--- library_name: peft license: apache-2.0 base_model: google/vit-large-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-in21k-testing-dungeons-lora-27Dec24-0001 results: - task: type: image-classification name: Image Classification dataset: name: rotated_maps type: imagefolder config: default split: validation args: default metrics: - type: accuracy value: 0.9607142857142857 name: Accuracy --- # vit-large-patch16-224-in21k-testing-dungeons-lora-27Dec24-0001 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the rotated_maps dataset. It achieves the following results on the evaluation set: - Loss: 0.1076 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.7273 | 2 | 1.5502 | 0.2946 | | No log | 1.7273 | 4 | 1.1408 | 0.6696 | | No log | 2.7273 | 6 | 1.0113 | 0.6036 | | No log | 3.7273 | 8 | 0.6030 | 0.8411 | | 5.1081 | 4.7273 | 10 | 0.4665 | 0.8625 | | 5.1081 | 5.7273 | 12 | 0.4145 | 0.8643 | | 5.1081 | 6.7273 | 14 | 0.2846 | 0.9107 | | 5.1081 | 7.7273 | 16 | 0.2386 | 0.9125 | | 5.1081 | 8.7273 | 18 | 0.1564 | 0.9554 | | 0.7653 | 9.7273 | 20 | 0.1178 | 0.9679 | | 0.7653 | 10.7273 | 22 | 0.1241 | 0.9536 | | 0.7653 | 11.7273 | 24 | 0.1076 | 0.9607 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0