File size: 2,393 Bytes
a230c41
be7d1ae
 
d80ce16
036c2e4
6490aaf
be7d1ae
adddb38
 
 
 
 
036c2e4
 
 
 
a230c41
ad76c72
036c2e4
b2c4633
036c2e4
2d14f20
 
 
036c2e4
 
 
 
 
 
b2c4633
036c2e4
b2c4633
036c2e4
 
b2c4633
036c2e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8639005
 
036c2e4
45cae2a
036c2e4
8639005
 
 
036c2e4
7091dbd
 
507abea
8639005
 
a804129
8639005
036c2e4
 
 
 
 
 
 
 
b2c4633
 
 
 
 
 
 
 
 
 
036c2e4
 
b2c4633
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
language:
- en
license: cc-by-nc-4.0
datasets:
- grammarly/coedit
- facebook/asset
- jfleg
- zaemyung/IteraTeR_plus
- wi_locness
- GEM/wiki_auto_asset_turk
- discofuse
metrics:
- sari
- bleu
- accuracy
---
# Model Card for CoEdIT-xl

This model was obtained by fine-tuning the corresponding `google/flan-t5-xl` model on the CoEdIT dataset. Details of the dataset can be found in our paper and repository.

**Paper:** CoEdIT: Text Editing by Task-Specific Instruction Tuning

**Authors:** Vipul Raheja, Dhruv Kumar, Ryan Koo, Dongyeop Kang

## Model Details

### Model Description

- **Language(s) (NLP)**: English
- **Finetuned from model:** `google/flan-t5-xl`

### Model Sources

- **Repository:** https://github.com/vipulraheja/coedit
- **Paper:** https://arxiv.org/abs/2305.09857

## How to use
We make available the models presented in our paper. 

<table>
  <tr>
    <th>Model</th>
    <th>Number of parameters</th>
  </tr>
  <tr>
    <td>CoEdIT-large</td>
    <td>770M</td>
  </tr>
  <tr>
    <td>CoEdIT-xl</td>
    <td>3B</td>
  </tr>
  <tr>
    <td>CoEdIT-xxl</td>
    <td>11B</td>
  </tr>  
</table>


## Uses

## Text Revision Task
Given an edit instruction and an original text, our model can generate the edited version of the text.<br>

![task_specs](https://huggingface.co/grammarly/coedit-xl/resolve/main/task_examples.png)

## Usage
```python
from transformers import AutoTokenizer, T5ForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-xl")
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-xl")
input_text = 'Fix grammatical errors in this sentence: When I grow up, I start to understand what he said is quite right.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
```


#### Software
https://github.com/vipulraheja/coedit

## Citation

**BibTeX:**
```
@article{raheja2023coedit,
      title={CoEdIT: Text Editing by Task-Specific Instruction Tuning}, 
      author={Vipul Raheja and Dhruv Kumar and Ryan Koo and Dongyeop Kang},
      year={2023},
      eprint={2305.09857},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

**APA:**
Raheja, V., Kumar, D., Koo, R., & Kang, D. (2023). CoEdIT: Text Editing by Task-Specific Instruction Tuning. ArXiv. /abs/2305.09857