Update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
datasets:
|
5 |
+
- gyr66/privacy_detection
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: RoBERTa-ext-large-chinese-finetuned-ner
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: gyr66/privacy_detection
|
19 |
+
type: gyr66/privacy_detection
|
20 |
+
config: privacy_detection
|
21 |
+
split: train
|
22 |
+
args: privacy_detection
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.67106
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.75554
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.7108
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.91212
|
36 |
+
---
|
37 |
+
|
38 |
+
# bert-base-chinese-finetuned-ner
|
39 |
+
|
40 |
+
This model is a fine-tuned version of [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset.
|
41 |
+
It achieves the following results on the evaluation set:
|
42 |
+
- Loss: 0.7408
|
43 |
+
- Precision: 0.6711
|
44 |
+
- Recall: 0.7555
|
45 |
+
- F1: 0.7108
|
46 |
+
- Accuracy: 0.9121
|
47 |
+
|
48 |
+
## Model description
|
49 |
+
|
50 |
+
The model is used for competition: "https://www.datafountain.cn/competitions/472"
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
The training and evaluation data is from [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset.
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 2e-05
|
62 |
+
- train_batch_size: 28
|
63 |
+
- eval_batch_size: 28
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.27.3
|
72 |
+
- Pytorch 2.0.1+cu117
|
73 |
+
- Datasets 2.14.5
|
74 |
+
- Tokenizers 0.13.2
|