate": 0.0001, "epoch": 0.9713453132588635, "percentage": 97.13, "elapsed_time": "21:44:27", "remaining_time": "0:38:28"} +{"current_steps": 4001, "total_steps": 4118, "loss": 1.5269, "learning_rate": 0.0001, "epoch": 0.9715881495871782, "percentage": 97.16, "elapsed_time": "21:44:49", "remaining_time": "0:38:09"} +{"current_steps": 4002, "total_steps": 4118, "loss": 1.8567, "learning_rate": 0.0001, "epoch": 0.971830985915493, "percentage": 97.18, "elapsed_time": "21:45:09", "remaining_time": "0:37:49"} +{"current_steps": 4003, "total_steps": 4118, "loss": 1.6673, "learning_rate": 0.0001, "epoch": 0.9720738222438077, "percentage": 97.21, "elapsed_time": "21:45:28", "remaining_time": "0:37:30"} +{"current_steps": 4004, "total_steps": 4118, "loss": 1.7194, "learning_rate": 0.0001, "epoch": 0.9723166585721223, "percentage": 97.23, "elapsed_time": "21:45:48", "remaining_time": "0:37:10"} +{"current_steps": 4005, "total_steps": 4118, "loss": 1.6828, "learning_rate": 0.0001, "epoch": 0.9725594949004371, "percentage": 97.26, "elapsed_time": "21:46:07", "remaining_time": "0:36:51"} +{"current_steps": 4006, "total_steps": 4118, "loss": 1.768, "learning_rate": 0.0001, "epoch": 0.9728023312287518, "percentage": 97.28, "elapsed_time": "21:46:27", "remaining_time": "0:36:31"} +{"current_steps": 4007, "total_steps": 4118, "loss": 1.7208, "learning_rate": 0.0001, "epoch": 0.9730451675570665, "percentage": 97.3, "elapsed_time": "21:46:47", "remaining_time": "0:36:11"} +{"current_steps": 4008, "total_steps": 4118, "loss": 1.6734, "learning_rate": 0.0001, "epoch": 0.9732880038853813, "percentage": 97.33, "elapsed_time": "21:47:06", "remaining_time": "0:35:52"} +{"current_steps": 4009, "total_steps": 4118, "loss": 1.7982, "learning_rate": 0.0001, "epoch": 0.973530840213696, "percentage": 97.35, "elapsed_time": "21:47:26", "remaining_time": "0:35:32"} +{"current_steps": 4010, "total_steps": 4118, "loss": 1.5219, "learning_rate": 0.0001, "epoch": 0.9737736765420106, "percentage": 97.38, "elapsed_time": "21:47:45", "remaining_time": "0:35:13"} +{"current_steps": 4011, "total_steps": 4118, "loss": 1.682, "learning_rate": 0.0001, "epoch": 0.9740165128703254, "percentage": 97.4, "elapsed_time": "21:48:05", "remaining_time": "0:34:53"} +{"current_steps": 4012, "total_steps": 4118, "loss": 1.8671, "learning_rate": 0.0001, "epoch": 0.9742593491986401, "percentage": 97.43, "elapsed_time": "21:48:24", "remaining_time": "0:34:34"} +{"current_steps": 4013, "total_steps": 4118, "loss": 1.7251, "learning_rate": 0.0001, "epoch": 0.9745021855269548, "percentage": 97.45, "elapsed_time": "21:48:44", "remaining_time": "0:34:14"} +{"current_steps": 4014, "total_steps": 4118, "loss": 1.5278, "learning_rate": 0.0001, "epoch": 0.9747450218552696, "percentage": 97.47, "elapsed_time": "21:49:04", "remaining_time": "0:33:55"} +{"current_steps": 4015, "total_steps": 4118, "loss": 1.6609, "learning_rate": 0.0001, "epoch": 0.9749878581835842, "percentage": 97.5, "elapsed_time": "21:49:23", "remaining_time": "0:33:35"} +{"current_steps": 4016, "total_steps": 4118, "loss": 1.8765, "learning_rate": 0.0001, "epoch": 0.975230694511899, "percentage": 97.52, "elapsed_time": "21:49:43", "remaining_time": "0:33:15"} +{"current_steps": 4017, "total_steps": 4118, "loss": 1.6432, "learning_rate": 