File size: 5,972 Bytes
28b4397 9584225 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 28b4397 a198e93 d349c58 28b4397 a198e93 28b4397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
language:
- en
pipeline_tag: sentence-similarity
---
# e5-large-v2-4096 (LSG-Patched)
A [Local-Sparse-Global (LSG)](https://arxiv.org/abs/2210.15497) version of [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2), capable of handling up to **4096 tokens**. This model has been patched to work with more recent versions of Transformers—ensuring `is_decoder=False` for pure encoder mode and carefully handling attention masks at float precision.
## Quickstart Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoConfig, AutoModel
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
"""
E5-style average pooling:
1) Zero out masked tokens
2) Sum the token embeddings
3) Divide by the number of valid tokens
"""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
summed = last_hidden.sum(dim=1)
counts = attention_mask.sum(dim=1)
return summed / counts.unsqueeze(1)
model_name = "guymorganb/e5-large-v2-4096-lsg-patched"
# 1) Load config (force encoder mode)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
config.is_decoder = False
# 2) Load tokenizer & model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, config=config, trust_remote_code=True)
# 3) Some example queries & passages
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
# 4) Tokenize
batch_dict = tokenizer(
input_texts,
max_length=4096,
padding=True,
truncation=True,
return_tensors="pt"
)
# Convert attention mask to float (needed for LSG code)
batch_dict["attention_mask"] = batch_dict["attention_mask"].float()
# 5) Forward pass (return_dict=True gives a dictionary output)
outputs = model(**batch_dict, return_dict=True)
# 6) Pool
embeddings = average_pool(outputs.last_hidden_state, batch_dict["attention_mask"])
# 7) Normalize (optional)
embeddings = F.normalize(embeddings, p=2, dim=1)
# 8) Example similarity: compare first two (queries) vs. last two (passages)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print("Similarity scores:\n", scores.tolist())
```
or...test for inference
```python
# Modified test script
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoConfig, AutoModel
import time
# Keep your average_pool function the same
model_name = "guymorganb/e5-large-v2-4096-lsg-patched"
# Load with explicit LSG settings
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
config.is_decoder = False
config.block_size = 4096 # Double the block size #############
config.sparse_block_size = 4096 # Keep equal to block_size ##############
config.sparsity_factor = 2
config.sparsity_type = "norm"
config.adaptive = True
config.num_global_tokens = 1
config.pool_with_global = True
print("Config after loading:")
for k, v in config.to_dict().items():
print(f"{k}: {v}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
model_name,
config=config,
trust_remote_code=True
)
model.eval()
# Test with gradually increasing lengths
test_lengths = [
10, # Very short
64, #
128, #
256, #
512, #
1024, #
2048, #
3072, #
4096 # Full context
]
for length in test_lengths:
test_text = f"passage: {'test ' * length }"
try:
encoding = tokenizer(
test_text,
max_length=4096,
padding=True,
# pad_to_multiple_of=4096, # dont use unless you want a fixed size
truncation=True,
return_tensors='pt'
)
actual_length = encoding['input_ids'].size(1)
print(f"\nTesting length {actual_length} tokens:")
print(f"Input tensor shape: {encoding['input_ids'].shape}")
start = time.time()
with torch.no_grad():
encoding["attention_mask"] = encoding["attention_mask"].float()
outputs = model(**encoding, return_dict=True)
embeddings = average_pool(outputs.last_hidden_state, encoding["attention_mask"])
embeddings = F.normalize(embeddings, p=2, dim=1)
end = time.time()
print(f"Success! Processing time: {end - start:.3f} seconds")
print(f"Embedding shape: {embeddings.shape}")
except RuntimeError as e:
print(f"Failed at length {actual_length}")
print(f"Error: {str(e)}")
print(f"Last successful shape: {encoding['input_ids'].shape}")
break
```
```
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}
@misc{guymorganb_e5_lsg_patch,
title={{LSG Patch for E5-large-v2 up to 4096 tokens}},
author={{GuyMorganB}},
howpublished={\url{https://huggingface.co/guymorganb/e5-large-v2-4096-lsg-patched}},
year={2023}
}
``` |