File size: 2,261 Bytes
c4f357e
10b68b9
 
 
 
 
 
 
c4f357e
 
10b68b9
 
c4f357e
10b68b9
c4f357e
10b68b9
 
ff10de8
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
c4f357e
10b68b9
ff10de8
10b68b9
 
 
 
 
 
ff10de8
c4f357e
10b68b9
c4f357e
10b68b9
 
ff10de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f357e
 
10b68b9
c4f357e
10b68b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: distilbert/distilgpt2
tags:
- generated_from_trainer
model-index:
- name: tiny-gpt2-br
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-gpt2-br

This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8488

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.2132        | 0.21  | 1000  | 5.2772          |
| 5.0485        | 0.42  | 2000  | 4.7982          |
| 4.7238        | 0.63  | 3000  | 4.5621          |
| 4.5529        | 0.84  | 4000  | 4.4206          |
| 4.4022        | 1.05  | 5000  | 4.3098          |
| 4.2349        | 1.26  | 6000  | 4.2299          |
| 4.1795        | 1.47  | 7000  | 4.1560          |
| 4.1286        | 1.68  | 8000  | 4.0875          |
| 4.0866        | 1.89  | 9000  | 4.0361          |
| 3.9584        | 2.1   | 10000 | 4.0204          |
| 3.8666        | 2.31  | 11000 | 3.9785          |
| 3.8471        | 2.52  | 12000 | 3.9498          |
| 3.8463        | 2.73  | 13000 | 3.9202          |
| 3.8116        | 2.94  | 14000 | 3.8936          |
| 3.697         | 3.15  | 15000 | 3.8964          |
| 3.6553        | 3.36  | 16000 | 3.8825          |
| 3.6525        | 3.56  | 17000 | 3.8660          |
| 3.6494        | 3.77  | 18000 | 3.8522          |
| 3.6542        | 3.98  | 19000 | 3.8488          |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2