File size: 5,779 Bytes
ab70dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
library_name: transformers
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-base-en-v1.5-2024-12-09_13-52-23-quality-weight-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-base-en-v1.5-2024-12-09_13-52-23-quality-weight-1

This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0174
- Spearman: 0.9297
- Pearson: 0.9233
- Mse: 0.0174

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:|
| 0.0414        | 0.0997 | 263   | 0.0406          | 0.8536   | 0.8331  | 0.0406 |
| 0.0335        | 0.1994 | 526   | 0.0321          | 0.8740   | 0.8557  | 0.0321 |
| 0.0389        | 0.2990 | 789   | 0.0281          | 0.8834   | 0.8702  | 0.0281 |
| 0.0263        | 0.3987 | 1052  | 0.0285          | 0.8910   | 0.8779  | 0.0285 |
| 0.0282        | 0.4984 | 1315  | 0.0254          | 0.8952   | 0.8851  | 0.0254 |
| 0.0194        | 0.5981 | 1578  | 0.0243          | 0.9000   | 0.8908  | 0.0243 |
| 0.0297        | 0.6978 | 1841  | 0.0227          | 0.9042   | 0.8963  | 0.0227 |
| 0.021         | 0.7975 | 2104  | 0.0240          | 0.9079   | 0.8985  | 0.0240 |
| 0.0291        | 0.8971 | 2367  | 0.0220          | 0.9070   | 0.9007  | 0.0220 |
| 0.0204        | 0.9968 | 2630  | 0.0211          | 0.9107   | 0.9038  | 0.0211 |
| 0.0178        | 1.0963 | 2893  | 0.0210          | 0.9132   | 0.9054  | 0.0210 |
| 0.0196        | 1.1960 | 3156  | 0.0214          | 0.9138   | 0.9059  | 0.0214 |
| 0.0162        | 1.2956 | 3419  | 0.0207          | 0.9157   | 0.9082  | 0.0207 |
| 0.0187        | 1.3953 | 3682  | 0.0201          | 0.9165   | 0.9100  | 0.0201 |
| 0.0203        | 1.4950 | 3945  | 0.0205          | 0.9186   | 0.9115  | 0.0205 |
| 0.0171        | 1.5947 | 4208  | 0.0196          | 0.9181   | 0.9123  | 0.0196 |
| 0.0161        | 1.6944 | 4471  | 0.0195          | 0.9197   | 0.9136  | 0.0195 |
| 0.0134        | 1.7940 | 4734  | 0.0193          | 0.9206   | 0.9155  | 0.0193 |
| 0.0167        | 1.8937 | 4997  | 0.0189          | 0.9201   | 0.9152  | 0.0189 |
| 0.0207        | 1.9934 | 5260  | 0.0197          | 0.9225   | 0.9176  | 0.0197 |
| 0.011         | 2.0929 | 5523  | 0.0187          | 0.9229   | 0.9177  | 0.0187 |
| 0.0115        | 2.1925 | 5786  | 0.0186          | 0.9225   | 0.9170  | 0.0186 |
| 0.0117        | 2.2922 | 6049  | 0.0184          | 0.9242   | 0.9171  | 0.0184 |
| 0.0145        | 2.3919 | 6312  | 0.0189          | 0.9223   | 0.9173  | 0.0189 |
| 0.0159        | 2.4916 | 6575  | 0.0190          | 0.9251   | 0.9194  | 0.0190 |
| 0.0088        | 2.5913 | 6838  | 0.0182          | 0.9246   | 0.9200  | 0.0182 |
| 0.0109        | 2.6910 | 7101  | 0.0184          | 0.9244   | 0.9189  | 0.0184 |
| 0.0097        | 2.7906 | 7364  | 0.0181          | 0.9261   | 0.9211  | 0.0181 |
| 0.0154        | 2.8903 | 7627  | 0.0181          | 0.9250   | 0.9206  | 0.0181 |
| 0.0086        | 2.9900 | 7890  | 0.0186          | 0.9271   | 0.9219  | 0.0186 |
| 0.0079        | 3.0894 | 8153  | 0.0176          | 0.9266   | 0.9214  | 0.0176 |
| 0.0106        | 3.1891 | 8416  | 0.0180          | 0.9274   | 0.9211  | 0.0180 |
| 0.0115        | 3.2888 | 8679  | 0.0175          | 0.9275   | 0.9218  | 0.0175 |
| 0.0127        | 3.3885 | 8942  | 0.0178          | 0.9275   | 0.9219  | 0.0178 |
| 0.0087        | 3.4882 | 9205  | 0.0176          | 0.9278   | 0.9224  | 0.0176 |
| 0.0096        | 3.5879 | 9468  | 0.0182          | 0.9282   | 0.9224  | 0.0182 |
| 0.0108        | 3.6875 | 9731  | 0.0174          | 0.9286   | 0.9236  | 0.0174 |
| 0.0098        | 3.7872 | 9994  | 0.0176          | 0.9287   | 0.9230  | 0.0176 |
| 0.0097        | 3.8869 | 10257 | 0.0172          | 0.9286   | 0.9232  | 0.0172 |
| 0.0113        | 3.9866 | 10520 | 0.0174          | 0.9290   | 0.9236  | 0.0174 |
| 0.0091        | 4.0860 | 10783 | 0.0177          | 0.9290   | 0.9234  | 0.0177 |
| 0.0062        | 4.1857 | 11046 | 0.0176          | 0.9289   | 0.9231  | 0.0176 |
| 0.0078        | 4.2854 | 11309 | 0.0175          | 0.9289   | 0.9233  | 0.0175 |
| 0.0093        | 4.3851 | 11572 | 0.0173          | 0.9291   | 0.9237  | 0.0173 |
| 0.0061        | 4.4848 | 11835 | 0.0174          | 0.9291   | 0.9236  | 0.0174 |
| 0.0072        | 4.5845 | 12098 | 0.0175          | 0.9292   | 0.9237  | 0.0175 |
| 0.0064        | 4.6841 | 12361 | 0.0174          | 0.9293   | 0.9236  | 0.0174 |
| 0.0058        | 4.7838 | 12624 | 0.0174          | 0.9292   | 0.9237  | 0.0174 |
| 0.0082        | 4.8835 | 12887 | 0.0174          | 0.9292   | 0.9237  | 0.0174 |
| 0.008         | 4.9832 | 13150 | 0.0174          | 0.9292   | 0.9237  | 0.0174 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 2.19.2
- Tokenizers 0.21.0