File size: 2,183 Bytes
796b2fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-xlsum-en-zh
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-xlsum-en-zh
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2988
- Rouge1: 12.7272
- Rouge2: 2.4338
- Rougel: 10.5647
- Rougelsum: 10.5889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 6.215 | 1.0 | 1000 | 3.5021 | 10.9361 | 1.9845 | 9.1348 | 9.0929 |
| 4.6051 | 2.0 | 2000 | 3.4190 | 11.6653 | 2.0884 | 9.6847 | 9.7251 |
| 4.3735 | 3.0 | 3000 | 3.3685 | 12.1941 | 2.2109 | 10.2818 | 10.237 |
| 4.2439 | 4.0 | 4000 | 3.3417 | 12.6308 | 2.4293 | 10.5036 | 10.5079 |
| 4.1552 | 5.0 | 5000 | 3.3148 | 12.5122 | 2.2873 | 10.3496 | 10.3545 |
| 4.0853 | 6.0 | 6000 | 3.3112 | 12.6426 | 2.3154 | 10.5514 | 10.5622 |
| 4.0508 | 7.0 | 7000 | 3.3048 | 12.843 | 2.3893 | 10.7232 | 10.7357 |
| 4.0293 | 8.0 | 8000 | 3.2988 | 12.7272 | 2.4338 | 10.5647 | 10.5889 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|