0.0001, "epoch": 0.9754735308402137, "percentage": 97.55, "elapsed_time": "21:50:02", "remaining_time": "0:32:56"} +{"current_steps": 4018, "total_steps": 4118, "loss": 1.7887, "learning_rate": 0.0001, "epoch": 0.9757163671685284, "percentage": 97.57, "elapsed_time": "21:50:22", "remaining_time": "0:32:36"} +{"current_steps": 4019, "total_steps": 4118, "loss": 1.7679, "learning_rate": 0.0001, "epoch": 0.9759592034968432, "percentage": 97.6, "elapsed_time": "21:50:41", "remaining_time": "0:32:17"} +{"current_steps": 4020, "total_steps": 4118, "loss": 1.6487, "learning_rate": 0.0001, "epoch": 0.9762020398251579, "percentage": 97.62, "elapsed_time": "21:51:01", "remaining_time": "0:31:57"} +{"current_steps": 4021, "total_steps": 4118, "loss": 1.709, "learning_rate": 0.0001, "epoch": 0.9764448761534725, "percentage": 97.64, "elapsed_time": "21:51:21", "remaining_time": "0:31:38"} +{"current_steps": 4022, "total_steps": 4118, "loss": 1.6361, "learning_rate": 0.0001, "epoch": 0.9766877124817873, "percentage": 97.67, "elapsed_time": "21:51:40", "remaining_time": "0:31:18"} +{"current_steps": 4023, "total_steps": 4118, "loss": 1.8053, "learning_rate": 0.0001, "epoch": 0.976930548810102, "percentage": 97.69, "elapsed_time": "21:52:00", "remaining_time": "0:30:58"} +{"current_steps": 4024, "total_steps": 4118, "loss": 1.7819, "learning_rate": 0.0001, "epoch": 0.9771733851384167, "percentage": 97.72, "elapsed_time": "21:52:19", "remaining_time": "0:30:39"} +{"current_steps": 4025, "total_steps": 4118, "loss": 1.5234, "learning_rate": 0.0001, "epoch": 0.9774162214667315, "percentage": 97.74, "elapsed_time": "21:52:39", "remaining_time": "0:30:19"} +{"current_steps": 4026, "total_steps": 4118, "loss": 1.7181, "learning_rate": 0.0001, "epoch": 0.9776590577950461, "percentage": 97.77, "elapsed_time": "21:52:59", "remaining_time": "0:30:00"} +{"current_steps": 4027, "total_steps": 4118, "loss": 1.7424, "learning_rate": 0.0001, "epoch": 0.9779018941233608, "percentage": 97.79, "elapsed_time": "21:53:18", "remaining_time": "0:29:40"} +{"current_steps": 4028, "total_steps": 4118, "loss": 1.686, "learning_rate": 0.0001, "epoch": 0.9781447304516756, "percentage": 97.81, "elapsed_time": "21:53:38", "remaining_time": "0:29:21"} +{"current_steps": 4029, "total_steps": 4118, "loss": 1.6919, "learning_rate": 0.0001, "epoch": 0.9783875667799903, "percentage": 97.84, "elapsed_time": "21:53:57", "remaining_time": "0:29:01"} +{"current_steps": 4030, "total_steps": 4118, "loss": 1.5181, "learning_rate": 0.0001, "epoch": 0.978630403108305, "percentage": 97.86, "elapsed_time": "21:54:17", "remaining_time": "0:28:41"} +{"current_steps": 4031, "total_steps": 4118, "loss": 1.6645, "learning_rate": 0.0001, "epoch": 0.9788732394366197, "percentage": 97.89, "elapsed_time": "21:54:36", "remaining_time": "0:28:22"} +{"current_steps": 4032, "total_steps": 4118, "loss": 1.7322, "learning_rate": 0.0001, "epoch": 0.9791160757649344, "percentage": 97.91, "elapsed_time": "21:54:56", "remaining_time": "0:28:02"} +{"current_steps": 4033, "total_steps": 4118, "loss": 1.6405, "learning_rate": 0.0001, "epoch": 0.9793589120932491, "percentage": 97.94, "elapsed_time": "21:55:16", "remaining_time": "0:27:43"} +{"current_steps": 4034, "total_steps": 4118, "loss": 1.6253, "learning_rate": 0.0001, "epoch": 