Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- databricks/databricks-dolly-15k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
|
9 |
+
---
|
10 |
+
|
11 |
+
TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using dolly dataset.
|
12 |
+
|
13 |
+
Training took 1 hour on an 'ml.g5.xlarge' instance.
|
14 |
+
|
15 |
+
|
16 |
+
```python
|
17 |
+
hyperparameters ={
|
18 |
+
'num_train_epochs': 3, # number of training epochs
|
19 |
+
'per_device_train_batch_size': 6, # batch size for training
|
20 |
+
'gradient_accumulation_steps': 2, # Number of updates steps to accumulate
|
21 |
+
'gradient_checkpointing': True, # save memory but slower backward pass
|
22 |
+
'bf16': True, # use bfloat16 precision
|
23 |
+
'tf32': True, # use tf32 precision
|
24 |
+
'learning_rate': 2e-4, # learning rate
|
25 |
+
'max_grad_norm': 0.3, # Maximum norm (for gradient clipping)
|
26 |
+
'warmup_ratio': 0.03, # warmup ratio
|
27 |
+
"lr_scheduler_type":"constant", # learning rate scheduler
|
28 |
+
'save_strategy': "epoch", # save strategy for checkpoints
|
29 |
+
"logging_steps": 10, # log every x steps
|
30 |
+
'merge_adapters': True, # wether to merge LoRA into the model (needs more memory)
|
31 |
+
'use_flash_attn': True, # Whether to use Flash Attention
|
32 |
+
}
|
33 |
+
|
34 |
+
```
|