--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian-cv-8-10h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.09612912441079846 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.08830755889579418 --- # wav2vec2-large-xls-r-1b-frisian-cv-8-10h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1207 - Wer: 0.0961 And on the test set: - Wer: 0.0883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.6342 | 1.32 | 300 | 2.9760 | 1.0 | | 2.2716 | 2.63 | 600 | 0.6877 | 0.6024 | | 1.1303 | 3.95 | 900 | 0.3522 | 0.3450 | | 0.9038 | 5.26 | 1200 | 0.2714 | 0.2603 | | 0.846 | 6.58 | 1500 | 0.2143 | 0.2036 | | 0.8044 | 7.89 | 1800 | 0.1829 | 0.1788 | | 0.7069 | 9.21 | 2100 | 0.1751 | 0.1667 | | 0.6995 | 10.53 | 2400 | 0.1741 | 0.1727 | | 0.7115 | 11.84 | 2700 | 0.1591 | 0.1486 | | 0.677 | 13.16 | 3000 | 0.1636 | 0.1459 | | 0.6032 | 14.47 | 3300 | 0.1535 | 0.1439 | | 0.6218 | 15.79 | 3600 | 0.1427 | 0.1406 | | 0.6519 | 17.11 | 3900 | 0.1498 | 0.1488 | | 0.5739 | 18.42 | 4200 | 0.1438 | 0.1319 | | 0.567 | 19.74 | 4500 | 0.1379 | 0.1322 | | 0.4982 | 21.05 | 4800 | 0.1315 | 0.1237 | | 0.5825 | 22.37 | 5100 | 0.1349 | 0.1252 | | 0.5085 | 23.68 | 5400 | 0.1297 | 0.1233 | | 0.4946 | 25.0 | 5700 | 0.1343 | 0.1127 | | 0.5677 | 26.32 | 6000 | 0.1323 | 0.1228 | | 0.4858 | 27.63 | 6300 | 0.1292 | 0.1098 | | 0.4709 | 28.95 | 6600 | 0.1267 | 0.1204 | | 0.3241 | 30.26 | 6900 | 0.1315 | 0.1274 | | 0.2796 | 31.58 | 7200 | 0.1315 | 0.1202 | | 0.3171 | 32.89 | 7500 | 0.1315 | 0.1200 | | 0.2591 | 34.21 | 7800 | 0.1322 | 0.1106 | | 0.2716 | 35.53 | 8100 | 0.1233 | 0.1030 | | 0.2446 | 36.84 | 8400 | 0.1273 | 0.1087 | | 0.2377 | 38.16 | 8700 | 0.1243 | 0.1101 | | 0.2183 | 39.47 | 9000 | 0.1230 | 0.1116 | | 0.2059 | 40.79 | 9300 | 0.1240 | 0.1001 | | 0.1916 | 42.11 | 9600 | 0.1223 | 0.1003 | | 0.196 | 43.42 | 9900 | 0.1246 | 0.0965 | | 0.1969 | 44.74 | 10200 | 0.1222 | 0.1038 | | 0.1951 | 46.05 | 10500 | 0.1208 | 0.1003 | | 0.1809 | 47.37 | 10800 | 0.1213 | 0.1003 | | 0.1793 | 48.68 | 11100 | 0.1202 | 0.0959 | | 0.1837 | 50.0 | 11400 | 0.1207 | 0.0961 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3