--- language: - zh license: apache-2.0 tags: - generated_from_trainer datasets: - gyr66/privacy_detection metrics: - precision - recall - f1 - accuracy model-index: - name: chinese-roberta-wwm-ext-large-lora-ner results: [] --- # chinese-roberta-wwm-ext-large-lora-ner This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set: - Loss: 0.3302 - Precision: 0.6010 - Recall: 0.7258 - F1: 0.6575 - Accuracy: 0.9106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 28 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.729 | 1.0 | 72 | 0.3562 | 0.4495 | 0.5818 | 0.5072 | 0.8865 | | 0.3155 | 2.0 | 144 | 0.3243 | 0.5155 | 0.6636 | 0.5803 | 0.8972 | | 0.2561 | 3.0 | 216 | 0.3021 | 0.5599 | 0.7004 | 0.6223 | 0.9067 | | 0.2283 | 4.0 | 288 | 0.3049 | 0.5670 | 0.6984 | 0.6259 | 0.9044 | | 0.1952 | 5.0 | 360 | 0.3144 | 0.5836 | 0.7145 | 0.6424 | 0.9076 | | 0.174 | 6.0 | 432 | 0.3157 | 0.5787 | 0.7183 | 0.6410 | 0.9063 | | 0.155 | 7.0 | 504 | 0.3223 | 0.5966 | 0.7246 | 0.6544 | 0.9083 | | 0.1436 | 8.0 | 576 | 0.3267 | 0.5921 | 0.7210 | 0.6502 | 0.9088 | | 0.1298 | 9.0 | 648 | 0.3345 | 0.5965 | 0.7276 | 0.6556 | 0.9089 | | 0.1226 | 10.0 | 720 | 0.3302 | 0.6010 | 0.7258 | 0.6575 | 0.9106 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.2