File size: 2,635 Bytes
30f3d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-small-en-v1.5-2024-12-08_15-44-34-quality-weight-0.7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-small-en-v1.5-2024-12-08_15-44-34-quality-weight-0.7

This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0187
- Spearman: 0.9299
- Pearson: 0.9262
- Mse: 0.0187

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:|
| 0.0283        | 0.3998 | 1055  | 0.0252          | 0.9012   | 0.8968  | 0.0252 |
| 0.0236        | 0.7997 | 2110  | 0.0225          | 0.9116   | 0.9081  | 0.0225 |
| 0.021         | 1.1995 | 3165  | 0.0217          | 0.9179   | 0.9147  | 0.0217 |
| 0.0206        | 1.5994 | 4220  | 0.0197          | 0.9230   | 0.9199  | 0.0197 |
| 0.0182        | 1.9992 | 5275  | 0.0197          | 0.9246   | 0.9223  | 0.0197 |
| 0.0163        | 2.3991 | 6330  | 0.0192          | 0.9256   | 0.9243  | 0.0192 |
| 0.0149        | 2.7989 | 7385  | 0.0185          | 0.9273   | 0.9260  | 0.0185 |
| 0.0119        | 3.1988 | 8440  | 0.0188          | 0.9283   | 0.9253  | 0.0188 |
| 0.0131        | 3.5986 | 9495  | 0.0184          | 0.9294   | 0.9273  | 0.0184 |
| 0.0133        | 3.9985 | 10550 | 0.0183          | 0.9296   | 0.9276  | 0.0183 |
| 0.0102        | 4.3983 | 11605 | 0.0185          | 0.9298   | 0.9275  | 0.0185 |
| 0.0116        | 4.7982 | 12660 | 0.0185          | 0.9299   | 0.9276  | 0.0185 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.20.3