File size: 5,788 Bytes
65390ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-small-en-v1.5-2024-12-28_04-50-16-quality-weight-0.9
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bge-small-en-v1.5-2024-12-28_04-50-16-quality-weight-0.9

This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0182
- Spearman: 0.9303
- Pearson: 0.9235
- Mse: 0.0182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Spearman | Pearson | Mse    |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:|
| 0.0303        | 0.0997 | 263   | 0.0333          | 0.8642   | 0.8534  | 0.0333 |
| 0.0311        | 0.1994 | 526   | 0.0328          | 0.8847   | 0.8687  | 0.0328 |
| 0.0362        | 0.2990 | 789   | 0.0263          | 0.8952   | 0.8847  | 0.0263 |
| 0.0217        | 0.3987 | 1052  | 0.0251          | 0.9014   | 0.8929  | 0.0251 |
| 0.0277        | 0.4984 | 1315  | 0.0258          | 0.9037   | 0.8950  | 0.0258 |
| 0.02          | 0.5981 | 1578  | 0.0241          | 0.9086   | 0.8990  | 0.0241 |
| 0.0244        | 0.6978 | 1841  | 0.0221          | 0.9103   | 0.9028  | 0.0221 |
| 0.021         | 0.7975 | 2104  | 0.0217          | 0.9132   | 0.9050  | 0.0217 |
| 0.0255        | 0.8971 | 2367  | 0.0212          | 0.9137   | 0.9075  | 0.0212 |
| 0.0193        | 0.9968 | 2630  | 0.0209          | 0.9162   | 0.9107  | 0.0209 |
| 0.017         | 1.0963 | 2893  | 0.0204          | 0.9185   | 0.9120  | 0.0204 |
| 0.0213        | 1.1960 | 3156  | 0.0211          | 0.9186   | 0.9134  | 0.0211 |
| 0.0143        | 1.2956 | 3419  | 0.0206          | 0.9210   | 0.9144  | 0.0206 |
| 0.0153        | 1.3953 | 3682  | 0.0201          | 0.9214   | 0.9155  | 0.0201 |
| 0.0188        | 1.4950 | 3945  | 0.0203          | 0.9221   | 0.9166  | 0.0203 |
| 0.0173        | 1.5947 | 4208  | 0.0199          | 0.9217   | 0.9174  | 0.0199 |
| 0.0163        | 1.6944 | 4471  | 0.0192          | 0.9233   | 0.9178  | 0.0192 |
| 0.0131        | 1.7940 | 4734  | 0.0200          | 0.9230   | 0.9176  | 0.0200 |
| 0.0201        | 1.8937 | 4997  | 0.0194          | 0.9230   | 0.9188  | 0.0194 |
| 0.0176        | 1.9934 | 5260  | 0.0197          | 0.9244   | 0.9200  | 0.0197 |
| 0.0111        | 2.0929 | 5523  | 0.0189          | 0.9245   | 0.9194  | 0.0189 |
| 0.0126        | 2.1925 | 5786  | 0.0190          | 0.9257   | 0.9208  | 0.0190 |
| 0.0152        | 2.2922 | 6049  | 0.0185          | 0.9261   | 0.9203  | 0.0185 |
| 0.016         | 2.3919 | 6312  | 0.0184          | 0.9252   | 0.9208  | 0.0184 |
| 0.0167        | 2.4916 | 6575  | 0.0186          | 0.9270   | 0.9217  | 0.0186 |
| 0.0164        | 2.5913 | 6838  | 0.0183          | 0.9268   | 0.9226  | 0.0183 |
| 0.0126        | 2.6910 | 7101  | 0.0182          | 0.9272   | 0.9229  | 0.0182 |
| 0.0141        | 2.7906 | 7364  | 0.0186          | 0.9270   | 0.9221  | 0.0186 |
| 0.0193        | 2.8903 | 7627  | 0.0185          | 0.9276   | 0.9234  | 0.0185 |
| 0.0106        | 2.9900 | 7890  | 0.0182          | 0.9285   | 0.9242  | 0.0182 |
| 0.0128        | 3.0894 | 8153  | 0.0182          | 0.9282   | 0.9242  | 0.0182 |
| 0.0149        | 3.1891 | 8416  | 0.0184          | 0.9288   | 0.9233  | 0.0184 |
| 0.0146        | 3.2888 | 8679  | 0.0177          | 0.9286   | 0.9244  | 0.0177 |
| 0.0164        | 3.3885 | 8942  | 0.0179          | 0.9286   | 0.9237  | 0.0179 |
| 0.0111        | 3.4882 | 9205  | 0.0181          | 0.9293   | 0.9246  | 0.0181 |
| 0.0097        | 3.5879 | 9468  | 0.0189          | 0.9293   | 0.9243  | 0.0189 |
| 0.0153        | 3.6875 | 9731  | 0.0176          | 0.9298   | 0.9252  | 0.0176 |
| 0.0096        | 3.7872 | 9994  | 0.0178          | 0.9296   | 0.9249  | 0.0178 |
| 0.0126        | 3.8869 | 10257 | 0.0175          | 0.9297   | 0.9253  | 0.0175 |
| 0.0122        | 3.9866 | 10520 | 0.0177          | 0.9300   | 0.9253  | 0.0177 |
| 0.0105        | 4.0860 | 10783 | 0.0180          | 0.9301   | 0.9253  | 0.0180 |
| 0.0092        | 4.1857 | 11046 | 0.0179          | 0.9301   | 0.9251  | 0.0179 |
| 0.0116        | 4.2854 | 11309 | 0.0177          | 0.9301   | 0.9250  | 0.0177 |
| 0.014         | 4.3851 | 11572 | 0.0180          | 0.9299   | 0.9252  | 0.0180 |
| 0.0094        | 4.4848 | 11835 | 0.0178          | 0.9301   | 0.9255  | 0.0178 |
| 0.0106        | 4.5845 | 12098 | 0.0179          | 0.9300   | 0.9253  | 0.0179 |
| 0.0092        | 4.6841 | 12361 | 0.0179          | 0.9301   | 0.9253  | 0.0179 |
| 0.0096        | 4.7838 | 12624 | 0.0179          | 0.9301   | 0.9253  | 0.0179 |
| 0.0105        | 4.8835 | 12887 | 0.0178          | 0.9301   | 0.9253  | 0.0178 |
| 0.0106        | 4.9832 | 13150 | 0.0178          | 0.9301   | 0.9253  | 0.0178 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 2.19.2
- Tokenizers 0.21.0