guneetsk99
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load model and processor
|
6 |
+
processor = AutoProcessor.from_pretrained("guneetsk99/finance_qwen_VL_7B")
|
7 |
+
model = AutoModelForImageTextToText.from_pretrained("guneetsk99/finance_qwen_VL_7B")
|
8 |
+
|
9 |
+
def predict(input_img):
|
10 |
+
# Preprocess the image
|
11 |
+
inputs = processor(images=input_img, return_tensors="pt")
|
12 |
+
|
13 |
+
# Generate predictions using the model
|
14 |
+
outputs = model.generate(**inputs)
|
15 |
+
|
16 |
+
# Decode the generated text
|
17 |
+
generated_text = processor.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
# Return the input image and the generated text
|
20 |
+
return input_img, {"Prediction": generated_text}
|
21 |
+
|
22 |
+
# Create the Gradio interface
|
23 |
+
gradio_app = gr.Interface(
|
24 |
+
predict,
|
25 |
+
inputs=gr.Image(label="Upload Image", source="upload", type="pil"),
|
26 |
+
outputs=[
|
27 |
+
gr.Image(label="Uploaded Image"),
|
28 |
+
gr.Label(label="Generated Text"),
|
29 |
+
],
|
30 |
+
title="Image to Text Model",
|
31 |
+
)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
gradio_app.launch()
|