0.9796017484215639, "percentage": 97.96, "elapsed_time": "21:55:35", "remaining_time": "0:27:23"} +{"current_steps": 4035, "total_steps": 4118, "loss": 1.6952, "learning_rate": 0.0001, "epoch": 0.9798445847498786, "percentage": 97.98, "elapsed_time": "21:55:55", "remaining_time": "0:27:04"} +{"current_steps": 4036, "total_steps": 4118, "loss": 1.6679, "learning_rate": 0.0001, "epoch": 0.9800874210781932, "percentage": 98.01, "elapsed_time": "21:56:14", "remaining_time": "0:26:44"} +{"current_steps": 4037, "total_steps": 4118, "loss": 1.6791, "learning_rate": 0.0001, "epoch": 0.980330257406508, "percentage": 98.03, "elapsed_time": "21:56:34", "remaining_time": "0:26:24"} +{"current_steps": 4038, "total_steps": 4118, "loss": 1.8205, "learning_rate": 0.0001, "epoch": 0.9805730937348227, "percentage": 98.06, "elapsed_time": "21:56:53", "remaining_time": "0:26:05"} +{"current_steps": 4039, "total_steps": 4118, "loss": 1.9614, "learning_rate": 0.0001, "epoch": 0.9808159300631375, "percentage": 98.08, "elapsed_time": "21:57:13", "remaining_time": "0:25:45"} +{"current_steps": 4040, "total_steps": 4118, "loss": 1.7674, "learning_rate": 0.0001, "epoch": 0.9810587663914522, "percentage": 98.11, "elapsed_time": "21:57:33", "remaining_time": "0:25:26"} +{"current_steps": 4041, "total_steps": 4118, "loss": 1.7292, "learning_rate": 0.0001, "epoch": 0.9813016027197669, "percentage": 98.13, "elapsed_time": "21:57:52", "remaining_time": "0:25:06"} +{"current_steps": 4042, "total_steps": 4118, "loss": 1.6717, "learning_rate": 0.0001, "epoch": 0.9815444390480816, "percentage": 98.15, "elapsed_time": "21:58:12", "remaining_time": "0:24:47"} +{"current_steps": 4043, "total_steps": 4118, "loss": 1.8394, "learning_rate": 0.0001, "epoch": 0.9817872753763963, "percentage": 98.18, "elapsed_time": "21:58:31", "remaining_time": "0:24:27"} +{"current_steps": 4044, "total_steps": 4118, "loss": 1.7155, "learning_rate": 0.0001, "epoch": 0.982030111704711, "percentage": 98.2, "elapsed_time": "21:58:51", "remaining_time": "0:24:08"} +{"current_steps": 4045, "total_steps": 4118, "loss": 1.8514, "learning_rate": 0.0001, "epoch": 0.9822729480330258, "percentage": 98.23, "elapsed_time": "21:59:10", "remaining_time": "0:23:48"} +{"current_steps": 4046, "total_steps": 4118, "loss": 1.7806, "learning_rate": 0.0001, "epoch": 0.9825157843613405, "percentage": 98.25, "elapsed_time": "21:59:30", "remaining_time": "0:23:28"} +{"current_steps": 4047, "total_steps": 4118, "loss": 1.6746, "learning_rate": 0.0001, "epoch": 0.9827586206896551, "percentage": 98.28, "elapsed_time": "21:59:50", "remaining_time": "0:23:09"} +{"current_steps": 4048, "total_steps": 4118, "loss": 1.7516, "learning_rate": 0.0001, "epoch": 0.9830014570179699, "percentage": 98.3, "elapsed_time": "22:00:09", "remaining_time": "0:22:49"} +{"current_steps": 4049, "total_steps": 4118, "loss": 1.6718, "learning_rate": 0.0001, "epoch": 0.9832442933462846, "percentage": 98.32, "elapsed_time": "22:00:29", "remaining_time": "0:22:30"} +{"current_steps": 4050, "total_steps": 4118, "loss": 1.7585, "learning_rate": 0.0001, "epoch": 0.9834871296745993, "percentage": 98.35, "elapsed_time": "22:00:48", "remaining_time": "0:22:10"} +{"current_steps": 4051, "total_steps": 4118, "loss": 1.7069, "learning_rate": 0.0001, "epoch": 