--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results_fine_tune_gpt40_original_careful results: [] --- # results_fine_tune_gpt40_original_careful This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0019 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0049 | 0.8881 | 500 | 0.0082 | 0.9987 | | 0.0056 | 1.7762 | 1000 | 0.0226 | 0.9973 | | 0.0062 | 2.6643 | 1500 | 0.0003 | 1.0 | | 0.0031 | 3.5524 | 2000 | 0.0009 | 0.9993 | | 0.0006 | 4.4405 | 2500 | 0.0019 | 0.9993 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 2.17.0 - Tokenizers 0.21.0