File size: 1,923 Bytes
f14e966 3aa1ec5 f14e966 3aa1ec5 f14e966 7eaec52 f14e966 58052be d684a79 ce10003 d684a79 58052be f14e966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- food
- mistral
- mistral7B
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistralAI_recetascocina
results: []
language:
- es
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistralAI_recetascocina
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3926
## Model description
A partir del modelo Mistral7B se quiere realizar un ajustado para los datos de recetas de cocina colombianas.
## Model instructions
La plantilla utilizada para llevar a cabo el Fine-Tuning esta configurada de la siguiente forma:
E.g.
```
prompt = '<s>[INST]'+context +'[/INST]'+ output + '</s>'"
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7198 | 0.36 | 200 | 1.5440 |
| 1.545 | 0.71 | 400 | 1.3926 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |