--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: sts split: train args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8792156464193064 --- # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.5353 - Pearsonr: 0.8792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 46 | 0.8265 | 0.8153 | | No log | 2.0 | 92 | 0.8016 | 0.8500 | | No log | 3.0 | 138 | 0.6058 | 0.8729 | | No log | 4.0 | 184 | 0.5353 | 0.8792 | | No log | 5.0 | 230 | 0.5959 | 0.8763 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2