greenw0lf commited on
Commit
7c0de89
·
1 Parent(s): 934d4de

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_8_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-large-xls-r-1b-frisian-cv-8-10m
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_8_0
17
+ type: common_voice_8_0
18
+ config: fy-NL
19
+ split: validation
20
+ args: fy-NL
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.09612912441079846
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-large-xls-r-1b-frisian-cv-8-10m
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1207
35
+ - Wer: 0.0961
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 50
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
68
+ | 5.6342 | 1.32 | 300 | 2.9760 | 1.0 |
69
+ | 2.2716 | 2.63 | 600 | 0.6877 | 0.6024 |
70
+ | 1.1303 | 3.95 | 900 | 0.3522 | 0.3450 |
71
+ | 0.9038 | 5.26 | 1200 | 0.2714 | 0.2603 |
72
+ | 0.846 | 6.58 | 1500 | 0.2143 | 0.2036 |
73
+ | 0.8044 | 7.89 | 1800 | 0.1829 | 0.1788 |
74
+ | 0.7069 | 9.21 | 2100 | 0.1751 | 0.1667 |
75
+ | 0.6995 | 10.53 | 2400 | 0.1741 | 0.1727 |
76
+ | 0.7115 | 11.84 | 2700 | 0.1591 | 0.1486 |
77
+ | 0.677 | 13.16 | 3000 | 0.1636 | 0.1459 |
78
+ | 0.6032 | 14.47 | 3300 | 0.1535 | 0.1439 |
79
+ | 0.6218 | 15.79 | 3600 | 0.1427 | 0.1406 |
80
+ | 0.6519 | 17.11 | 3900 | 0.1498 | 0.1488 |
81
+ | 0.5739 | 18.42 | 4200 | 0.1438 | 0.1319 |
82
+ | 0.567 | 19.74 | 4500 | 0.1379 | 0.1322 |
83
+ | 0.4982 | 21.05 | 4800 | 0.1315 | 0.1237 |
84
+ | 0.5825 | 22.37 | 5100 | 0.1349 | 0.1252 |
85
+ | 0.5085 | 23.68 | 5400 | 0.1297 | 0.1233 |
86
+ | 0.4946 | 25.0 | 5700 | 0.1343 | 0.1127 |
87
+ | 0.5677 | 26.32 | 6000 | 0.1323 | 0.1228 |
88
+ | 0.4858 | 27.63 | 6300 | 0.1292 | 0.1098 |
89
+ | 0.4709 | 28.95 | 6600 | 0.1267 | 0.1204 |
90
+ | 0.3241 | 30.26 | 6900 | 0.1315 | 0.1274 |
91
+ | 0.2796 | 31.58 | 7200 | 0.1315 | 0.1202 |
92
+ | 0.3171 | 32.89 | 7500 | 0.1315 | 0.1200 |
93
+ | 0.2591 | 34.21 | 7800 | 0.1322 | 0.1106 |
94
+ | 0.2716 | 35.53 | 8100 | 0.1233 | 0.1030 |
95
+ | 0.2446 | 36.84 | 8400 | 0.1273 | 0.1087 |
96
+ | 0.2377 | 38.16 | 8700 | 0.1243 | 0.1101 |
97
+ | 0.2183 | 39.47 | 9000 | 0.1230 | 0.1116 |
98
+ | 0.2059 | 40.79 | 9300 | 0.1240 | 0.1001 |
99
+ | 0.1916 | 42.11 | 9600 | 0.1223 | 0.1003 |
100
+ | 0.196 | 43.42 | 9900 | 0.1246 | 0.0965 |
101
+ | 0.1969 | 44.74 | 10200 | 0.1222 | 0.1038 |
102
+ | 0.1951 | 46.05 | 10500 | 0.1208 | 0.1003 |
103
+ | 0.1809 | 47.37 | 10800 | 0.1213 | 0.1003 |
104
+ | 0.1793 | 48.68 | 11100 | 0.1202 | 0.0959 |
105
+ | 0.1837 | 50.0 | 11400 | 0.1207 | 0.0961 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.28.1
111
+ - Pytorch 2.0.0+cu117
112
+ - Datasets 2.11.0
113
+ - Tokenizers 0.13.3