--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy datasets: - gyr66/privacy_detection language: - zh model-index: - name: RoBERTa-ext-large-crf-chinese-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: gyr66/privacy_detection type: gyr66/privacy_detection config: privacy_detection split: train args: privacy_detection metrics: - name: Precision type: precision value: 0.6813 - name: Recall type: recall value: 0.7573 - name: F1 type: f1 value: 0.7173 - name: Accuracy type: accuracy value: 0.9639 --- # RoBERTa-ext-large-crf-chinese-finetuned-ner This model is a fine-tuned version of [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset. It achieves the following results on the evaluation set: - Loss: 0.7186 - Precision: 0.6813 - Recall: 0.7573 - F1: 0.7173 - Accuracy: 0.9639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0197 | 1.0 | 503 | 0.6375 | 0.6663 | 0.7314 | 0.6973 | 0.9621 | | 0.0251 | 2.0 | 1006 | 0.6048 | 0.6494 | 0.7435 | 0.6933 | 0.9611 | | 0.0176 | 3.0 | 1509 | 0.6196 | 0.6669 | 0.7389 | 0.7011 | 0.9618 | | 0.0116 | 4.0 | 2012 | 0.6361 | 0.6511 | 0.7560 | 0.6997 | 0.9624 | | 0.0082 | 5.0 | 2515 | 0.6682 | 0.6746 | 0.7387 | 0.7052 | 0.9622 | | 0.0067 | 6.0 | 3018 | 0.6587 | 0.6715 | 0.7409 | 0.7045 | 0.9635 | | 0.0046 | 7.0 | 3521 | 0.6846 | 0.6770 | 0.7613 | 0.7167 | 0.9636 | | 0.0019 | 8.0 | 4024 | 0.7081 | 0.6766 | 0.7510 | 0.7118 | 0.9630 | | 0.0014 | 9.0 | 4527 | 0.7064 | 0.6812 | 0.7553 | 0.7163 | 0.9641 | | 0.001 | 10.0 | 5030 | 0.7186 | 0.6813 | 0.7573 | 0.7173 | 0.9639 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0