--- language: - zh tags: - generated_from_trainer datasets: - gyr66/privacy_detection metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: gyr66/privacy_detection type: gyr66/privacy_detection config: privacy_detection split: train args: privacy_detection metrics: - name: Precision type: precision value: 0.65322 - name: Recall type: recall value: 0.74169 - name: F1 type: f1 value: 0.69465 - name: Accuracy type: accuracy value: 0.90517 --- # bert-base-chinese-finetuned-ner This model is a fine-tuned version of [Danielwei0214/bert-base-chinese-finetuned-ner](https://huggingface.co/Danielwei0214/bert-base-chinese-finetuned-ner) on the [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset. It achieves the following results on the evaluation set: - Loss: 0.7929 - Precision: 0.6532 - Recall: 0.7417 - F1: 0.6947 - Accuracy: 0.9052 ## Model description The model is used for competition: "https://www.datafountain.cn/competitions/472" ## Training and evaluation data The training and evaluation data is from [gyr66/privacy_detection](https://huggingface.co/datasets/gyr66/privacy_detection) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 56 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.2