0.9837299660029141, "percentage": 98.37, "elapsed_time": "22:01:08", "remaining_time": "0:21:51"} +{"current_steps": 4052, "total_steps": 4118, "loss": 1.5646, "learning_rate": 0.0001, "epoch": 0.9839728023312287, "percentage": 98.4, "elapsed_time": "22:01:27", "remaining_time": "0:21:31"} +{"current_steps": 4053, "total_steps": 4118, "loss": 1.6494, "learning_rate": 0.0001, "epoch": 0.9842156386595434, "percentage": 98.42, "elapsed_time": "22:01:47", "remaining_time": "0:21:11"} +{"current_steps": 4054, "total_steps": 4118, "loss": 1.6335, "learning_rate": 0.0001, "epoch": 0.9844584749878582, "percentage": 98.45, "elapsed_time": "22:02:07", "remaining_time": "0:20:52"} +{"current_steps": 4055, "total_steps": 4118, "loss": 1.8676, "learning_rate": 0.0001, "epoch": 0.9847013113161729, "percentage": 98.47, "elapsed_time": "22:02:26", "remaining_time": "0:20:32"} +{"current_steps": 4056, "total_steps": 4118, "loss": 1.6681, "learning_rate": 0.0001, "epoch": 0.9849441476444876, "percentage": 98.49, "elapsed_time": "22:02:46", "remaining_time": "0:20:13"} +{"current_steps": 4057, "total_steps": 4118, "loss": 1.8587, "learning_rate": 0.0001, "epoch": 0.9851869839728024, "percentage": 98.52, "elapsed_time": "22:03:05", "remaining_time": "0:19:53"} +{"current_steps": 4058, "total_steps": 4118, "loss": 1.7026, "learning_rate": 0.0001, "epoch": 0.985429820301117, "percentage": 98.54, "elapsed_time": "22:03:25", "remaining_time": "0:19:34"} +{"current_steps": 4059, "total_steps": 4118, "loss": 1.7857, "learning_rate": 0.0001, "epoch": 0.9856726566294317, "percentage": 98.57, "elapsed_time": "22:03:44", "remaining_time": "0:19:14"} +{"current_steps": 4060, "total_steps": 4118, "loss": 1.691, "learning_rate": 0.0001, "epoch": 0.9859154929577465, "percentage": 98.59, "elapsed_time": "22:04:04", "remaining_time": "0:18:54"} +{"current_steps": 4061, "total_steps": 4118, "loss": 1.8014, "learning_rate": 0.0001, "epoch": 0.9861583292860612, "percentage": 98.62, "elapsed_time": "22:04:24", "remaining_time": "0:18:35"} +{"current_steps": 4062, "total_steps": 4118, "loss": 1.5834, "learning_rate": 0.0001, "epoch": 0.986401165614376, "percentage": 98.64, "elapsed_time": "22:04:43", "remaining_time": "0:18:15"} +{"current_steps": 4063, "total_steps": 4118, "loss": 1.6177, "learning_rate": 0.0001, "epoch": 0.9866440019426906, "percentage": 98.66, "elapsed_time": "22:05:03", "remaining_time": "0:17:56"} +{"current_steps": 4064, "total_steps": 4118, "loss": 1.7155, "learning_rate": 0.0001, "epoch": 0.9868868382710053, "percentage": 98.69, "elapsed_time": "22:05:22", "remaining_time": "0:17:36"} +{"current_steps": 4065, "total_steps": 4118, "loss": 1.7071, "learning_rate": 0.0001, "epoch": 0.9871296745993201, "percentage": 98.71, "elapsed_time": "22:05:42", "remaining_time": "0:17:17"} +{"current_steps": 4066, "total_steps": 4118, "loss": 1.82, "learning_rate": 0.0001, "epoch": 0.9873725109276348, "percentage": 98.74, "elapsed_time": "22:06:02", "remaining_time": "0:16:57"} +{"current_steps": 4067, "total_steps": 4118, "loss": 1.6899, "learning_rate": 0.0001, "epoch": 0.9876153472559495, "percentage": 98.76, "elapsed_time": "22:06:21", "remaining_time": "0:16:37"} +{"current_steps": 4068, "total_steps": 4118, "loss": 1.7396, "learning_rate": 0.0001, "epoch": 