Update README.md
Browse files
README.md
CHANGED
@@ -21,27 +21,27 @@ Here is a simple example:
|
|
21 |
import torch
|
22 |
from diffusers import StableDiffusionPipeline, TCDScheduler
|
23 |
|
24 |
-
device
|
25 |
-
base_model_id
|
26 |
-
tcd_lora_id
|
27 |
|
28 |
-
pipe
|
29 |
-
pipe.scheduler
|
30 |
|
31 |
pipe.load_lora_weights(tcd_lora_id)
|
32 |
pipe.fuse_lora()
|
33 |
|
34 |
-
prompt
|
35 |
|
36 |
-
image
|
37 |
-
prompt
|
38 |
-
num_inference_steps
|
39 |
-
guidance_scale
|
40 |
-
# Eta (referred to as
|
41 |
# A value of 0.3 often yields good results.
|
42 |
# We recommend using a higher eta when increasing the number of inference steps.
|
43 |
-
eta
|
44 |
-
generator
|
45 |
).images[0]
|
46 |
```
|
47 |
|
|
|
21 |
import torch
|
22 |
from diffusers import StableDiffusionPipeline, TCDScheduler
|
23 |
|
24 |
+
device = "cuda"
|
25 |
+
base_model_id = "stabilityai/stable-diffusion-2-1-base"
|
26 |
+
tcd_lora_id = "h1t/TCD-SD21-base-LoRA"
|
27 |
|
28 |
+
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
|
29 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
30 |
|
31 |
pipe.load_lora_weights(tcd_lora_id)
|
32 |
pipe.fuse_lora()
|
33 |
|
34 |
+
prompt = "Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic, high-detail, epic composition, watercolor."
|
35 |
|
36 |
+
image = pipe(
|
37 |
+
prompt=prompt,
|
38 |
+
num_inference_steps=4,
|
39 |
+
guidance_scale=0,
|
40 |
+
# Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step.
|
41 |
# A value of 0.3 often yields good results.
|
42 |
# We recommend using a higher eta when increasing the number of inference steps.
|
43 |
+
eta=0.3,
|
44 |
+
generator=torch.Generator(device=device).manual_seed(0),
|
45 |
).images[0]
|
46 |
```
|
47 |
|