File size: 1,923 Bytes
f14e966
 
 
 
 
 
 
3aa1ec5
 
 
f14e966
 
 
 
3aa1ec5
 
 
f14e966
 
 
 
 
 
 
 
 
 
 
 
 
7eaec52
f14e966
58052be
 
 
 
 
 
d684a79
ce10003
d684a79
58052be
f14e966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- food
- mistral
- mistral7B
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistralAI_recetascocina
  results: []
language:
- es
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistralAI_recetascocina

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3926

## Model description

A partir del modelo Mistral7B se quiere realizar un ajustado para los datos de recetas de cocina colombianas.

## Model instructions

La plantilla utilizada para llevar a cabo el Fine-Tuning esta configurada de la siguiente forma:

E.g.

```
prompt = '<s>[INST]'+context +'[/INST]'+ output + '</s>'"
```

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7198        | 0.36  | 200  | 1.5440          |
| 1.545         | 0.71  | 400  | 1.3926          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2