0.9878581835842642, "percentage": 98.79, "elapsed_time": "22:06:41", "remaining_time": "0:16:18"} +{"current_steps": 4069, "total_steps": 4118, "loss": 1.462, "learning_rate": 0.0001, "epoch": 0.9881010199125789, "percentage": 98.81, "elapsed_time": "22:07:00", "remaining_time": "0:15:58"} +{"current_steps": 4070, "total_steps": 4118, "loss": 1.7367, "learning_rate": 0.0001, "epoch": 0.9883438562408936, "percentage": 98.83, "elapsed_time": "22:07:20", "remaining_time": "0:15:39"} +{"current_steps": 4071, "total_steps": 4118, "loss": 1.7147, "learning_rate": 0.0001, "epoch": 0.9885866925692084, "percentage": 98.86, "elapsed_time": "22:07:39", "remaining_time": "0:15:19"} +{"current_steps": 4072, "total_steps": 4118, "loss": 1.5704, "learning_rate": 0.0001, "epoch": 0.9888295288975231, "percentage": 98.88, "elapsed_time": "22:07:59", "remaining_time": "0:15:00"} +{"current_steps": 4073, "total_steps": 4118, "loss": 1.5913, "learning_rate": 0.0001, "epoch": 0.9890723652258377, "percentage": 98.91, "elapsed_time": "22:08:19", "remaining_time": "0:14:40"} +{"current_steps": 4074, "total_steps": 4118, "loss": 1.9007, "learning_rate": 0.0001, "epoch": 0.9893152015541525, "percentage": 98.93, "elapsed_time": "22:08:38", "remaining_time": "0:14:20"} +{"current_steps": 4075, "total_steps": 4118, "loss": 1.711, "learning_rate": 0.0001, "epoch": 0.9895580378824672, "percentage": 98.96, "elapsed_time": "22:08:58", "remaining_time": "0:14:01"} +{"current_steps": 4076, "total_steps": 4118, "loss": 1.6429, "learning_rate": 0.0001, "epoch": 0.9898008742107819, "percentage": 98.98, "elapsed_time": "22:09:17", "remaining_time": "0:13:41"} +{"current_steps": 4077, "total_steps": 4118, "loss": 1.7843, "learning_rate": 0.0001, "epoch": 0.9900437105390967, "percentage": 99.0, "elapsed_time": "22:09:37", "remaining_time": "0:13:22"} +{"current_steps": 4078, "total_steps": 4118, "loss": 1.7671, "learning_rate": 0.0001, "epoch": 0.9902865468674114, "percentage": 99.03, "elapsed_time": "22:09:56", "remaining_time": "0:13:02"} +{"current_steps": 4079, "total_steps": 4118, "loss": 1.6523, "learning_rate": 0.0001, "epoch": 0.990529383195726, "percentage": 99.05, "elapsed_time": "22:10:16", "remaining_time": "0:12:43"} +{"current_steps": 4080, "total_steps": 4118, "loss": 1.7472, "learning_rate": 0.0001, "epoch": 0.9907722195240408, "percentage": 99.08, "elapsed_time": "22:10:36", "remaining_time": "0:12:23"} +{"current_steps": 4081, "total_steps": 4118, "loss": 1.5674, "learning_rate": 0.0001, "epoch": 0.9910150558523555, "percentage": 99.1, "elapsed_time": "22:10:55", "remaining_time": "0:12:04"} +{"current_steps": 4082, "total_steps": 4118, "loss": 1.6464, "learning_rate": 0.0001, "epoch": 0.9912578921806702, "percentage": 99.13, "elapsed_time": "22:11:15", "remaining_time": "0:11:44"} +{"current_steps": 4083, "total_steps": 4118, "loss": 1.6378, "learning_rate": 0.0001, "epoch": 0.991500728508985, "percentage": 99.15, "elapsed_time": "22:11:34", "remaining_time": "0:11:24"} +{"current_steps": 4084, "total_steps": 4118, "loss": 1.6136, "learning_rate": 0.0001, "epoch": 0.9917435648372996, "percentage": 99.17, "elapsed_time": "22:11:54", "remaining_time": "0:11:05"} +{"current_steps": 4085, "total_steps": 4118, "loss": 1.8007, "learning_rate": 0.0001, "epoch": 