gyr66 commited on
Commit
87e47ef
Β·
1 Parent(s): ab17667

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ datasets:
5
+ - gyr66/privacy_detection
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: RoBERTa-ext-large-chinese-finetuned-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: gyr66/privacy_detection
19
+ type: gyr66/privacy_detection
20
+ config: privacy_detection
21
+ split: train
22
+ args: privacy_detection
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.67106
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.75554
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7108
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.91212
36
+ ---
37
+
38
+ # bert-base-chinese-finetuned-ner
39
+
40
+ This model is a fine-tuned version of [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset.
41
+ It achieves the following results on the evaluation set:
42
+ - Loss: 0.7408
43
+ - Precision: 0.6711
44
+ - Recall: 0.7555
45
+ - F1: 0.7108
46
+ - Accuracy: 0.9121
47
+
48
+ ## Model description
49
+
50
+ The model is used for competition: "https://www.datafountain.cn/competitions/472"
51
+
52
+ ## Training and evaluation data
53
+
54
+ The training and evaluation data is from [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset.
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 28
63
+ - eval_batch_size: 28
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.27.3
72
+ - Pytorch 2.0.1+cu117
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.2