File size: 2,019 Bytes
661293f
 
2cdc6c9
661293f
 
c2543c1
 
2cdc6c9
661293f
 
 
 
 
 
 
 
 
 
c2543c1
661293f
c2543c1
 
 
 
661293f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2543c1
661293f
 
 
c2543c1
 
 
 
 
 
 
 
661293f
 
 
 
2cdc6c9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistral_instruct_classify10k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_instruct_classify10k

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4669
- F1 Micro: 0.5541
- F1 Macro: 0.4757
- Accuracy: 0.8606

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 0.5713        | 1.0   | 1345 | 0.5121          | 0.5518   | 0.4780   | 0.8361   |
| 2.1107        | 2.0   | 2690 | 1.0088          | 0.5039   | 0.4158   | 0.7536   |
| 0.7897        | 3.0   | 4035 | 0.8093          | 0.4448   | 0.3756   | 0.6377   |
| 0.2022        | 4.0   | 5380 | 0.3706          | 0.5619   | 0.4837   | 0.8751   |
| 0.4403        | 5.0   | 6725 | 0.4996          | 0.5552   | 0.4811   | 0.8406   |
| 0.3214        | 6.0   | 8070 | 0.4669          | 0.5541   | 0.4757   | 0.8606   |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2