0.9919864011656144, "percentage": 99.2, "elapsed_time": "22:12:13", "remaining_time": "0:10:45"} +{"current_steps": 4086, "total_steps": 4118, "loss": 1.6925, "learning_rate": 0.0001, "epoch": 0.9922292374939291, "percentage": 99.22, "elapsed_time": "22:12:33", "remaining_time": "0:10:26"} +{"current_steps": 4087, "total_steps": 4118, "loss": 1.7157, "learning_rate": 0.0001, "epoch": 0.9924720738222438, "percentage": 99.25, "elapsed_time": "22:12:53", "remaining_time": "0:10:06"} +{"current_steps": 4088, "total_steps": 4118, "loss": 1.817, "learning_rate": 0.0001, "epoch": 0.9927149101505586, "percentage": 99.27, "elapsed_time": "22:13:12", "remaining_time": "0:09:47"} +{"current_steps": 4089, "total_steps": 4118, "loss": 1.8487, "learning_rate": 0.0001, "epoch": 0.9929577464788732, "percentage": 99.3, "elapsed_time": "22:13:32", "remaining_time": "0:09:27"} +{"current_steps": 4090, "total_steps": 4118, "loss": 1.7539, "learning_rate": 0.0001, "epoch": 0.9932005828071879, "percentage": 99.32, "elapsed_time": "22:13:51", "remaining_time": "0:09:07"} +{"current_steps": 4091, "total_steps": 4118, "loss": 1.7928, "learning_rate": 0.0001, "epoch": 0.9934434191355027, "percentage": 99.34, "elapsed_time": "22:14:11", "remaining_time": "0:08:48"} +{"current_steps": 4092, "total_steps": 4118, "loss": 1.6372, "learning_rate": 0.0001, "epoch": 0.9936862554638174, "percentage": 99.37, "elapsed_time": "22:14:30", "remaining_time": "0:08:28"} +{"current_steps": 4093, "total_steps": 4118, "loss": 1.5337, "learning_rate": 0.0001, "epoch": 0.9939290917921321, "percentage": 99.39, "elapsed_time": "22:14:50", "remaining_time": "0:08:09"} +{"current_steps": 4094, "total_steps": 4118, "loss": 1.6373, "learning_rate": 0.0001, "epoch": 0.9941719281204469, "percentage": 99.42, "elapsed_time": "22:15:09", "remaining_time": "0:07:49"} +{"current_steps": 4095, "total_steps": 4118, "loss": 1.802, "learning_rate": 0.0001, "epoch": 0.9944147644487615, "percentage": 99.44, "elapsed_time": "22:15:29", "remaining_time": "0:07:30"} +{"current_steps": 4096, "total_steps": 4118, "loss": 1.7097, "learning_rate": 0.0001, "epoch": 0.9946576007770762, "percentage": 99.47, "elapsed_time": "22:15:49", "remaining_time": "0:07:10"} +{"current_steps": 4097, "total_steps": 4118, "loss": 1.7948, "learning_rate": 0.0001, "epoch": 0.994900437105391, "percentage": 99.49, "elapsed_time": "22:16:08", "remaining_time": "0:06:50"} +{"current_steps": 4098, "total_steps": 4118, "loss": 1.8227, "learning_rate": 0.0001, "epoch": 0.9951432734337057, "percentage": 99.51, "elapsed_time": "22:16:28", "remaining_time": "0:06:31"} +{"current_steps": 4099, "total_steps": 4118, "loss": 1.6504, "learning_rate": 0.0001, "epoch": 0.9953861097620204, "percentage": 99.54, "elapsed_time": "22:16:47", "remaining_time": "0:06:11"} +{"current_steps": 4100, "total_steps": 4118, "loss": 1.8258, "learning_rate": 0.0001, "epoch": 0.9956289460903351, "percentage": 99.56, "elapsed_time": "22:17:07", "remaining_time": "0:05:52"} +{"current_steps": 4101, "total_steps": 4118, "loss": 1.8399, "learning_rate": 0.0001, "epoch": 0.9958717824186498, "percentage": 99.59, "elapsed_time": "22:17:27", "remaining_time": "0:05:32"} +{"current_steps": 4102, "total_steps": 4118, "loss": 1.7161, "learning_rate": 0.0001, "epoch": 0.9961146187469645, "percentage": 