|
import torch |
|
import torch.nn as nn |
|
from torchcrf import CRF |
|
from transformers import BertPreTrainedModel, BertModel, BertForTokenClassification |
|
from transformers.modeling_outputs import TokenClassifierOutput |
|
|
|
|
|
class BertCrfForTokenClassification(BertPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout( |
|
config.classifier_dropout |
|
if config.classifier_dropout is not None |
|
else config.hidden_dropout_prob |
|
) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
self.crf = CRF(config.num_labels, batch_first=True) |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
dummy_logits = torch.zeros_like(logits).to(logits.device) |
|
|
|
valid_lens = attention_mask.sum(dim=1) - 2 |
|
logits = logits[:, 1:] |
|
labels_mask = torch.arange(logits.size(1)).to( |
|
valid_lens.device |
|
) < valid_lens.unsqueeze(1) |
|
|
|
seq_label_ids = self.crf.decode(logits, mask=labels_mask) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels[:, 1:] |
|
is_pad = labels == -100 |
|
labels.masked_fill_(is_pad, 0) |
|
assert torch.eq(~is_pad, labels_mask).all().item(), "mask assertion failed " |
|
loss = -self.crf(logits, labels, mask=labels_mask, reduction="token_mean") |
|
|
|
padded_list = torch.nn.utils.rnn.pad_sequence( |
|
[torch.tensor(lst) for lst in seq_label_ids], |
|
batch_first=True, |
|
padding_value=0, |
|
) |
|
padded_list = torch.nn.functional.pad( |
|
padded_list, (0, logits.size(1) - padded_list.shape[1]) |
|
) |
|
padded_list = torch.nn.functional.one_hot( |
|
padded_list, num_classes=logits.size(2) |
|
) |
|
assert dummy_logits.size(1) == padded_list.size(1) + 1, "size assertion failed" |
|
dummy_logits[:, 1:] = padded_list |
|
|
|
if not return_dict: |
|
output = (dummy_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=dummy_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|