99.61, "elapsed_time": "22:17:46", "remaining_time": "0:05:13"} +{"current_steps": 4103, "total_steps": 4118, "loss": 1.7047, "learning_rate": 0.0001, "epoch": 0.9963574550752793, "percentage": 99.64, "elapsed_time": "22:18:06", "remaining_time": "0:04:53"} +{"current_steps": 4104, "total_steps": 4118, "loss": 1.7249, "learning_rate": 0.0001, "epoch": 0.996600291403594, "percentage": 99.66, "elapsed_time": "22:18:25", "remaining_time": "0:04:33"} +{"current_steps": 4105, "total_steps": 4118, "loss": 1.6416, "learning_rate": 0.0001, "epoch": 0.9968431277319086, "percentage": 99.68, "elapsed_time": "22:18:45", "remaining_time": "0:04:14"} +{"current_steps": 4106, "total_steps": 4118, "loss": 1.6658, "learning_rate": 0.0001, "epoch": 0.9970859640602234, "percentage": 99.71, "elapsed_time": "22:19:04", "remaining_time": "0:03:54"} +{"current_steps": 4107, "total_steps": 4118, "loss": 1.678, "learning_rate": 0.0001, "epoch": 0.9973288003885381, "percentage": 99.73, "elapsed_time": "22:19:24", "remaining_time": "0:03:35"} +{"current_steps": 4108, "total_steps": 4118, "loss": 1.6198, "learning_rate": 0.0001, "epoch": 0.9975716367168529, "percentage": 99.76, "elapsed_time": "22:19:44", "remaining_time": "0:03:15"} +{"current_steps": 4109, "total_steps": 4118, "loss": 1.8025, "learning_rate": 0.0001, "epoch": 0.9978144730451676, "percentage": 99.78, "elapsed_time": "22:20:03", "remaining_time": "0:02:56"} +{"current_steps": 4110, "total_steps": 4118, "loss": 1.6137, "learning_rate": 0.0001, "epoch": 0.9980573093734822, "percentage": 99.81, "elapsed_time": "22:20:23", "remaining_time": "0:02:36"} +{"current_steps": 4111, "total_steps": 4118, "loss": 1.6345, "learning_rate": 0.0001, "epoch": 0.998300145701797, "percentage": 99.83, "elapsed_time": "22:20:42", "remaining_time": "0:02:16"} +{"current_steps": 4112, "total_steps": 4118, "loss": 1.7829, "learning_rate": 0.0001, "epoch": 0.9985429820301117, "percentage": 99.85, "elapsed_time": "22:21:02", "remaining_time": "0:01:57"} +{"current_steps": 4113, "total_steps": 4118, "loss": 1.8826, "learning_rate": 0.0001, "epoch": 0.9987858183584264, "percentage": 99.88, "elapsed_time": "22:21:21", "remaining_time": "0:01:37"} +{"current_steps": 4114, "total_steps": 4118, "loss": 1.7747, "learning_rate": 0.0001, "epoch": 0.9990286546867412, "percentage": 99.9, "elapsed_time": "22:21:41", "remaining_time": "0:01:18"} +{"current_steps": 4115, "total_steps": 4118, "loss": 1.9432, "learning_rate": 0.0001, "epoch": 0.9992714910150559, "percentage": 99.93, "elapsed_time": "22:22:00", "remaining_time": "0:00:58"} +{"current_steps": 4116, "total_steps": 4118, "loss": 1.7915, "learning_rate": 0.0001, "epoch": 0.9995143273433705, "percentage": 99.95, "elapsed_time": "22:22:20", "remaining_time": "0:00:39"} +{"current_steps": 4117, "total_steps": 4118, "loss": 1.6249, "learning_rate": 0.0001, "epoch": 0.9997571636716853, "percentage": 99.98, "elapsed_time": "22:22:40", "remaining_time": "0:00:19"} +{"current_steps": 4118, "total_steps": 4118, "loss": 1.7663, "learning_rate": 0.0001, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "22:22:59", "remaining_time": "0:00:00"} +{"current_steps": 4118, "total_steps": 4118, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "22:23:02", "remaining_time": "0:00:00"}